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A crossing-symmetric Regge-behaved amplitude for 7TE scattering is constructed with a minimum
number of Veneziano terms from p, p', P', and P" trajectories in the t channel and E„,X~, and 6& trajec-
tories in the s and u channels. The parameters are determined from low-energy 7fE resonances, isospin
selection rules, and p universality. The model fits the high-energy charge-exchange differential cross sections
in the forward direction, and also predicts polarization in reasonable agreement with experimental values.
The resulting backward elastic differential cross sections are discussed.

I. INTRODUCTION

~~~NE of the most attractive features of Veneziano-
type amplitudes' is the possibility of describing

both the high-energy and the low-energy behavior of
the scattering with the same set of parameters. In ~E
scattering, where a wealth of experimental information
is available, it is interesting to investigate how well a
Veneziano-type representation correlates the high-
energy data with low-energy resonance parameters.
This provides an interesting test for the model. Al-
though Igi' extended the ideas of Veneziano to the case
of xg scattering, he made no attempts to correlate the
resonance parameters with the high-energy data. The
recent work of Fenster and Wali' is the 6rst systematic
study of this problem. They proposed a representation
with satellite terms4 and made an attempt to correlate
the high-energy' and low-energy 7t-E scattering with
the same set of parameters.

It is a mell-known property of Veneziano-type ampli-
tudes that their high-energy limit always leads to Regge
residues which choose nonsense. As a consequence of
this, the ~E Veneziano amplitude leads to a vanishing
of the sr P-+srert differential cross section when the
p trajectory goes through a wrong-signature nonsense
value. The presence of satellites' in the Fenster and
Wali' representation does not change the situation,
since the Regge residues of satellites also choose non-
sense. Furthermore, if the p trajectory alone dominates
the asymptotic behavior of charge-exchange scattering,
then the spin-nonQip and spin-Qip amplitudes contribute
with the same phase, which results in zero polarization.
At this stage one can take the viewpoint that the so-
called background terms also contribute, so that the
amplitudes do not completely vanish when the trajec-
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do not contain a P Pole (examPle C (xs,2) in (2.5)].' S. K. Bose and K. C. Gupta, Phys. Rev. 184, 1572 (1969);
E. L. Berger and G. Fox, ibid, 188, 2120 (1969).

tories go through a wrong-signature nonsense point,
and one automatically has a mechanism for producing
nonzero polarization. However, in this type of analysis
one finds too big a polarization for sr p ~ sr'n which,
in addition, is strongly energy dependent. '

The answer to this problem may well lie in Regge
branch points. However, no one has yet shown how to
introduce cuts which preserve duality or even crossing
symmetry. If cuts are introduced through the absorp-
tion model as was done by Lovelace, 7 they violate the
Freund-Harari' conjecture, which states that the
Pomeranchuk trajectory is independent of the reso-
nances. It was known before Veneziano that a model with
a p trajectory and a second trajectory half a unit below,
called the p' trajectory, ' " prevents the vanishing of
the charge-exchange differential cross section when
ct,(t) goes through zero. Furthermore, the p+p' model
provides an explanation for the nonzero polarization
for sr p ~ 7r'n. Recently, Barger and Phillips" showed
that a consistent solution to the 7' finite-energy sum
rules is obtained when they introduce a set of degen-
erate p-I" trajectories and degenerate p'-I'" trajectories
nearly half a unit below the p trajectory. It should be
noted that exchange degeneracy demands a I'" tra-
jectory degenerate with the p' trajectory. Furthermore,
Ahmadzadeh and Kau6mann'4 recently studied a model
based on exchange degeneracy, SU'(3) symmetry, and
secondary meson trajectories. They found such a model
in good agreement with experiments. Logan et a/. pre-
sented an interesting review of the independent evi-
dence for the p' trajectory. The most significant points
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H. Hogaasen and W. Fischer, ibid. 22, 516 (1966).
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18, 259 (1967); T. J. Gajdicar, R. K. Logan, and J. W. Moffat,
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(1968); W. Rarita and B. Schwarzchild, Phys. Rev. 162, 1378
(1967).

'2 L. Sertorio and M. Toiler, Phys. Rev. Letters 19, 1146 (1967)."V. Barger and R. J. N. Phillips, Phys. Rev. 187, 2210 (1969);
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(1969).
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to us seem (a) the X-X charge-exchange scattering,
@&here the p' is necessary to obtain consistent 6ts to the
differential cross sections and the total cross sections;
(b) the Regge recurrence of the p' giving a particle
J~=3 atn, .(t) =3 or at a. mass v3 GeV= 1732 MeV,
near the third peak of the R" at 1748 MeV; (c) the
fits to the nucleon isovector form factor with only p
leading to a discrepancy, whereas the addition of a p'

with a mass of about 1000 MeV eliminates this in-
consistency. "'

Therefore, within the framework of duality and the
Freund-Harari' conjecture, a model based on secondary
meson trajectories seems quite attractive. In this paper
we present a crossing-symmetric Regge representation
which is constructed from 37, S7, and 6& baryon tra-
jectories, p-I" meson trajectories, and p'-I'" secondary
meson trajectories. We shall investigate how and to
what extent such a model can correlate the high-energy
and the low-energy behavior of xE scattering.

In Sec. II, we construct the Veneziano amplitudes
from p, p', I", and I'" trajectories. We then calculate
the high-s limit of these amplitudes for fixed t and fixed
u, respectively. In Sec. III we evaluate the multiplica-
tive Veneziano parameters. We impose the signature
conditions on the hq, E, and E7 trajectories and then
show that the widths and the positions of the resonances
on the parent baryon trajectories are given in terms of
ten parameters. These parameters are then calculated
by using isospin conditions, extrapolating the ampli-
tudes to the nucleon and X~(1518) poles, and imposing
the condition that no parity partners for the h6(1236)
and 1V~(1518) exist. The calculated width of 65(1236),
from these parameters, turns out to be 100 MeV. In
Sec. IV we study the asymptotic behavior of the Vene-
ziano amplitudes. We fit the high-energy forward
differential cross section for xE charge exchange. The
parameters thus evaluated are compared with their
value obtained from p universality. The 2.+P differential
cross sections in the backward direction are calculated
using low-energy parameters. We then show how these
backward differential cross sections and their dip struc-
tures change by introducing complex baryon trajec-
tories. Finally, in Sec. V we discuss our results.

II. CONSTRUCTION OF AMPLITUDE

In this section we construct a Veneziano amplitude
from the p, p', and I", I'" trajectories in the t channel
and the E, Ã~, and 5~ trajectories in the s and n
channels. We follow Igi's construction for the Vene-
ziano-type amplitudes and keep only the leading Vene-
ziano terms. The addition of satellite terms does not

"M. N. Focacci et al. , in I'roceedings of the Thirteenth Inter-
national Conference on Hi gh-oner gy Physics, Berkeley, 1966
(University of California Press, Berkeley, 1967).' L. H. Chan, K. W. Chen, J. R. Dunning, Jr. , N. F. Ramsey,
J. W. Walker, and R. Wilson, Phys. Rev. 141, 1298 (1966).

E.B.Hughes, T. A. Griffy, M. R. Yearian, and R. Hofstadter,
Phys. Rev. 139, 3458 (1965). See also A. L. && Licht and
A. Pagnamenta, Rutgers University report (unpublished).

help us in resolving the problem mentioned at high
energy, since their Regge residues also choose nonsense.
Furthermore, we keep a minimum number of Veneziano
terms in order to have the least number of parameters.

YVe thus write the Veneziano amplitudes which satisfy
s-I crossing, display Regge behavior, and have reso-
nance poles on Regge trajectories:

A /4n-=Ap —+Ap (1a)

A;= p -CN;(-;, 1)+p.-C.-(-;,1)+p;CN„-(-;,1)

+p4 CN.~ (22)+p5 CN,N. (2,2)' (1b)

B /4vr=Bp +Bp

B. = qx+BN.+(2,1)+q2+B~+(2, 1)+qs+BN „+(2,1)

+g4BNa(2) 2)+g5BE(2 y 2)+g6BNp(2 j2) i

A+/4~=Ag++A~ +,

(2a)

(2b)

(3a)

A"=p~'CN. '(2 1)+p2'C~" (2,1)+p6'CN, '(2, 1)

+p,CN.N. (2,2)+p5Cgg(2, 2)
+p6CN, N, (2,2), (3b)

B+/4~ =Br.++Br"+, (4a)

—qx BN. (2,1)+q2 B~ (2,1)+ps BN„(2,1)
+74BNa& (2&2)+V5BNaNg (2i2) (4b)

We have used the notation of Fenster and Wali' and let

B,+(,'445, n) =B-('2m —n, (S), e—n(t))

+B(-;no—n, (u), n —~(t)), (Sa)

B,„+(-,'mfa) =B(-,'m —n, (s), —,'e —46'(44))

&B(-,'m —66,(N), —',42 —n„(s)), (Sb)

B(-', ,4—',46)44=B(-', m —n.(S), —',m —n.(44)),

I'(~) I"(~) C(4,p)
B(~,~) =

I'( +~) ( +~—1)

(Sc)

In Eqs. (1)—(4) the p', I'" contributions are defined
in a similar fashion as p I' contributions with-n, r. (t)
replaced by n;, r (t) and the multiplicative constants

P, q, and r replaced by P, e, and R.
The s asymptotic behavior of these amplitudes for

Axed t is given by

A (s,t)/4~-
='-(p;+p.-+p.-)V-")- ~ ~n1--, (~))

-P ~-+~.-+~6-)r, (~")""' l(1-, (~)), (6)

A+(s, t)/4~
= (p~++ p2'+ p6') E~ (~'~)"'"'I'(1—~~ (~))

+(I'1++I'2++&6+)&-(~'~)"""'I'(1 ~~"(~)),
(7)

B (s,t)/47r-
=(g,++q,++q,+)(,( '

) "& 'I'(1—,(t))
+(e"+e"+e")~, (-")-'"—~(1--, (~)), (8)
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8+(s,t)/4n.

= —(q +q +q )& ( 's)"'"' 'N1 — (t))
—(Ql +Qa +Qa )(] "(n s) "[" 'F(1—n] "(t)),

Where $, ,, =1 e'—«i' ~'['] and b. / =1+e 4«a" 1*"[']

It should be noted that p, p' contribute only to "minus"
amplitudes and P', P" only to "plus" amplitudes,

because of the connection between s-I crossing and /-

channel signature. "
For large s and fixed e, the baryon trajectories con-

tribute with degenerate signature. However, in Sec. II
we shall enforce the condition that fermion trajectories
have definite signature which will give us relations
between the multiplicative parameters. Thus ampli-
tudes have the following s asymptotic behavior for
fixed Q:

/ =L(—P +P4 —2+ 4)b'+( —P —P — —4)b ) (.—~())( )"""'
+p( pl p4 +ps Fl F4 +Fs )fN(g +( pl +p4 p5 F1 +F4 Fs )$N~ )
X&(2 —nN. (u))(n's)""'"' '"+L(—Pa —Ps —&6 —&5 )b.++(—Pa +Ps —&6 +&5 )b, )

+1(2 nN (u))(n s) ~ " (10)

8 /42r = L(qa++qs+Qa++Qs) b++ (qa+ qs+Qa+ —Qs) 4 )I'(2 —nq(u))(n's) ~6["] "'
+p(ql++q4+Ql++Q4) br.++ (ql+ —q4+Ql+ —Q4) ( . )r(-,' —n .(u))(n's) "'"' '"

+E(qa++qs+Qa +Q6)$N +(qa+ qs+Q—a+ Qs)EN—)1'(2 nN„(u))(n's) """'"', (11)

~'/4 =L(p+p+&+~)4++(p —p+F —&)4 )p(8 — ( ))( ')"'"' '"
+L(pl++ p4+F 1++&4)kN.++(pl p4+—&1+ &4) b—. )~(2 nN. (—u))(n's) "'"' "'

+DPa'+Ps+&6++&6)EN, ++(Pa+ Ps+&2+ —~6)(N, )—1'(2 nN, (u))(n—'s) N""' '" (12)

8+/42. =((—qa +74 Qa +R4)b++( —
qa

—74—Qa —R4)Pz )F(—',—nz(u))(n's) 4&"] '/'

+L( ql 74 75 Ql R4 R5) EN+ + ( ql +74+75 Ql +R4+Rs))F(2 nN~(u))(n s)
+f(—

qa +74—Qa +R4)&N„++(—qa —74—Qa —R4)&N„)I'(2' —nN, (u))(n's) ["& '/', (13)

where
+—1~g

—4m [ag (m]—1/2]

III. DETERMINATION OF PARAMETERS

In this section we discuss the evaluation of the multi-
plicative parameters in our Veneziano amplitude. There
are a total of 44 constants in Eqs. (1)—(4).The determin-
ation of such a large set of parameters would lead to a
large linear system; the stability of the solution may
then well be questioned. We remark therefore that
each of these numbers individually has no physical
meaning. We observe that as resonance parameters of
leading trajectories or as Regge residues at high energies,
they occur always in certain combinations so that the
important physical predictions depend on ten param-
eters only. We now impose various physical conditions
to determine these parameters.

We demand that in Eqs. (10)—(13), the trajectories
have the correct signature:

(a) 6 trajectory:

p2 +F2 p4 +F4 p q2 +Q2 ('qs+Q5),
(14)

p2 +F2 (ps+F5) q2 Q2 r4+R4

(b) 1V trajectory:

pl +F1 p4 p5 +F4 Fs
q.+Q"=q+Q, (»)

pl++Pl+=p4+F4, ql +Ql +r4+R4+rs+Rs,

p4+&4 =C4, ps +&5 =~5,' (17)

q4+Q4=D4, qs+Qs=D5, qs+Qs=as; (18)

p4+~4= F4, ps+&5= &5, ps+&6= Fs, (19)

r4+R4= F4, ra+Ra= Fs. (20)

We first note that our 44 parameters, using the 12
signature conditions (14)—(1[]), can be expressed in
terms of the above ten parameters denoted by C, D, E,
and F.

We shall now show that the parameters (width and
position) of the mX resonances which lie on the parent
S,S~, and 6& trajectories can be expressed in terms of
these ten parameters. Furthermore, these ten constants
completely describe the high-energy behavior of mE
scattering for fixed u.

We now impose the isospin conditions that no l= ~

resonances lie on the leading 6 trajectory and also no
I= 2 state on leading E and X~ trajectories.

"See, for example, J. D. Jackson, UCRL Report No. UCRL-
19351 (unpublished).

(c) 1V~ trajectory:

pa +&5 = —(ps +&5 ), qa++Qa+= —(qs+Qs),' (16)
pa++&2+= —(ps+F6), qa +Qa = ra+Ra

Let us now define a very useful combination of these
parameters:
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(a) E trajectory:

Pi +&s =Pa++&y+, Es C4 ——C„—
qy +Qg =qg++Qg+, D,=F,+F„(21)

(b) E7 trajectory:

Ps +&s +Ps++&s+, Es=Cs,
gs +Qs = gs++Qs+, Ds= —Fs,' (22)

(c) 6 trajectory:

Eg ——2C4. (23)

It should be noted that in view of the signature con-
ditions, Eqs. (14)—(16), not all ten isospin conditions,
Eqs. (21)—(23), are independent and we get only six
independent isospin conditions which reduce the ten
parameters to four.

To evaluate the four parameters, we use the following
low-energy conditions:

(a) Nucleon pole:
The extrapolation to the nucleon pole yields

2qg++2q, +ps +y4+ys+2Qg++2Q4+Qs +84+As
= 3n'(g ~~'/47r);

resonance) on 1V~ trajectories at M„, whose widths are
known. "These four conditions depend on eight param-
eters and give us the value of another combination of
these parameters. Since the Regge recurrences of these
resonances are not known and they do not contribute
to high-energy behavior for fixed I, we do not mention
the value of this combination of parameters. These new

equations do not lead to any inconsistant situation. In
addition to resonance conditions there are further con-
straints in our problem, such as the Adler condition
and the scattering lengths in the I=—,', 2 states. ' How-
ever, each of these constraints depends on one parti-
cular combination of the parameters and does not lead
to any interesting predictions.

IV. HIGH-ENERGY BEHAVIOR

In our model, the high-energy behavior of the E
charge-exchange scattering, in the forward direction,
is dominated by p and p trajectories. Thus, using Eqs.
(6)—(9), we get

d(r 2x M'
1

dt q' s

using signature and isospin conditions, we get

D4= (gwÃx'/47r)~ (24)
X ~- — I'p m — Pp

(b) X, pole:
We here use two conditions, the width of 1V~)1518,

J~= ss )," and the experimental fact that the parity
partner of EY has not been observed. Thus we have

I'~, ——((E, 'JV)/3f, s)&&2g,s—f(3E,+JV)Fs Es), (25)—
where

, !aFn+nsF~'
I

s (29)
16''

(30)F*=(1—o '-*"')( 's) *"'I'(I—*(I)),

E,= (Jlf,—M)F, . (26) a=2 p=, (31a)

In the above equations, q~ and E~ are the c.m. momen-
tum and the nucleon energy at the position of the E~
resonance, respectively.

(c) 6 pole:
We erst use the condition that the parity partner of

As(J~= ss+, 1238)has not been observed experimentally,

= 100 MeV, (28b)

where in Kq. (25) we used 1V~ parameters from Ref. 18
and g ~~'/4sr= 15.

However, there are four resonance conditions which
do not depend on these ten parameters because they
lie on daughter trajectories. Such conditions are (i) no
-', + and —,

' particles on the 6 trajectory at &VS and (ii)
s+ and —,

' resonances t the $~~(1550) and the Roper
' N. Barash-Schmidt ef al. , Rev. Mod. Phys. 41, 109 (1969).

Cs= (3fg+/JI)Ds. (27)

We have now determined all the parameters on the
leading trajectories. Consequently, we calculate the
width of A~ resonance,

I'g ———s'(gas/Mg) (Eg+3I)Ds (28a)

m=Q F„, ss=Q Q„. (31b)
n=l n=l

The polarization for this reaction is given by

Jm(fg *fs )I' =2 - sin9,
do./dQ

(32)

Using Eqs. (6) and (7) in Eq. (32), we get

p=—
E' —Ms 1 (sssb ssa) Im(F,FpP—)

Qs s do/dQ
(35)

We now evaluate the parameters u and b from p uni-
versality and vector dominance":

(36)

20 B. Dutta-Roy, I. R. Lapidus, and M. J. Tausner, Phvs. Revs
181, 2091 (1968).

where

fs= t (E+JV)/87rW)t A+(W —M)B), (33)

fs = ((E M)/87rlF)( A+—PV+ JV)B).— (34)
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(1+x)
(37)& =gp

mp —3

where the isovector anomalous magnetic moment of
nucleon K=3.7. Using

gp '/4s. 2.5, (38)
we have

a=2.31 GeV ', b=5.85 GeV ' (39)

On the other hand, we 6t the experimental data for +37
charge-exchange differential cross sections using the
four free parameters a, b and A, B. Our best fits in

Figs. 1 and 2 are obtained for

a=1.50 GeV ' b=2.68 GeV ' (40)

A=1.00 GeV ', 8=3.80 GeV '. (41)

The above values of a and b correspond to a p width of
about 80 MeV and a p' width of about 100 MeV. It
should be noted that if we introduce satellite terms in
our representation, we can obtain a much better agree-
ment with the p width of 120 MeV. With the satellite
terms, however, one has two more parameters which
contribute to the high-energy behavior of the scattering
amplitude and are not related to the p width. Conse-
quently, one can adjust the satellite parameters in the
high-energy region in such a way as to obtain reasonable

l0

s

~o IO

Q)

J3
I ~l

I

IO

l0

0.5 I.O-t [CeV/c]
l.5 2.0

500—
FIG. 2. Wide-angle differential cross section for m p —+ w0n at

P»b=5. 85, 13.3, and 18.2 GeV/g. Data from Ref. 21.

200

o f00

s

~I~ 50

1 I

O. I 0.2-t [QeV/c]'
0.3

1 (M' —p')'dO—( 'p) =
I s r'I '+

dQ 4q'

agreement with p universality. Such satellite terms
would alter the signature condition and change our
result regarding the 3, width to some extent.

In our analysis, we obtain a best fit for o.,(0)=0.58,
which also gives the correct s variation of the differen-
tial cross section. "This result is in agreement with the
recent work of Hohler, Steiner, and Strauss, "who show
that the "soft-pion intercept" o.,(0)= 0.482 is not com-
patible with the total and forward xX cross sections.

We now use the values a, b and A, 8 from Eqs. (40)
and (41) in Eq. (35) and obtain the polarization as
shown in Fig. 3. The magnitude of the polarization can
be increased if we introduce satellite terms in our repre-
sentation. This is because the parameters of the satellite
terms are not related to the p width and can be adjusted
in the high-energy region only. ' We And a dip in the
polarization at n, (t) = 0, and this dip persists even if we
add satellite terms. (See Fig. 4.)

We now study the s.+p differential cross sections at
high energies and for fixed u. Using Eqs. (10)—(13), we
obtain

Fzo. 1. Differential cross section for 2f- p ~ m'e at pl,b=5.85,
13.3, and 18.2 GeV/c. The data are from Ref. 21.

21 A. V. Stirling et gl. , Phys. Rev. Letters 14, 763 (1965);
P. Sonderegger et at., Phys. Letters 20, 75 (1966).

"G. Hohler et al. , Phys. Letters 20 79 (1966).
23 G. Hohler, F. Steiner, and R. Strauss, University of Karlsruhe

report (unpublished).



G. C. JOSHI AND A. PAGNAMENTA

where

pr+= Qs( —2DsF'n —2D4FN +2DsFrv, ) &

qr =V'~( 3D—P'n),

(43a)

(43b)

q s+= s [—FsGa 4F—s&„+4F4Gar.
+M(—2DsFa 4Dq—F~ +4DsF~, )j, (43c)

ps = sr( —3EsGa —6MDsFa), (43d)

( *)F =G*=1 ( )k ( ~) * ' (43e)

We have already evaluated LEqs. (17)—(27)j all the
parameters appearing in the above equations. Now if we
take n~, (0) =na, (0) = —0.5 and na, (0) =0,' we obtain
for the sr' cross sections a. factor 1500—2000 times larger
than their experimental value. In connection with the
Veneziano representation, this situation was first real-
ized by Fenster and Wali. '

The analysis presented here can be simply extended
to the Fenster-Wali (FW) representation. Our prelimi-
nary analysis indicates that if secondary meson tra-
jectories are added to the FW representation, it is possi-
ble to fit both the forward and backward cross sections

.6

5—

3

—.l
a
N

~ ~
L-0O
O

CL

~2

3

l

0.5 I.Q
-t [SeVjc]

FIG. 4. Prediction of our model for the wide-angle polarization in
~ p —+ ~'e. Same data as in Fig. 3.

3

3
0 O. l

-t [GeV/c]

l

0.2 0.3

with the same set of parameters. However, in this situa-
tion we have 59 parameters. The stability of the solu-
tions of these equations is under investigation, and the
results will be presented elsewhere.

At this stage we study the effect of introducing an
imaginary part into the trajectories. Since the d tra-
jectory is the dominant trajectory in the backward
direction, we take na(x) =u+bx+iXfx —(M+@)'j'~'
with a=o, b=1, and study the variation of A.. When
X=1, we get the correct mangitude for the s+p differ-
ential cross sections; however, the dips at wrong-
signature nonsense points, associated with the signa-
ture of the 6 trajectory, also move away. Consequently,
when X=1, we get a dip in the ~+p differential cross
section at I= —0.5, and in m p at I= —1.5; both these
dips contradict the experiments. Thus complex tra-
jectories give us the correct magnitude for backward
vr+p differential cross sections; however, the dips move
away from wrong-signature nonsense points.

Fze. 3. Polarization for m p-+m'n. Data from Ref. 24 at
Pq,b= 5.9 and 11.2 GeV/c. The curve is computed for 5.9 GeV/c.
The polarization in the present model has very little energy
dependence, so that a curve at 11.2 GeV/c would overlap the one
drawn to a large extent.

24 P. Bonamy et al. , in ProceedirI gs of the Intereatiorlal ConfererIce
oe Elemeltary Particles, Heidelberg, Germany, l967, edited by
H. Filthuth (North-Holland, Amsterdam, 1968), p. 171; D.
Drobnis et al., Phys. Rev. Letters 20, 274 (1968).

V. CONCLUSIONS

We have studied in this paper a Veneziano-type
amplitude for xX scattering. In our construction, we
have used the secondary meson trajectories to ensure
nonvanishing of the amplitudes at the nonsense wrong-
signature points. We have followed Igi's construction
of crossing-symmetric amplitudes with Regge behavior.
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We find that with p+p' Regge exchange, a satis-
factory 6t to the charge-exchange differential cross
section can be obtained. Our Qts indicate a p intercept
larger than the "soft-pion limit" u, (0) =0.482,"in agr ce-
ment with a recent analysis of Hohler et aL."The calcu-
lated polarization from these values of the parameters
has a dip when n, (t) =0. This observation is consistent
with the results of Glebov et ul. ,"who 6t the charge-
exchange differential cross section with a p Regge pole
and a Regge branch point. However, in their study of
xE 6nite-energy sum rules, Barger and Phillips" find
a peak in the polarization when n, (t) =0.This is because
their Regge residues are t dependent, whereas we use
Regge residues which are constant t apart from
F(1—cr,(t))j.However, as shown in the FW calculation, '
the introduction of satellite terms will improve agree-
ment with p universality. The two parameters of the
satellite terms are not related to p width, ' and they can
be adjusted in the high-energy region in such a way as
to produce the correct polarization.

In a recent paper, Ahmadzadeh and Kauffmann
studied a model based on p+p' trajectories, with Regge
residues given by the Veneziano representation. They
obtain a good Qt to the 7i-E charge-exchange polariza-
tion. It should be noted, however, that their p' param-
eters correspond to a negative-width particle.

In the low-energy region we find that the width and
position of xÃ resonances which lie on the leading
baryon Regge trajectories can be expressed in terms of
ten parameters. These parameters are then evaluated
using various low-energy conditions. From these param-
eters we calculate the E*width, which turns out to be
about 100 MeV. However, these parameters result in
too large a backward differential cross section. ' ' We
show that it is possible to obtain a reasonable magnitude
for the sr+p differential cross section by introducing
large imaginary parts in the baryon trajectories. This
procedure, however, moves the dips far away from
wrong-signature nonsense points, in contradiction with
experiment.

ACKNOWLEDGMENTS

We would like to thank Professor D. Harrington and
Professor R. Rockmore for stimulating discussions.
Our graphs have been computed and plotted on the
POP-6 of the Rugters High-Energy Group. We are
obliged to Professor R. J. Piano for making this facility
available to us.

"C.Lovelace, Phys. Letters 28B, 264 (1968).
2' V. Yu. Glebov, A. B.Kaidalov, S.T. Sukhorykov, and K. A.

Ter-Martirosyan, ITEP, Moscow, report (unpublished).

P H YS ICAL REVIEW D VOLUME 1, NUM HER 11 1 JUN E 1970

Pion Photoyroduction, Continuous Disyersion Sum Rules, and Regge Interceyts*

YU-CHIEN LIU AND IAN J. McGEE

Qttantttm Theory Gronp, Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

(Received 13 January 1970)

We have formulated the continuous dispersion sum rules (CDSR) for pion photoproduction. Attempts
are made to 6nd the intercepts of the Regge trajectories at t =0, using the result of a partial-wave analysis
by Walker, and by Berends, Donnachie, and Weaver. We have, in all, analyzed the twelve regularized
f-channel helicity amplitudes. While reasonable results are obtained for the trajectories associated with
the antisymmetric isovector L(—)g amplitudes, results for the symmetric isovector P(+)g amplitudes
(in particular, the co trajectory) are inconsistent with what we expect from hadron physics. This phenomeno-
logical analysis for yN —& mN is plagued with the additional degrees of freedom allowed by the electro-
magnetic nature of the reaction. It is also possible that the cutoG energy used in the CDSR is not high
enough. Further investigation in the analysis of the data is necessary. In connection with the study of the
helicity amplitudes for pion photoproduction, we also obtain, by eliminating the invariant amplitudes, the
crossing relation between the s- and t-channel amplitudes, without recourse to the crossing matriz.

I. INTRODUCTION
' 'T is well known that studies on single-pion photo-
& ~ production (yX —+ sr/) have added understanding
to low-energy pion physics; information for the latter
comes mainly from elastic pion-nucleon scattering
mE —+ ~37. It is natural to inquire as to whether the
same situation will persist at higher energies.

In the intermediate-energy region the phenomeno-

*Work supported in part by the National Research Council of
Canada.

logical analysis for pX ~~X is greatly complicated by
the doubling of the independent parameters. There are
four invariant amplitudes, ' in contrast to two' for pion
scattering, xE —+ xE. Also, there is no optical theorem,
which relates the imaginary part of the forward scatter-
ing to the total cross section, and which fixes the phase
of the imaginary part to be positive dehnite.
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