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Nucleon-Nucleon Bremsstrahlung: An S-Matrix Approach*
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A covariant formulation of nucleon-nucleon bremsstrahlung is presented which is unitary and gauge
invariant, and has a relatively simple form in the soft-photon limit. Applying the soft-photon approximation
to experiment, a large discrepancy is found with the noncoplanar data taken in Harvard geometry, while
the fit for the coplanar case is good. The inclusion of non-soft-photon dynamics using S-matrix methods
ls discussed.

dependence of the EE matrix elements is postulated
(usually by choosing a particular potential), and the
resulting cross section compared with experiment, with
the best agreement determining the best oR-energy-
shell dependence (or potential). It appears, however,
that experiments are insufficiently accurate to dis-
tinguish among most such calculations.

An interesting feature of bremsstrahlung amplitudes
(and the basis for the second method) is that the soft-
photon behavior is known in terms of the static elec-
tromagnetic properties of the particles and the non-
radiative amplitude. As I.ow' has shown, the first two
terms in an expansion of powers of photon energy of the
bremsstrahlung amplitude, 0(1/k) and 0(1), are de-
termined. Nyman has applied I ow's method to con-
structing these terms, and found fair agreement with
experiment and potential-model calculations. To the
extent that the potential models are gauge invariant
and fit elastic ES data, they must produce the correct
model-independent soft-photon behavior, 7 and this,
Nyman concludes, is the reason for the agreement.
Apparently more accurate or more inelastic experiments
are required to determine 0(k) behavior of the ampli-
tude to contrast with the model calculations.

I'elsner' has estimated the soft-photon behavior
using a simplification of the Low method due to
Feshbach and Yennie' which is designed to reproduce
the 1/k term and is expected to be a fair approximation
of the 0(1) term. His amplitude is not gauge in-
variant, and his results relatively poor.

A third theoretical approach used single-boson ex-
change, pion exchange with a phenomenological form
factor in the case of Ueda, " and ~, p, co, q, 0, and t.

mesons in the work of Baier, Kuhnelt, and Urban. "
This method has the advantage over. potential cal-
culations of being relativistically invariant and gauge
invariant, but has the correct soft-photon behavior
only to the extent that the model used also describes
elastic EE scattering.

In the present work we present another approach,

I. INTRODUCTION

"UCLEON-NUCLEON bremsstrahlung (the re-
action fVcV &1VÃy, h—enceforth 1V1Vy) at low and

intermediate energies has been the subject of much
theoretical and experimental interest as a probe of the
nucleon-nucleon (X1V) interaction. It is felt that due to
the weakness of the photon interaction, one can de-
termine the oR-energy-shell behavior in this reaction to
apply elsewhere, for instance to distinguish between
phenomenological SE potentials. A number of theo-
retical approaches have been taken, including po-
tential models, soft-photon approximations, and one-
boson-exchange models.

The potential approach' ' depends on the assumption
that nuclear and electromagnetic potentials can be
separated. Calculations are then made using the two-
potential formulation which includes all orders of the
nuclear potential but only the first order in the electro-
magnetic potential. The half-oR-energy-shell ÃÃ
matrix elements required are computed either with
phenomenological potentials or by using experimentally
determined phase shifts with the oR-energy-shell
behavior determined in some ad hoc manner, as by one-
pion exchange. 2 The electromagnetic potential is then
approximated by the static nucleon interaction with the
electromagnetic field. The velocity-dependent, or non-
local, part of the nuclear potential requires additional
terms for the electromagnetic potential in order for the
calculation to be gauge invariant. These are neglected
and thought to be small. '

Thus the potential approach is partly phenomeno-
logical in the sense that a particular off-energy-shell
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formulating the problem in such a way that the known
properties of the NNy amplitude are automatically
satisfied, that is, gauge invariance, soft-photon be-
havior, relativistic invariance, and unitarity. In ad-
dition, our formulation allows the possibility of cal-
culating dynamics beyond the soft-photon limit. We
discuss how this may be done, using the S-matrix
principles of generalized unitarity and analyticity.

Following the S-matrix approach, we find that when
we choose variables most convenient for discussing
unitarity and analyticity, the soft-photon approxima-
tion can be expressed in terms of elastic partial-wave
amplitudes in a fairly simple form for calculation, in
contrast to the more conventional approach followed

by Nyman. ' By expressing the partial-wave amplitudes
in terms of the invariant energies of the initial and
final nucleons, we find a form that is also unitary to all
orders in the photon energy and does not require
derivatives of the elastic partial-wave amplitudes
(PWA). We also make a partial-wave expansion for
NNy, and present the soft-photon approximation for
the NNy partial-wave amplitudes.

The interesting aspects of NNp are the dynamics giv-
ing rise to non-soft-photon behavior, 0(k), and higher
terms in the amplitude. For this we propose that NNy
be treated with S-matrix methods as a production
amplitude in a similar manner to the treatments of the
reaction Nx —+No.m. .""The latter is a strong production
reaction, however, and the weakness of the photon
causes two important simplifications for NAy: (&)
one needs only the part of the NNp~NNp amplitude
for which the photon is disconnected, i.e., the NN
amplitude itself; (2) there are no anomalous thresholds.
The procedure then is to use generalized unitarity to
determine crossed-channel singularities, then to use
analyticity in the form of dispersion relations for the
partial-wave amplitudes to obtain singular integral
equations which can be solved by standard techniques. .

Since this approach has been successful for NN scatter-
ing itself, " it seems reasonable that NNy also can be
treated this way.

In the hypothetical case of spinless nucleons, the
integral equation to be solved is the well-known Omnes
equation, and we present an expjicit solution. The more
interesting physical case of NNp is complicated by the
fact that in order to apply dispersion relations, one
needs to define kinematic-singularity-free PWA, which
we have not done. This point is certainly well under-
stood for four-particle amplitudes, and, we feel, can be
resolved with further study. The matrix generalization
of the Omnes" equation that one obtains in the case of
spin apparently does not have a known explicit solu-
tion, and we present an iterative method for solving it

'2 L. F. Cook, Jr. , and B. W. Lee, Phys. Rev. 127, 283 (1962).
~3 J. S. Hall, W. R. Frazer, and M. Nauenberg, Phys. Rev.

128, 478 (1962).
'4 A. Scotti and D. Y. Wong, Phys. Rev. 138B, 145 (1965)."R.Omnes, Nuovo Cimento 8, 316 (1958).

I'io. 1. Kinematics.

which is based on the smallness of the coupling between
orbital angular momentum states in NN scattering.

In Sec. II we define our choice of five independent
variables, the center-of-mass (c.m. ) Lorentz frames
for the initial and final nucleons, and the I.orentz
transformation necessary to go from one to the other.

In Sec. III we discuss unitarity, finding that the NNp
amplitude with the spins of the initial (final) nucleons
measured in the c.m. system of the initial (final)
nucleon pair has a simple unitarity relation involving
only itself and elastic c.m. amplitudes, which are
expressed at the invariant energies of initial and final
pairs of nucleons. This NNp amplitude turns out to
have a simple partial-wave expansion, and we de-
termine the form that unitarity takes for the PWA.
Finally we obtain a symmetry condition by crossing the
photon from initial to final states and using time-re-
versal invariance.

We turn, in Sec. IV, to determining the soft-photon
approximation for the amplitudes of Sec. III, eventually
expressing the results in a form that is unitary and
does not involve derivatives of the elastic PWA.

In Sec. V we consider the steps necessary to apply our
formulation to experiment, comparing our variables
with the usual variables, and present the formulas
necessary to obtain cross sections for the two geo-
metries. In addition, we compare the soft-photon ap-
proximation with some data not considered by Nyman'
and 6nd what appears to be a breakdown of the soft-
photon approximation.

In Sec. VI, we discuss the possibility of calculating
dynamical contributions not included in the soft-
photon limit, that is, 0(k) and higher terms in the
amplitude. We present an explicit solution for spinless
nucleons, and, assuming that kinematic-singularity-
free amplitudes can be defined, we propose an it-
erative method for solving the coupled singular
integral equations that one obtains.
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X. Since the photon has no rest frame, the relative phase
of the X= &1 states is arbitrary. The choice we have
made is not the conventional one, but will be con-
venient later.

We require the parameters of the I orentz trans-
formation from frame C' to frame C. This is easily done
noting that since p'+k= p, the 3-components of k and

p must balance in frame C'. If

II. KINEMATICS

It is well known that a process involving five particles
can be described with 6ve variables. Obviously, there
is considerable freedom in the choice of a specific set;
our choice is motivated by the form of the unitarity
condition and the weakness of the interactions of the
photon. We choose two energy and three angular
variables; treating the initial and final nucleons in a
symmetrical way, we define the energy variables 0 0 yp'

0 1 0 0

0 0 1 0

,yp 0 0 yj

1 2 1 2 )

1 2 1 2 (2.1) (vector in C') = (vector in C), (2.3)

then —(o/(s —(o)'i'=Py(s+(u)'" and P= —(o/s,
(1—p') "'.We denote this transformation by I. in the
following sections. Using L, we then find

Q Q'= —
L (s—1.)'—aP$'~'L(s/(s' —oP)'i') cos8 cos8'

+sin8 sin8' cos (y' —y)]. (2.4)

Thus in the zero-photon-energy limit, the angle be-
tween the directions 0 and 0', which we denote by lN,

cosLN = cos8 cos8'+sin8 sin8' cos (y' —y),

becomes identical to the elastic scattering angle.
Finally, using Eqs. (2.2) and (2.3) we present a set of

relations useful for obtaining these variables in terms
of any other set:

~=k (pi+p2)~

(Pi+P2)

cos8=~ '((s+a&)/(s+&u —1)/~2k (p, —p, ),
(2.5)

cos8'=~-'L(s —o))/(s —~—1))' 'k (pi' —p, '),

cos(y' —y) = —(sin8 sin8') ' 1 2
' 1 2

L (s—1)'—oP$"2

where Pi and P2 are the momenta of the initial nucleons,
pi' and p2' the momenta of the final nucleons, and the
photon momentum is denoted by k (see Fig. 1). This
choice is convenient for considering the limit of zero
photon energy where s becomes the elastic energy and
a&~0; co= k (Pi+P2) = k (Pi'+P2') and is proportional
to the photon energy. Note that s+&v is the energy of
the initial nucleons, s—co, the final, and the physical
region is s&4m~2&~& 0.

To define the angular variables, consider two Lorentz
frames defined by the c.m. systems of the initial and
final pairs of nucleons, denoting them by C and C',
respectively. We choose the s axis in both frames to be
in the direction of —k. Then we may choose the x axes
to be parallel so that the two frames are related by a
boost in the s direction. Finally, we define the angles
0= (8, p) and 0'= (8', p') as the polar angles of pi and
y1' in C and C', respectively. Since we have not specified
the orientation of the x and x' axes, we have an ad-
ditional azimuthal angle beyond that necessary to
describe the process; physical quantities can only de-
pend on the difference g —p which is invariant under
rotations about the direction of the photon in either
frame since such rotations commute with the boost
along the direction of the photon connecting the two
frames.

Defining the momenta I'=Pi+P2, Q=Pi —P2, I"=
pi'+ p2', Q'= pi' —p2', we have, explicitly,

frame C:
I'= ((s+a))'i2 0 0 0)
Q= (s+&u —1)'i2(0, sin8 cosy, sin8 siny, cos8),

k=Lcv/(s+a))"2](1, 0, 0, —1),
e(k, l~)= —2 '"(0 1, 2X, O);

frame C':
I"= ((s—co)'i' 0 0 0)

(2.2)

Q'= (s—&v
—1)"'(0,sin8' cosy', sin8' siny', cos8'),

k=L~/(s —~)'"j(1,0, 0, —1).
We have chosen units so that 22i2~ ——1 (neglecting the
22-P mass difference). We have also defined the polariza-
tion vector e(k, 'A) of the outgoing photon with helicity

S+ „cos8cos8'
$2 M2 li2

III. UNITARITY, PARTIAL-WAVE EXPANSION,
AND CROSSING

A. Unitarity

Since we assume the total energy to be insufhcient
for pion production, and consider only the lowest order
in e2, we include only the channels V+A' and E+lV+y.
Now let us denote the amplitude for SE~SE by T'22,

SE~EA y by T32, EE&~EVE by T23, and EE&~EEV
by T». Further, let us allow the subscripts 2 and 3 to
represent spin indices in the following way: 2='A1X2,

3=V1X2, 2'=X1'31', etc. , where X and 31X2 are the spin
indices of the photon and the two nucleons, respectively.
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Then, if the T matrix is defined in terms of the S
matrix as

sf) —8/, —(2ir)'i84 (P/ P;—) T/;) (3.& )

unitarity can be written in the form i(T/, T—;/ )=
g„T/„T;„*and we have

ZPT2'2 (pl p2 j plp2) T22' (plp2 j pl p2 )j
Q T2'2" (pl p2 j pl p2 )T22" (plp2j pl p. )
2//

+ Q T2'3" (pl p2 j k pl p2 )T23" (plp2j k pl p2 ))

(3.2)
i[Ts)2(k pl p2 ) plp2) T23' (plp2) k pl p2 )g

Q TS'2" (k pl p2 j pi p2 )T22''*(pip2j pl p2 )

+ Q T3'3" (k pl p2 j k pl p2 )T83" (plp2j k pl p2 ))

(3.3)
where P~ ~ and P3 represent integrals and summations
over intermediate momenta and spin indices for the
two- and three-particle states. Since T23 is 0(e) com-
pared with T», the second term in Eq. (3.2) is 0(e')
and may be neglected, so in this approximation T~2

satisfies elastic unitarity. Similarly, we keep only the
portion of T33 in which the photon is noninteracting,
that is,

T&,3„(kpi p&'. k pi p2 )—2ko (2)r) b (k ir

XT2' (pl p2 pl p2 ')+0(e'). (3.4)

Substituting Eq. (3.4) into (3.3), we obtain

iLTu', 2(kpi'p2'; pipi) —T2;u *(pip2; kpi'p2')$

Q Tu';2" (kpl p2 j pl p2 )T22"*(pip2j pl p2 )
2//

+ Q T2'2" (pl p2 j pl p2 )T2;u" (plp2 j kpl p2 )) (3 5)

where we now display the photon helicity index and
have dropped the primes from photon variables. The
prime on g2. ' is to indicate that (pi"+p2") =P'
instead of I'.

Ke now specialize to the c.m. system of the incoming
nucleons, C, and consider all spin indices to be helicities.
Thus, we define the elastic c.m. helicity amplitude

&22(s, O', Q) = T22(qi'q2', qiqm), (3.6)
where s is the invariant energy and Q (Q') the polar
angles of qi (qi') with respect to a fixed s axis. Physical
quantities of course depend only on the difference
between initial and final angles, but it will be con-
venient to retain this redundancy.

At this point we must consider the fact that if we
express the amplitudes in Eq. (3.5) in the c.m. system
of the ieitia/ nucleons, the elastic amplitude appearing
in the first term is a c.m. amplitude, while the elastic
amplitude in the second term is not. In order to relate

2p(s+co—)fdQ",

X(2 )'S'(p "+p"—p —p )

(3.9)
where p(s) = —$(s—1)/s)'"/1V and 1V=64m' for neu-
tron-proton bremsstrahlung and 128m' for proton-
proton bremsstrahlung. Similarly,

Q' = —2p (s—cv) fdQ".

Now we use Eqs. (3.6)—(3.9) to reexpress Eq. (3.5) in
the form

iLQ...--'(L; p, 'p, ')Gu-, , (s, ~, O', Q)

G2;u" (s) ~) Q) Q )Q2"2 (L j pl p2 )j
= —2~(s+~) fdQ" Q '2-2- (L; pi'p2')Gu-'. 2

X (s, cu) O', Q")H»~~ (s+or) Q, Q")—2p (s—~) fdQ"

XQ-i(L; p, p, )a(s—., Q, Q-)Q(L; p,-p,-)
XG2,.u. "*(s)(u) Q, Q")Q2- 2 *(;pi"p2"). (3.10)

Taking out a common factor Q '(L, pi'p2'), we

"We will use the conventions of A. O. Barut, The Theory of the
Scattering Matrix (MacMillan, New York, 1967), whereby
outgoing particles with spin s transform according to the rep-
resentation (0, s) of the Lorentz group, and incoming particles
according to the conjugate representation.

it to a c.m. amplitude, we must apply the Lorentz
transformation from C to C'. This requires a unitary
transformation corresponding to the well-known Wigner
rotation. If I is the boost transformation from C to C'
defined in Sec. II, then"

T2'2" (pl p2 j pl p2 ) pQ (Lj pl p2 )

X T(Lpl ) Lp2 j Lpl ) Lp2 )Q (Lj pl p2 )j2'2"

= PQ-i(L; p, 'p, ')a(s—,O', Q")

XQ "(L;pi"p2")gg ~-) (3.7)

where Q(L; pip, ) is a direct product of unitary matrices
corresponding to Wigner rotations for the two nucleons.
Tliat ls) Qi) i);if')(L) pi p2 ) —Q4 il (L) pi )Qi) i)i(L1 p2 ),
We will specify these functions later.

We wish to define an ESy amplitude such that the
initial nucleon spins are helicities in frame C, while
final spins are helicities in O'. This puts the final spin
indices on a different footing from the initial, changing
the transformation properties. It is accomplished by a
unitary transformation, in fact the same one introduced
in Eq. (3.7). We thus define the 1V1V—+1V1Vy and
SEp—+SE c.m. helicity amplitudes by

Gu', 2 (s) ~) Q ) Q) Q2'2 '(L) pl pi )Tu";2(kpi p, '; p,p2))

G2;u'(s) ~) Q) Q ) T2;u" (plp2j kpl p2 )Q2"2 (L) pl p2 ) ~

(3.8)
With our normalization conventions, we have

Z =L&/(2 )'jf(d'p "/2p"') (d'p "/2p'")
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finally have the simple form

(1/2l) I G» s (s& te& O
& O) —Gs» *(s& es& O& O )]

= p (s+te) fdO" G»', s" (s, le) O') O")Hss .*(s+el, O, O")

+p (s—al) fdO" Hs~p ~ (s—te, O', O" )Gs;»i' (s, es, O, O").
(3.11)

B.Partial-Wave Expansions

Using the methods of Jacob a,nd Wick, 'r we form the
two-particle helicity state of two nucleons in their
c.m. system:

I pips;2), .~.= gN& I
Jsts; 2)d „s(0)e '&, -(3.12)

Jm

where Ns' ——(2J+1)/4sr, 8 and p are the polar angles of

p&, we continue to use the notation 2=5.~X2, and p=
The partial-wave expansion of the elastic

amplitude is'

H;2 (s, O', O) = Q Ns'k~. 2 (s)d~„(8 )d~„(8)
Jtn

XexpI isss (p' —lp) ]. (3.13)

In order to form the partial-wave expansion for the
EEy amplitude, we must combine the final EE state
with the photon. Thus we must boost the state with an
expansion as in (3.12) from frame C' to frame C, which
introduces the same Wigner rotation matrix discussed
above. Thus the final EE state in frame C has the ex-
pansion

(pl ps i 2
I Q 2s &(Li1pl ps )(Lpl', Lps j 2

=Q-.'-(L;P.'P. ) Z N'
J~m~

X (J'mrs'; 2"
I d „"s'(8') exp(i sr'sip') (3.14. )

g)~,Xq'X2', XI,Xq
JJ~m( d cose d„x,„s(0)

with helicity X plus a pair of nucleons with angular
momentum J' and helicity nz'. In a similar manner we

have, dropping the prime on the m in the following,

G2;»' (si el) Oi O ) Q 2srNJ Ns' g2;»' (sy te)
JJ~m

Xd „s'(8')d,„x,„s(0) exp( —isssp') expI i(sss —) )q].
(3.17)

Substituting this result and the elastic expansion in
(3.11), we have

(1/») I:g»;s"'"(s,~)—g2;l "'"*(s,~)]
=p(s+te)g». , s "(s, el)hs2 ~ *(s+te)

+p(S—es)IS2isii '(S e&)g, , »—.~
' *(S,al). (3.18)

Finally, we assume time-reversal invariance. For the
elastic amPlitude, we have hs s (s) = hler (s), and we

specify the relative phase of the processes EEp—+EE
and NN~NN& by g, ,». '

(s, &e)=g»,.s '
(s, el) to

obtain

Img;. ""™(s,)=p(s+ )g''; - -"'-(s, )

Xha, "x,-,xg„*(s+co)+p (s—to) hl, x, ,x,"x, ~ '(s—(u)

Xgl4-Xs;ills"'"*(Sy ~) (3 19)

For completeness, unitarity for the elastic PWA is

Imh„, l...„x,'(s) =p(s)h„, ,„, „„„„(s)h„,,q„„.„,„, *(s).
(3.20)

We will require the partial-wave projection formula to
invert Eq. (3.16). In terms of G, it is given by

1

We then combine this state, which has total momentum
in the s direction, with the photon in the negative s
direction, to obtain a sum over states of total angular
momentum J and s component m:

X d cos8'd „~'(8') dip' exp (—isssy')

XGill'll';Kris (S& al& O
& O) (3.21)

(V'P. ';~2'I=Q '
~ -(L p'P') Z

Jm J~m~

X (Jsls, J'sss'; )l2"
I

exp (i'ass'&p)8x (3.15, ).
Thus we obtain

G», s(s, el, O', O)= Q 2srNs'Ns. 'g». ,
sJs'~(s, te)

JJ~m~

Xd .„.~'(0')d . )„„s(9)exp(its'y') expI —i(sss' —)l)lp].

(3.16)

The particular normalization factors are chosen to
simplify the partial-wave projection formula. The
PWA gJ ' ' represents the transition amplitude from a
pair of nucleons with angular momentum J to a photon

'~ M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959);
G. C. Wick, ibid. 18, 65 (1962). Note that our helicity amplitudes
dier by a phase and some kinematic factors from these authors'.

' Our normalizations are such that for an uncoupled amplitude
hs(s) =exp[sSs(s) j/p(s) with Ss(s) a real phase.

C. A Symmetry Condition

If we cross the photon from the final state to the
initial state, then consider the relation between the
EEy amplitude and the time-reversed process, we ob-
tain a symmetry condition for the EEp amplitude.

Crossing relates the EEy—+EE and EE—&EE7
amplitudes in the following way:

2»';2(~pl p2 i pips) 22'; —»(pl p2 j ~plp2). (3.22)

Multiplying by the Wigner rotation to obtain G, we
have

Q2''l" (L j pl P2 )T»";2 (~pl P2 j plp2)

= Qs s" (L, Pl'Ps') Ts; » (Pl'Ps'; —&PlPs)

=7', '(LP', LP.'; L~,—Lp, LP.)Q"(L—; P P.),
(3.23)
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where we used the transformation properties of T in the
second step. If we evaluate this in system C, we see
that both sides are c.m. amplitudes. From the defin-
itions (3.8), we have

G12., 2(s, or) O', Q)=G2. , 12(s, —o1, 0', 0). (3.24)

Comparing Eqs. (3.17) and (3.18), we see that the A'2V&

amplitude and its time-reversed process are related by

G12..2 (s, ~, O', 0)= G2., ),2 (s) o1, (8, —y), (8', —y') ).
(3.25)

Thus combining crossing and time-reversal invariance
we have the symmetry

G12,.2(s, o110', Q)=G 12., 2. (s, —o1, (8, —(p), (8', —y'))
(3.26)

and for g, applying the partial-wave expansions,

F2., 2JJ™(s,o1) =g 12,2
J™"(s, —o1). (3.27)

IV. SOFT-PHOTON APPROKIMATION

A. Fu11 Amplitude

As we shall see, the SEy amplitude, to lowest order
in e, is analytic in m in the physical region, except for a
pole at ~=0. This allows a power-series expansion in co,

the 6rst two terms of which can be uniquely determined

by the method of Low, ' using only static electromag-
netic properties of the nucleons and the elastic ampli-
tude. One obtains an expression for the XEy amplitude
which is linear in the.elastic amplitude and its deriva-
tives with respect to physical variables.

Let us dedne the ESy amplitude

~al'a2', ala2 (kpl p2 j plp2)

in the following way:

2 111 12;1112(kpi'p2 plp2) =«, (k, &)22., (pl )rl )22

X (p2 1 ~2 )~ar'a2', ala2 (kpl p2 j plp2)Ideal (p11 )il)Pa2(p2& )12) ~

(4.1)

Suppose that only particle 1 has charge and anomalous
magnetic moment. Then, using a notation due to
Burnett and Kroll, ' we write

~al'a2';ala2 (kpl p2 j plp2) i +Di (k)
k pi' k pi

+Di (k) &a1'a2', aia2(pi p2 j p1p2)

(
y~I2[1+~, (Pr'y 222) 5l

&el a2 ~ala2+~al a2;ela2
2k pi

X
'+"( '+ '~"'"'i

O(k), (4.2)
2k pi je1a,

"T.H. Burnett and N. M. Kroll, Phys. Rev. Letters 20, 86
(1968).

where the differential operator Di&(k) is given by

Di" (k) = (pi"/k pi)k (8/8pi) (8—/8pi. ) (43)
and similarly for Di'&(k), and 3 . 2 ,. 1 2(pi'p2', pip2) is
given in terms of the elastic amplitude by

~11 12;1112(pl p2 I plp2) 22al (pl i )11 )+a2 (p2 1 ) 2 )

X&a1 a'2;a1Q'2 (pi p2 j plp2)Na1(pl& ~1)la2 (p21 ~2) (4'4)

except that it must be extended in Eq. (4.2) off the
inomentum shell for kWO, pr'+p2'Wpr+p2. This is
usually accomplished by choosing a representation in.

terms of y matrices and invariant amplitudes for the
elastic 3, then specifying the functional dependence of
the elastic invariants in a particular way. For example,
s= (pi+ p2)' and s= (p, '+p2')' may be identical on the
momentum shell, but depend on the momenta in dif-
ferent ways; as emphasized by Burnett and Kroll)'
the form obtained from Eq. (4.2) depends on this
specification, but the result is the same to order k.

We choose as variables to describe the elastic process
the invariant energy and the c.m. scattering angle, and
specify them in the following way:

1 2 1 2 )

o 8= —(p p) (p
'——p ')I ( —1) (4 5)

This is in fact the same s that we de6ned for ESy, and
from Eq. (2.5) we see that, in terms of 1VcV& variables,

cos8 cos8 c=os8'+sin8 sin8' cos (&p' —y)+0 (o12). (4.6)
Therefore, if the extrapolation off the momentum shelf

necessary to define the elastic 3 in Eq. (4.2) is defined.

by changing cv from zero, with s, 0', and 0 fixed, the
elastic invariants defined by Eq. (4.5) do not change,
to 0(o1'), and moreover, 8 continues to be the dif-
ference between initial and final angles, even when

these are measured in different frames. Finally, for SN
scattering, the y-matrix part of 3 can be chosen to be
momentum independent, " so we may express 3 as a
function of only s and cos8, or s, 0', and 0 with the usual

redundancy.
Then, since the momentum dependence of 3 is only

through s, 0', and 0, we use Eq. (4.5) and (4.6) to
reexpress the derivatives in terms of the EE7 variables.
We find, keeping only terms of 0 (or),

e (k, ) ) Di'(k) =Ei (s, Q') (8/8s)+ni (s, 0'), (4.7)

where we have defined the functions

8), (s, 0)= (e'"&IV2) Is'~' sin8'/[n (s)+cos8) I,

~(s) = Ls/(s —1)J'" (4.8)

and the angular diRerential operator

e'"& „, 1+o.(s) cos8 8 2X a

(4.9)
2o M. L. Goldberger, M. T. Grisaru, S.W. MacDowell, and D. Y.

Wong, Phys. Rev, 120, 2250 (1960).
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In addition, we note that

E pi'/k. pi' ——co-'E1 (S—M, 0'),

e pi/k pi oi ——'E1-(s+or, 0).

Now we have

Z Q(L, Pi')1»-&(Pi', ~1")

(4.10) = Z C'»'B '(Lpi')A(L)B(pi)c'»-~11-
We wish to compute the Low expression for the

amplitude 6 instead of T, so we must multiply the
final-state spinors in Eq. (4.1) by the Wigner rotation
matrices discussed in Sec. III. These are given by"

Q(L P')=B '(Lp')A(L)B(p'» (4") S ..

&&I B-'(P '), B'(P ')]
=C».tLB-'(Lpi')A(L), B '(Lp-i')A(L)

XB(p,')Bt(p, ')]. (4.16)

where A is an SL(2, C) representation of the Lorentz
transformation L, and B(p) is a particular SL(2, C)
matrix representing a transformation from the rest
frame to p. Since this transformation is not unique, we
may specify it further to obtain helicity amplitudes.
We choose

B(p)= (o'p/m)'~2R(0),

A(L)B(P1')B'(Pi') =A(L)o pi'

=o Lpi'At '(L)
=B(LP1')B'(Lpi')A" '(L)

we obtain

Q Q(L) pi')». »-u(pi') Xg") =u(LP1') Xi')e(L), (4.17)

2 (0) = exp ( io2&—p/2. ) exp (—io28/2), (4.12)
where we have defined the 4&4 matrix

where E(0) is a rotation into the direction of motion
of the particle, and (o' p/m, )'~2 is a pure boost along the
direction of motion with velocity I p!/p', where
o = (1, —o'). Properties of A and B that we will need are

(A (I.)
O', (L)=!

( 0
(4.18)

We recall that L was defined to be a pure boost from C
to C'. Then A (L) is Hermitian, and explicitly

A (L) = (1/v") L(v+1)"'—o (v —1)"']
A '(L) = (1/&~)L(V+1)'"+o2(V—1)'"], (4.19)

A(L)o"PAt(L)=o'LP, B(P)Bt(P)= .P. (4.13)

Now spinors can be represented by

(p, ~) = c "I.B-'(P), B'(p)],

4 1P——V2
—'!

I1)
(4.14)

where y= (1—1o2/s2)-'". Expanding to 0(oi), we have

A (I.)= 1—(1o/2s)o2, A '(L,)= 1+ (co/2s)os, (4.20)

and in this representation,

(0
v'=I

I,1 0)'
(0 —o)

I«) (4.15)

SO

6, (L)= 1—(oi/2s)y'y2+0 (1o2). (4.21)

Combining Eq. (4.17) with Eqs. (4.1) and (4.2),
and the definition of G, (3.8), we find

R) 1~»~;» 2(s, &, 0, 0) = L+(Lpi, 4 )+(L)]ai!N(Lp2', 4 )&(L)]a2~

&&g,....,...,., (s, ~, 0', 0)N., (pi, xi)u., (p„ l, )+ 0(~), (4.22)

g1, ,',„,(s, co, 0', 0)= {(1/oi)! E1(s—oi, 0')—E&, (s+&a, 0)]+t E&, (s, 0)+E1(s, 0')] (B/Bs)

+X)1(s, 0)+$1 (s, 0') I 3~,.~2..~,~, (s, 0', 0)+ (y eik! 1+~1 (pi'+2') ]/2k pi'), p, Gp, 2' ...
+&-1-';si-2(L1+~1(P1+~)]&V ~./2& Pi)si-1 (4.23)

Now we identify powers of co'.

G (s, o~, 0', 0) = (1/o~) G&'& (s, 0', 0)+G&'i (s, 0', 0)+0 (&u),

G12 .,2 "& (s, 0', 0)= LE1(s, 0') —E1(s, 0)]B2 2 (s, 0', 0),
G12', 2&'& (s, 0', 0) = L (B/Boi) coG12 ,.2 (s, (o, 0', 0)]„~

= { !BE1(s,0')/Bs) —LB'(s, —)0/ ]B+sE(s1, 0') (B/Bs)+E1(s, 0) (B/Bs)

(4.24)

(4.25)

+Sx (sq 0 )+SR (s~ 0) J II2~2 (s~ 0 ) 0)+LNI Xl ]N2 ~211N2+N1 !+2 X2 ]~N1N2

+N1 N2 ~! +1N1]N2+Ni N2 ~N1LX2212]y (4 26)
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where
X2'= —2'(s, 0') (0/Bs) $,—(s, 0')—El(s, 0') (y'y'/2s),

X, =X,'+(~ "~/» P.')L. 1+ (P.'+ )j,
X,= —2'(s, 0) (0/8s) S—g(s, 0),
Xl=X2 $—1+Kl(pl+m)5(V ~), &/2& pl) .

(4.27)

We have introduced an abbreviated notation for the spinors, and the derivatives in X~' and X2' are understood to
operate on Nl' and N2', respectively. To derive Eq. (4.26), we added and subtracted the effect of the differential
operators on the spinors. Since final-state spinors in Eq. (4.22) are evaluated in frame C, initial in C, co dependence
is restricted to the energy (s~-)'I', allowing us to convert co derivatives to s derivatives. Finally, wehave used the
relation

~~1 &1 '~~2~2 ~~1 ~2 i~1&2 ~~1 ~2 i~1 &2 ~~1 &lo'~2 ~2) (4.28)

obtained from the transformation properties of 3 and the fact that it depends only on scalar invariants.
We now express all of the terms in Eq. (4.26) in terms of elastic helicity amplitudes. The details can be found in

the Appendix. Recombining G~ ) and G"~) the results are

G l,q„.,l,l,——$(e'"&'/V2)M +0(e'"&/%2)Mo]Hl, q„., lg„+(e'"+'/V2) (Ml'H l, l, l,l,+M. Pl;, l, l,l, )
+(e'"&/v2) (Mls, lm., l,)„+M~l,q„.,l, , l,), (4.29)

where

s'~ sin8' 8 8 s'~ sin8' 1+a(s) cos8' 8 iX 8
Hap'= =l+- y(s —1)—'~' —+a(s)+cos8' 0s Bs a(s)+cos8 a(s)+cos8' 88' sin0'By'

p'cos8' 2Xl'sin8'+ 1+Kl
(s—1)'I' sin0' a(s)+cos0'

s'~ sin8 0& 0 ( s"'sin8 1+a(s) cos88 iX 8
Mo= - l+

I

—
I +(s—1)-'I' —+

a(s)+cos8 Bs] Bs &a(s)+cos8 a(s)+cos8 88 sin80rp

X p cos0 2Xl sin8+ 1+Kl
(s—1)'~' sin0 a(s)+cos8

3fg' —— 2''X~g— La(s) —2Xl'X)', 1+a(s) cos8'
2Xg' +X

2a(s) a(s)+cos8

a(s)' —1,1+a(s) cos8'
M, '= 2Z, ' —A

2a(s) a(s)+cos8'

—2X)X~y—
La(s)+2XlX]' 1+a(s) cos8

2Xy )2a(s) a(s)+cos8

a(s)' —1 1+a(s) cos8
M, = 2Z, +X

2a(s) a(s)+cos8

Recall that we have considered so far only terms proportional to the change and magnetic moment of particle 1
If particle 2 has the same charge and anomalous magnetic moment ~g, we obtain an expression for which the M s)
as defined above, diGer in the following respects: over-all sign change; cose and cosa have the opposite sign; X&

and X„and X, and X2' interchanged; M, and M2, and M~' and M2' interchanged; ~~ replaced by ~~. If particle 2 is a
neutron, we have of course only the terms proportional to ~2.

B.Partial-Wave Axnplitude

Our examination of unitarity in Sec. III indicates that the EEp PWA are closely related to the elastic PWA; if
the nucleons were spinless, Eq. (3.19) can be shown to require that the phase of gz- (s, cv) be the sum of the
phase shifts of h~(s+~) and h" (s—so). More generally, if we write

g-,.--(,-)=~/~~. ()~~.(+-)~-,'--(, -)~'. (+-)-.(--)~"'(--)~--:""-(,-», (43o)
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unitarity is seen to be satisfied if the functions f~s (s, co) introduced above are real. Since Eq. (4.29) is already
linear in the elastic amplitude one is led to believe that one can use the soft-photon limit to determine the functions
f~~'~(s, &o), to 0(1), in terms of the static electromagnetic properties of the nucleons, independently of the elastic
amplitude. This turns out to be the case. The computation of the PWA from Eq. (4.29), and the determination of
the functions f~~™follows.

First let us examined the partial-wave projection of the term proportional to Mo in Eq. (4.29). Using the
projection formula, Eq. (3.22), and the partial-wave expansion of H2.2, Eq. (3.13), we have the following contribu-
tion to g),

JJ' .
s"' sinO' / 8 8 ( s'I' sinO'

&2 ' d cosO'd ~ ~'(0')
n (s)+cosO' ( Bs Bs &n (s)+cosO'j

t'1+n(s) cosO' 8 X(m —X—p,
' cosO') 2Xih sinO'

& n s +cosO' 80' sinO' n s +cosO'

Then if we integrate half of the term with the 8/80 by parts, using the identity

s'" sin0

Bs n (s)+cosO

Eq. (4.31) becomes

(s—1) '" 8 1+n(s) cosO& s'" sinO dp(s)
sin0 Lp(s)] '

2 sinO 80 n(s)+cosO j n(s)+cosO ds

s"' sin0' fs—,~P —p cos0 2A.~' sin0' J Jf
W2 ' d cosO' (o', +X(s—1) '~~ ', —(1+~i), d„ ,i„s( )0~d„s( )0

n s +cosO' sinO' n s +cosO'

1 0'

where W(g, b) =ah' a'b Co—mpar. ing with Eq. (4.30), we see that the integra, l is then the soft-photon limit of
—f, z,,z,z,ss ~(s, ~). The nondiagonal terms of f are obtained by partial-wave projections of the terms in Eq.
(4.29) proportional to Mi and M~ (we would get the same results using Mi' and M2'). The results are, for particle
1 still,

S1110 s i 2hiX (1+Ki) ns —&X—p, cos0
fig~i~. &,g, ~ (s, M) = d cosO —+ —,, —X(s—1) "' d, „s(0)d„„s'(0)

n (s)+cosO ~ (s—1)"' sin0

—
2 (s—1) "' ~[d--~,.'(0), d-."(0)] +o(~),, , 1+n(s) cosO

n s +cosO

fiiliK igig (sl) (0) = 2XiliKi
[n (s)—2X,X]'

2n (s)
1+n(s) cosO

d cosOd &„ i, &„~(0)d „~'(0) 2Xi +X +0(~),
n s +cosO

(4.33)

1+n(s) cosO
fbi,i,,i„, i„"' (s, ~)=-', [s(s—1)]-'I' d cosOd i„~,+i.'(0)d „'(0) 2X, —Z +0(~),

n s +cosO

fi),g, m y&, im (s& 6)) = 0 (G)).

Using the partial-wave expansion, Eq. (3.16), the expression for the PWA, Eq. (4.30), and the soft-photon
approximation to the functions fs~' (s, a&), Eq. (4.33), one can now construct an amplitude that not only has the
correct soft-photon behavior, but is unitary. Now we shall reexpress our results in a form more suitable for cal-
culation. First let us combine Eq. (3.16) and (4.30):

Gi„. , (s, &g, O', 0) =[e/&2p(s)7 g Nsq. d „. (0's)e' &'d i„„~(0)exp[ i(m X)—q]—
&&[p(s+(o)fg;,.;. ' (s, a))h~"2 (s+a&) —p(s —(u)h~~" '(s —co) F2-, , '"(s, a))]

= [e/v2p(s)]{e'"&'p(s+a&) g Ns'Fq;. ,2" ~(s, ~, 0')h2. 2 (s+a&)d „(0)exp[inc(p' —y)]

—e'"&p(s —a&) P Ns'd „'(8')h~ 2" '(s a&)Ii'i,;,, '
(s, cv—, 0) exp[i'(q' —qr)]I. (4.34)

J~m
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In the second step we have defined the functions

F„.,;"(s,~, 8')= g ', (2-J'+1)d~)„„."(8')f)„,,"'"+"(sl ~)2 (4.35)

F')2., '
(s, (o, g)= p 2(2~+'1)f)2., 2

'
(s, (o)d ),„(8).

J
Now the symmetry for G, Eq. (3.27), implies that

f),2., 2 '"(s, (o) = —f )„,2. ' "—"(s, —(o)

[note that the soft-photon approximation to f, Eq. (4.33), is consistent with this, as it must be], so

F ),2s;2 (sl (o, 8) = F )12;2s (Sl (ol 8).
Thus we obtain

G)2., 2 (s, (o, 0', 0)= [e/v2p (s)]g E~'[exp (9p') p (s+(o)F)2 .
, 2 ~ (s, (o, 8')h2" 2 (s+(o )d~„(8)

(4.36)

(4.37)

(4.38)

+p'"&p(s —(o)d „s(8')h2.2 s(s—(o)F )2, 2 ~ (s, —(o, 8)] exp[in(p' —p)]. (4.39)

This form explicitly satisfies crossing symmetry for 6, and is convenient for calculation. The soft-photon ap-
proximation to F is, if particle i has charge e,e and anomalous magnetic moment I~:;,

sing s'~' 2X2X a (s) 1
F)s)sl)c2;)sl)c2 (sl (ol 8) Sl

(s) pcosg . (s—1)'s' 2 (s—1)'s' 2 (s—1)'s'( (s)+cosss])

'A ts—p, cosa

(s—1)"' sing

1 1+a(s) cosg d—d „~(8
2(s—1)'I' a(s)+cosg d8

sing (s"'
a(s) —cosg & (o

2l(2ll a (s) 1

(s—1)'&' 2(s—1)'s' 2(s—2)'s'( (s)—cool])

'A t8—p, cose 1 1—a(s) cos8 d—d-.'(8)
(s—1)"' sing 2(s—1)'" a(s) cosg —dg

d-.'(8) (4 4o)
(s—1)"' a(s)+cosg a(s) —cosg

( [a(S)—2l(ll).]' ))' 1+a(S) COSH

F))2)„, )2~2 "(s, (o, g)=
l

2l(,rllxr —er
l

2X2 +1)2a s ), a(s)+cosg

B2 / 1—a(s) cosg
2X2 —X d, )lx2 8,

2[s(s—1)]'t' & a(s) —cosg

[a (s)—22(.2X]' 1 a(s) c—osg
F)y&2)2, )2 (sl(ol 8)=

I
2X2'A)(2+rt2 24 +~ l

2a s a s —cosg

F)s)sl)12 )12 )s2~ (sl Ml 8) —0.

nl I 1+a(s) cosg

)+

In summary, we have expressed the PWA in terms of real functions such that unitarity is satis6ed, found the
soft-photon, or small-co, behavior of these functions, and, using crossing symmetry, expressed the result in a
compact manner in Eqs. (4.39) and (4.40).

V. APPLICATION TO EXPERIMENT

In this section, we discuss the application of our
formalism to the two experimental geometries, pre-
senting the relations necessary to compute cross
sections. We compare the soft-photon approximation
with the unintegrated proton-proton bremsstrahlung

data of Gottschalk, Shlaer, and Wang (GSW)" taken
at 158 MeV in the Harvard geometry, finding good
agreement with the coplanar data, but very poor
agreement with the noncoplanar data.

"B.Gottschalk, W. I. Shlaer, and K. H. Wang, Nucl. Phys.
A94, 491 (1967).
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FIG. 2. Definitions of laboratory angles for final particles in the
Harvard geometry.

A. Harvard Geometry

For experiments performed using the Harvard
geometry, ""two counters are placed symmetrically
on either side of the beam to detect the outgoing
protons and measure their energy. If the angle the two
protons make with the beam is less than 45', that is,
their opening angle is less than 90', the event must be
inelastic. The parameters of the missing photon, which
must be in the plane containing the beam and the
counters, can then be determined. Finite experimental
resolution will allow some noncoplanarity, and more-
over, one experiment" of this type was intentionally
noncoplanar. Therefore, we shall analyze the more
general noncoplanar case.

The directions of the outgoing particles in the lab
frame are shown in Fig. 2. The beam is along the s
axis, and the x-s plane is chosen so that outgoing
protons dip down out of the plane by equal angles b~

(called P by GSW). The counters are arranged so that
the projected angles H„are approximately equal. The
photon is then tipped up out of the plane by an angle
b~, with a projected angle 0~. The coplanar case is of
course 8„=8~=0.

With three final-state particles, there are nine param-
eters to specify the final state. Energy-momentum
conservation reduces this to five, and one remains if the
final proton angles are fixed. In the coplanar case, this
is taken to be the photon angle 0~ which has a range

"I.Slaus, J. W. Verba, J. R. Richardson, R. F. Carlson, W.
T. H. van Oers, and L. S. August, Phys. Rev. Letters 17, 536
(1966); R. E. Warner, Can. J. Phys. 44, 1225 (1966); R. E.
Warner, J. C. Young, and S. I. H. Naqui, Phys. Rev. Letters 18,
933 l1967l; M. L. Halbert, D. L. Mason, and L. C. Northcliile,
Phys. Rev. 168, 1130 (1968); 176, 1159 (1969); F. P. Brady,
J. C. Young, and C. Badrinathan, Phys. Rev. Letters 20, 750
(1968); E. A. Silverstein and K. G. Kibler, ibid. 21, 922 (1968);
A. Bahnsen and R. L. Burman, Phys. Letters 26B, 585 (1968);
G. M. Crawley, D. L. Powell, and B. V. Narasimha Rao, ibid.
26B, 576 (1968); F. Sannes, J. Trischuk, and D. G. Staris, Phys.
Rev. Letters 21, 1474 (1968).

0—2x. When the configuration is not coplanar, however,
this angle is not very convenient, since it becomes
restricted, and a cross section in this variable is singular
at the kinematic endpoints. GSW define a different
angle P which reduces to 8~ in the coplanar case and
does not have this difhculty. It is defined in terms of the
maximum kinematically allowed photon dip angle,
which we call o., in the following way:

tang = sin8„/ (cos87—tanb~ cotn) . (5.1)

The cross section in the general noncoplanar case is

do/dQt'dos'dP

= [m'5/pt(2~)'] 4Q ~
Gg&, , /,...gg„(s, o/, O', 0) ~'/ (5.2)

spins

where the phase-space factor P has been evaluated by
Baier, Kuhnelt, and Urban" and turns out to be

(Pt/P, /)s (cos8~—tanb~ cotn)'+sin'8~
2''E2' cosb„

X —sin28~ cosb~ cosb~+, sin (8~+8„)
El

+,sin (8~ 8~)+2—sin8„cos8~ sinb„sinb7E'

tanb~ cote
X 1— tan57 cose„ tanb„cose~

cos07

(p/ p/
Xtan8~ cotn~, —,—sin87 cosb~ . (5.3)

The usual coplanar limit is evident. Applying (2.5) we
obtain equations for the variables defined in Sec. II:

o/= k (l/V pt cos8g cosbp),

s= 8 —co,

cos8= (k/&u) [(s+o/)/(s+o& —1)$t~s (T—Pt cos87 cosb~),

(5.4)

cos8'= (k/o/) [(s—co)/(s —o/ —1))'"
X [&1 +2 (P&'+Ps') sin8„cosh„cosh~ sinb„

—(Pt' —Ps') (cos8„cosb„cos8, cosb~ —sinb„sinb„) j,
cos (y' —q ) = —[sin8 sin8'$ '

T(E1 Es ) Pl(Pt Ps ) cos8s/ cosby

[(s—1)'—o/s]"'

s+ cos8 cos8
s' —' '

where T is the incident energy and W= T+1.
As we have discussed previously, co is less than s—1

in the physical region. Thus x= o// (s—1) is a convenient
invariant measure of the inelasticity, ranging from zero
to 1. In the Harvard geometry at 158 MeV for in-
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FrG. 3. Variation of cosg and cosg' versus p for various values of
B~ in the Harvard geometry. At the kinematic limit, 8~=4.55',
cos8= —0.195 and cosg'=0.

stance, it has a range 0.42—0.57 at 8„=30', and 0.27—
0.40 at 0„=35', while the laboratory photon momentum
varies by a factor of 2. In Figs. 3 and 4 we illustrate the
relation between the EAp variables and the laboratory
variables b„and + for the case T= 158 MeV and 0„=
30'.

We now compare the amplitude presented in Sec. IV
with the experimental results of GSW, which allows a
detailed comparison of the unintegrated cross section
over a large range of our angular parameters. The
results are presented in Fig. 5 using both the unitary
soft-photon amplitude Eq. (4.39) and (4.40), and the
amplitude obtained by keeping only the first two orders
in co, which is of course not unitary. The difference,
which is never large, gives an idea of the magnitude of
O(~) and higher terms in the unitary amplitude. The
agreement with the data, which is quite good for small

8„, becomes unaccountably poor for the more non-
coplanar data. This is especially evident for the cross
sections integrated over +, shown in Fig. 6.

The marked decrease in the experimental results with
8„ is evidently not due to the phase space which, we
find, remains fairly constant even to the kinematic
endpoint (see Fig. 7). The 1/a& terms of the soft-
photon amplitude does become small, however, vanish-
ing for 8'=8= ~x, which occurs near the endpoint, and

0 I I I I

Tinb-l58 Mev
Sp=i'

-60

-I20

-!80
0

I I

60 I20 I80

FIG. 4. Variation of @'—@ versus P for various values of b~. For
b~ =0, @'—@= 180' when 0&/ &90', and @'—@=0' when 90'&
/&180'. At the kinematic limit, p' —p= —90'.

accounts for the decrease that we do find. This term
is not large enough to cause such a dramatic change, as
is evidenced by the fact that its characteristic quad-
rupole behavior is not the dominant feature of the
coplanar data. While this discrepancy may be evidence
of a breakdown of the soft-photon approximation, it is
dificult to understand why the soft-photon approxima-
tion should be good at 8„=0, and poor at 8„/0, con-
sidering that the inelasticity is essentially the same.
It is also puzzling that Dreschsel and Maximon, using
the Hamada-Johnson and Ried potentials, find sub-
stantial agreement with the integrated cross sections,
and that Baier, Kuhnelt, and Urban, " using a one-
boson-exchange model, agree with the differential data
as well. The former authors, in commenting on the
decrease, also note that the phase space remains fairly
constant. In addition, they remark that the amplitude
in the maximum noncoplanar limit is order of pi/m
of the coplanar amplitude. This is not the case for Ii,
Eq. (4.40), where electric, 1/~ terms are order
(s—1)/&a=x ' while the magnetic terms are order
(1+~) for diagonal terms and order a for nondiagonal.
Thus the two types of terms are of the sunse order,
which is due to the cancellation in the electric terms
caused by the identity of the protons. In the low-

proton-energy limit, however, the 1/~ terms dominate
since the magnetic terms are multiplied by 8-wave
and higher ES amplitudes while the S wave actually
predominates.

B. Low-Energy Coplanar Harvard Geometry

At bombarding energies & 10 MeV, where T=
10/2M~ —5 &( 10 and pi QT~7 && 10 it makes
sense to expand in powers of+T, keeping only lowest-
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and thus x=o~/(s —1)=cos28„. The functions F are
also much simpler in this limit. Taking e~=e2=1,

in Eqs. (4.40) and keeping lowest-order
terms in gT, we have

Fii,,i,, i,,i,~™=[—sin28 (x '——,')+sin'8 (d/d8)

+2K(1+a) sln8(Xi —X&)]d „(8),
Fi i, i, i i,

J™=[(1+~) (X cos8—2) i)+2Xi sin 8]d & (8)

(5.6)

Fi&„ i,, i„i,,~ = [(1+~)(X cos8+2X2) —2X2 sin'8]d „(8).
If we retain only the singlet S-wave SS amplitude in
Eq. (4.39), we find

I1 0 0 —1i

e sin28

42p($)8X 0 0 0 0

o
O

04
S
40

J3

bg

Bp = 30'
I I I I I I I I

60' 1200 1800

(a)

I I I I I I I I

=2- 0

i, —1 0 0

X[(x '—2)e's sin8+ (x '+a3)e'" sin8']) (5.7)

where p(s)= —[(s—1)/s]'~'/128sr2 and 8 (8') is the
'So phase shift evaluated at the initial (final) energy.
Substituting this into (5.4), and using (5.3) with
pi'p, '=pi'/4cos'8, we obtain

do Apr

dQ~'de' 8~m' sin20„cos'0„

)& ' (x '—a3)e's sin8+ (x '+3a)e's' sinb' i' (5.8)

where cr= e'/47r. Except for terms within the parentheses
of 0 (x) this can be shown to be the same as the model-
independent expression derived by Signell. " Since the
'So phase shift varies rapidly at low energies, one
might expect (5.8) to be better than the Low ex-

a ap =35
~ gp =So

ep=~5.
I I I I I . I I I

600 l200 (800
IO-

OJ ~ 8

(b)
I'rG. 5. Comparison of the soft-photon approximation with

experimental data of GSW, Ref. 21. The solid line is the unitary
formation for the amplitude, the dashed line the 6rst two powers
in co only. Experimental errors are statistical only. iO 2'

I

gO

order terms. From Eqs. (5.13) and energy conserva-
tion, we find the relations, valid to O(QT), Fxo. 6. Comparison of the unitary soft-photon approximation

with the GSK data integrated over f.
co = 7s =T (cos28„/2 cos'8„),

cos0= —cos8~,

s—1=T/2 cos'8„,

cos8'= —sin87, (5.5)

2'P. Signell, in Proceedings of the International Conference on
Light ÃNclei, Fee Body Problems and ENcleur Forces, Brela,
J'Ngoslavia, 1967 (Gordon and Breach, New York, 1968).
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.014-
Ti.b- l58 MeV

Hp = 30'

pression obtained from it by expanding 8 and 8' about
a mean energy and keeping terms of O(x), as seems
to be the case. '4 The rapid variation of the phase shift
is due to the quasi-bound state which could also make
a large contribution to the O(eI) term of Ii (see Sec.
VI); the success of (5.8) indicates that it does not.

C. Rochester Geometry

All final particles are detected in the geometry
employed by experiments at Rochester. ""The ex-
perimental parameters are the c.m. polar angles of the
Photon, ey and Py, and the c.m. Polar angles of PI'—
p2', e., m. and p, , where the s axis is along the beam
direction, in contrast to our convention. Then one uses
the c.m. energy of an initial proton, 8&, and the c.m.
photon energy, E~, to complete the specification.
Applying Eq. (2.5), we have

0)= 2EpEy) s =4' —co) cose= —cos07)

cose'= L(I pl' —p2' I)/ @]C(s—~)/(s —cu —1)]'"
X I cose, , , cosey+ sine, siney cos (p, —py)], (5.9)

cos (q
' —p) = (sin8' sine) '

xL(~ eI 1) '"
I

pl' p2'
I
cose,

—s(s' —~') "' cose cose'].

2.0-

u& I.5-

).0-
DJb~
~ 0.5-

20
I I

40 60
Ey (MeV)

80 )00

FIG. 8. Comparison of the soft-photon approximation with
the Rochester geometry data of Ref. 25, laboratory energy 204
MeV, 8~= 108'.

A simpler expression for p' —p can be obtained by
rotating the coordinate system so that the photon is in
the —s direction. In this system

Pl Pc I Pl 92 I L cosey slnec. m. cos (Pc m Py). .

+SIIley Cosec.m. q Slllec.m. Sill (Pc.m. Py) y COSec m COS.ey.

—sine, siney cos (y, —py) ], (5.10)

and we have immediately

tan (p' —y) = (pl' —p, ')2/(pl' —p2') I

.OI

.Ol

=0
Sln (yc.m. yy)

SIIley/taIlec. m. COSey COS ((Py Pc.m. )
(5.11)

.008-

.006-

.004-

.002-

00 60' I 20' I 80'

FIG. 7. Dimensionless quantity 5/p1m versus p for various
values of 8„ in the Harvard geometry.

'4 P. Signell and D. Marker, Phys. Letters 26B, 559 (1968).
K. W. Rothe, P. F. M. Koehler, and E. H. Thorndike, Phys.

Rev. 157, 1247 (1966)."P.F. M. Koehler, K. W. Rothe, and E. H. Thorndike, Phys. .

Rev. 168, 1537 (1968).

The c.m. differential cross section in terms of the
Rochester variables can be found in Nyman's work. '
We remark that if one used Q' instead of 0, , the cross
section has the simpler form

do f84'~ s—co—1 ~~~

dBydQ, dQ' 2 (2n.)'(s' —e&')'" s+e&—1

x-'. Z IGI., I, ,I...(~, ~, &', (~—ey, vy)) I' (5»)
SPins

The basic difference between the Harvard and
Rochester geometries is that for the Harvard geometry,
the angles of the final protons are fixed while the
photon is fixed in the Rochester geometry. In terms of
our variables, both 0, the difference between 0 and 0',
and x, the inelasticity, remain fairly constant for the
Harvard geometry, while 0 only is fixed in the Rochester
geometry. In the latter case, x is determined by the
photon energy and 0' by the angles of the anal protons.
Since the range of 0' is restricted by the counter size
and efficiency, cross sections presented as integrals
over Q' depend on assumptions made about behavior
of the cross section where it is not observed. In fact,
Nyman found that the soft-photon approximation
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Fxo. 9. Determination of singu-
larities in co. The heavy line rep-
resents any physical channel open
to y+P.

predicts integrated cross sections about a factor of 2
larger than that reported, " which agrees with our
calculations (see Fig. 8), and he speculates that this
may be the cause of the difBculty.

VI. NON-SOFT-PHOTON DYNAMICS

As long as the experimental data and theoretical
calculations are consistent with the soft-photon
behavior, study of EEp will not produce anything new.
When discrepancies occur, as may be the case for the
noncoplanar data considered in Sec. V, it is certainly
of interest to learn what underlying dynamics may be
the cause. In any case, it would be useful to be able to
incorporate reasonable non-soft-photon dynamics into
our formulation, which, as we have seen, already has the
correct soft-photon behavior, and satisfies unitarity.
In this section we propose a method for including such
dynamics, basically a means for calculating 0(cu) and
higher terms of the function defined in Sec. IV. Ke
make some general comments about the analytic struc-
ture of the SEy amplitude, present an explicit solution
for the case of spinless nucleons, and finally discuss the
problems imposed by spin, proposing an iterative
method for solving the equations in the more general
case.

A. Analyticity

First let us consider the analytic properties of the
EEy amplitude as a function of co. From its definition,
co=k (p~+p, )=k. (p~'+p~'). This means that dyn-
amical singularities of co in the physical region s)1,
( cv ~(s—1 are determined by the possible physical
channels which are open to the photon plus a single
nucleon as represented by the heavy line in Fig. 10.
First, the intermediate state may be a nucleon:
(pq'+k)'= m~'. Since this is possible for ~=0, there is
a pole in this variable at zero, '~ which in fact the well-
known infrared divergence. Secondly, we may have a

'7 We remark that the physical regions for photon emission,
for which co)0, and photon absorption, co(0, touch at co=0
allowing analytic continuation from one region to the other, and
a power-series expansion about co =0.

nucleon plus any number of photons, all producing
branch points at co=0. However, we ignore these since
they are O(e') and higher. Finally, we dispose of the
possibility of a nucleon plus a pion, since the energy is
insufficient. This analysis is the same, of course, for
any of the nucleons.

We conclude that, for s and cu physical, the PWA are
analytic functions of or. Furthermore, analyticity in co

is limited to the physical region since the limiting value,
~=s—1, corresponds to the final nucleons being at
threshold.

Analyticity in ~ is an important simplification
distinguishing EEy from strong production processes,
a,s Em —+Exx. The analysis"" of this latter reaction is
complicated by the existence of anomalous thresholds
which are a result of the fact that both energy variables
have physical cuts.

Considering co as a real parameter, let us investigate
the analytic properties of the PWA as functions of s
and, for the time being, ignore nucleon spin. They
contain dynamical singularities which are the physical
branch points at s= 1+co and left-hand singularities
arising from crossed-channel poles and branch points in
the same manner as for elastic PWA, except that there
exist two types of crossed channels: the processes
/7~1''E and XE-+cVEy, characterized by baryon
number 1 and zero, respectively. (See Fig. 10.) Thus
nearby singularities of the first type would be nucleon
poles, and the second, meson poles. The soft-photon
approxima, tion discussed in Sec. IV can be understood
in this light: To O(1), using gauge invariance, one can
show that the nucleon pole is the only singularity in the
y+Ã channel. The residue of this pole is then given by
static electromagnetic properties of the nucleon and the
elastic scattering amplitude, evaluated in an unphysical
region. The EX channel-pole singularities are given in
terms of the ES-meson vertex and meson photo-
production, and, to 0(1), the meson photoproduction
can be approximated by its Born terms. Thus these
singularities are also known, and depend only on the
singularities of the elastic amplitude and the static
electromagnetic properties of the nucleons. The ex-
pression for the PWA, Eq. (4.30), shows that these two
types of singularities actually factor: The functions
f22~~'~(s, &u) contain the yÃ channel singularities and
the elastic PWA, h2 2 (s+~) determine the cVX
channel singularities.

If the left-hand singularities do not overlap the
physical branch cuts there exists a region along the real
s axis, s(1—co, where the PWA are real and may be
continued to the lower-half s plane by the relation
g(s, ~)*=g(s*, cv). Then unitarity becomes a relation
for the discontinuity of the function.

Then one may write a dispersion relation for g:

ds'
g(s, &v) = b(s, ~)+n.-', Img(s', a&), (6.1)

c„S —S
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where b (s, &u) represents left-hand singularities, and we
have assumed that no subtractions are necessary.
(We will ignore all subtractions in the following. )
Then, from the unitarity relation, we write Img in
terms of g itself, obtaining a linear integral equation for
g. We must also assume that neglecting the effects on
Img due to other channels, e.g., ESx, is valid. As we
have discussed, the first two terms in an expansion in
co of b, and therefore g, are known. As emphasized by
Nyman, the third term is of a different character
entirely. An example of an interesting nearby contribu-
tion is the contribution of the S* to the pion photo-
production amplitude which, as we mentioned above,
itself contributes to the residue of the pion pole in the
ES—+NET channel. Ueda's model" attempts to include
this interaction; however, his model unitarizes only
through a phenomenological pion form factor obtained
from a different process, SE—+EEx, and does not have
the correct sof t-photon behavior.

Since the integral equation for g obtained from Eq.
(6.1) is linear in g, one may solve for the contribution
to g from any particular left-hand singularity inde-
pendently of any other contribution and the soft-
photon part. In the following, we consider how this
may be done in the hypothetical case of spinless
nucleons.

gi '"(s, M) = bg ™(s,M)+s.—' ds

gs —s

&&exp[ iY~'(s'—, o))] sinY~'(s', cv)gi~~' (s', (o), (6.5)

where the integral is over the physical cut, 1—~&s& ~.
This is precisely the Omnes" equation, and we write the
solution in the form"

g), '"(s, a ) = [D "(s, (o)]-'(2+i)-'
d'X, D»'(s', io) discbi»'"(s', ~), (6.6)

1, $ —$

where the integral is over the left-hand cuts, which are

"Using the dispersion relation for D, Eq. (6.22), partial
fractionating, and interchanging orders of integration, Eq. (6.6)
can be transformed into the form given by Omnes. See W. R.
Frazer and J. R. Fulco, Phys. Rev. Letters 2, 365 (1969).

B. Solution for Syinless Nucleons

The unitarity relation for spinless nucleons is

Imgi»' (s, co) =p(s+~)gi»' (s, ~)h~(s+~)*8(s+ru)

+p(s &u)h~'(s ~)—gi»'"(s, ru)*0(s —co), (6.2)

which can be written

Img JJ' m(s &) MJ'J (s &)8g„» m(s &) (6 3)
where

M '(s, a&) = exp[id '(s, a&)] sinb '(s, co),

Y~'(s, co) =Y(s+~)8(s+~)+Y'(s—cu)&(s —~), (6.4)

and 8~ and 8~' are the elastic phase shifts. The disper-
sion relation, Eq. (6.1), is then

FIG. 10. Illustration of the two
types of crossed-channel poles. The
blob in (a) is the physical meson
photoproduction amplitude, and
the blob in (b) is the physical
elastic scattering amplitude. Both
are evaluated in unphysical
regions. (a)

Then

ds
p»'(s, co) =7r 'I', —Y~'(s', cu).

gs —s
(6.9)

gi»™(s,co) = exp[iY~'(s, ~)+p»'(s, (u)] (2s i)-'
ds

D '(s', ~) discb&,
' (s', &v). (6.10)

gS —s

The spinless analog of Eq. (4.30) is

g"'™(s )=[e/&2 (s)]L (s+ )h'(s+ )
—p(s —co)h '(s ~)jfq ~' (s, &u). (6.11)

Since both forms are unitary, they must have the same
phase, and we find that

&2p(s) exp[p '(s, ar)]
f »~m(s u) 2z '

e sin[6~ (s+ar) —Y'(s —co)]

D»'(s', (u) discbg»' (s', (v). (6.12)
gs —s

One could in principle take the hrst two orders in co of b

and solve for the first two orders iD ~ of f. This should
be the same as tha"= derivea using the I ow' method,
and remarkably, would not depend on the elastic
amplitude.

C. Extension to Case of Spin

The realistic case of spin involves some complications
which we now discuss. First, in order to apply dispersion
theory, one must define kinematic-singularity-free
(KSF) partial-wave amplitudes. In the elastic case of
four-particle amplitudes, one takes linear combinations
of helicity amplitudes and divides out threshoM and
pseudothreshhold factors which can be determined in
various ways. Cook and I ee" make a conjecture for the
Ex—&E~x amplitude which they prove for a certain

in general complex. The function D is essentially the D
of the X/D method. It has no left-hand singularities,
and right-hand cuts determined by

Im[D»'(s, (u)]-'=M»'(s, (o)*[D~~'(s, (o)]—'. (6.7)

This property, as can be easily checked, guarantees that
g is unitary. D has an explicit solution:

ds
D~~'(s, (o) = exp —s ', Y~'(s', co)

gS —$

= exp[—i5 '(s, or) —p '(s, v)], (6.8)

where we have defined



Img= (ImR)R 'g= M*g. (6.19)

Where the matrix M defined in Eq. (6.19) has the
property ImM=MM*=M*3f and is the analog to the
function M defined by Eq. (6.4). Now the dispersion
relation is a set of coupled integral equations:

d$
g(s) = &(s)+~ ', ~*(s')g(s') (6 2o)

gs —$

The solution is identical in form to Eq. (6.6):
dS

g(s) = D-'(s) (27ri) ', D(s') discb(s'), (6.21)
1, $ —s

except that D is now a 16)&16matrix. Its properties are
the same, with Eq. (6.7) being understood as a matrix
equation. It does not seem to have an explicit solution,
however. Using its dispersion relation,

ds
D(s) = —m

—', D(s')M(s'),
~$ s

(6.22)

one may construct an iterative series based on the
solution for uncoupled amplitudes, Eq. (6.8).

class of diagrams. Perhaps the same procedure will

apply here. Let us denote KSF amplitudes, assuming
that they can be defined, by g&,

"' (s, ~).
Now we determine the matrix generalizations of the

spinless equations. Using single indices to describe EE
spin states, unitarity for g takes the form

1m';;s~' (s, (o) =p(s+a))gi is~' hg„~(s+(o)*0(s+(o)

+p(s — )h' "(s— )g v"'"(s )*~(s— ) (613)

Dining the matrices

H, i.,; p(s+——co)h ts(s+(u)b. ..
H', i,;m p(s . a——&)h,„~—'(s (u)bi~, — (6.14)

and suppressing unnecessary indices and variables, we
have

Img, i= Q PH';(,;~*g;~+H,i,; g;~*). (6.15)
jm

Let us use a matrix notation where g is a 16)&1 column
vector and H and H' are 16)&16matrices. Then, since
Eq. (6.15) is real, we equate it with its complex con-
jugate to obtain

(H H') g*=—(H H')*g. — (6.16)

If we let R=H —H' and substitute g*=R—'R*g into
Eq. (6.16), we find

Img= (H'*+HR 'R~)g= (H'*R+HR 'R*R)R'g. .

(6.17)

Now H and H*, and H' and H'* commute using
unitarity for the elastic PWA: HH*=H*H= ImH.
Also, H and H' commute, which follows from their
definitions. Thus R and R* commute. Since

ImR=HH* H'H'*=HR*+H—'*R, (6.18)
we have

Considering low-energy XIV scattering, if one uses a
representation diagonal in spin and orbital angular
momentum, the scattering matrix is almost diagonal
so one could use Eq. (6.8) to obtain an approximation
to D ignoring the mixing between the coupled triplet
amplitudes. Then Eq. (6.22) can be used to iterate,
generating a series in the mixing parameters. This is a
generalization of the method used by Lebellac, Renard,
and VarP' for solving the same type of equation which
a]..ises from treating photodisintegration of the deuteron.

VII. CONCLUDING REMARKS

We have formulated the problem of EEy from an
S-matrix point of view, including unitarity, crossing,
and the partial-wave expansion. To do this, we dered
the EEy amplitude so that spins of the outgoing
nucleons are measured in their c.m. system, while the
incoming nucleon spins are measured in the over-all
c.m. system. This amplitude, we found, has a relatively
simple soft-photon expansion, which we derived using
the method of Low. ' Furthermore, we were able to
express it in a form unitary to all orders in ~, which
involves only the elastic partial-wave amplitudes
evaluated at the energies of initial and Anal nucleons,
and a set of functions F' (s, a&, 8) which depend on the
charges and magnetic moments of the scattering
particles and are independent of the elastic amplitude.

We then presented some comparisons of our soft-
photon amplitude with experiment and found an ap-
parent discrepancy, which may indicate a breakdown
of the soft-photon approximation.

The interesting dynamics of cVEy are in 0(~) and
higher terms. With this in mind we proposed a method
for including these effects based on dispersion theory
and unitarity, and assuming that it was possible to
dehne kinematic-singularity-free amplitudes. This
method, we commented but did not prove, should
reproduce the soft-photon results when one includes as
interactions only the known 0(1/a&) and 0(1) terms.
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APPENDIX: DETAILS OF SOFT-PHOTON
APPROXIMATION

In order to express all of the terms in Eq. (4.26) in
terms of elastic helicity amplitudes, we insert wherever

2' M. LeSellac, F. M. Renard, and J. Tran Thanh Van, Nuovo
Cimento 34, 450 (1964).
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necessary the quantity

1= p Lu(p, X)u(p, X)—v(p, ) )v(B, l~)], (A1)
l

where the e's are negative-energy spinors. Since all

of the terms in Eq. (4.26) are independent of the

representation, we now find it convenient to use the

more usual yo-diagonal representation. Then, with

M= 0~

( ('"+1)"' )
u(p„~, ) =

I iR(n) c„,
(2g (si/2 —1)»2)

(s»i/1)»2 )
u(p2, l~2) =~ ~R(n)c „,

2gi (s'/' —1)'/')

u(pi') Xi') = Ci, tRt (0') ((s'/'+1)"' —2Xi'(s'/' —1)'/')) (A2)

u(P2', 4') = C»'R'(0') ((s"+1)"—2a,'(si 2—1)").
Ou»'s are n«quite conventional; they differ from the u's by interchanging the (s'/'+1)'" and (s"'—1)'/' factors

»d from the usual convention by perhaps a sign which does not affect Eq. (A1). With these conventions,

Real (
v ~

(o
v'v'=I

~
(0i+ 'LX(ri )

0)
(A3)

»d the matrix elements of the X's defined in Fq. (4.27) are

2~, '~ coso' sino'
u(pi', Xi')Xi'u(p, , g, ) = + (1+„)

s—1 '/' 2 sing' n s +cosg'

eiiy~ , 1+n(s) cosg'
u(Pi', &i')Xi'u(pi, —4') = L2~,'~(1+.,)——;n(s)]2~, '

2 n s +cosg'

u (pi', 4') Xi'v (pi', 4') = —(e'~&'/2'�) (sing'/s'/2),

u(pi ~
4') Xi'v (pi', —4') = (e' &'/2&2) $2Xi' cosg'+X],

sin'0'

n(s) n(s)+cosg'

u (P2 ~2 )X2'u (p, ', ~,' ) = —(e'"&'/v2 )$V 2' cos8'/ (s—1 ) '/' sing'],

, 1+n(s) cosg'
u(p» /~2 )X2 u(pi', —4') = -', n(s) 2/i, '

n(s)+cosg'

u (p2', 4') X2'v (p2', 4') = (e»"/2v2 ) (sing'/s'/')

sirP0'

n(s) n(s)+cosg

u(p2 X2 )X2'v(p2', —4') = (e' +'/242)L2X2'cosg' —X],
e'"& 2P jA cos0 sin8

u (Pi»i)X»(pi, ~i) = — . + (1+~1)
&2 s—1 '" 2 sin8 n s +cosg

(A4)

u(pi, —Xi)X,u(p„)„)=

v(pi, Xi)Xiu(pi, Xi) =

v(p, ,
—Xi)X,u(pi, Xi) =

u (P2) ~2)X2u (P2y ~2)

u (P2) l~2) X2u (P21 ~2)

v (P2) X2)X2u (P2) /i2)

V(P2i X2)X2u(P2) X2)

(e'"&/2v2 )L2/~i cosg —X],

(e'i&/&2)Pli2 cosg/(s —1)'/' sing],

e'"&, 1+n(s) cosg
-', n s 2X2

v2 n (s)+cosg

(eii&/2W2) (sing/s'/2)

(e'"&/2V2) t 2X2 cos8+X].

sin'0

n (s) n (s)+cosg

ei» 1+n (s) cosg Xi sin'0
[—2XiX(1+Ki)—g'n(s)] 2Xi

v2 n s +cosg n s n s cosg

—(e'""/v2 ) (sing/s'/2)
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Now let us collect all the terms with negative-energy spinors. The sum of these contributions to
'R4'xo';x&o (si f1

p f1) is

(e'i&'/2&2 )[(sin8'/s'") (T&"&—Ti")—(2Ãi' cos8'+X) T &„&"&—(2Xo' cos8' —X)T i, "'~]

+ (e*'"/242) [(sin8/s"') (T'"—T'")—(2Xi cos8—X)T i,,"'—(2ho cos8+X)T i,'@], (AS)

where T"means T evaluated with the u(p;, X;) replaced by v (p;, X;), and we suppressed helicity indices except for
the ones that differ. For example,

T xy~ v (pi ) Xl )~ (p2 p X2 )3 (si f1 1 ~)+(pi) 4)+ (p2) ~2) ~

The T(@'s, after laborious calculation, work out to be

+ f'+ f' 'f'+
s s—1 s(s—1) s—1

[ ( )] f f f f
s s—1 s(s —1)

T~,+ ' ——[s/(s —1)]' '[f4yfo+fo]D»',

(A6)

T~ —;-+"'=Lsl (s—1)]'"Lf.—fo+fo]D-»'

for all i, where D». ' Pd„„'(8)d——„.'(8') exp[inc(p' —p)] are rotation matrices, a=cos8, and f, =f, (5, Z), i=
i, . . . , 5 are the GGMW20 kinemat. ic-singularity-free helicity amplitudes. Also,

i /Dio'= T++, +' /oDbio' ——T+,.++~"'/Doi' ——T+ . &"'/Doi' ——[2f4+ (s+1)fo]/[2 (s—1)]'~'

T+ —;++"'/Doi'=T+ —; —"'/Doi' = Tp+y -'"'/Dio'= T~ ~;—~"'&/D—io'= [fo—f4—sfo]/[2 (s—1)]'"
T++;—+"'/D io'= T+ ~,~ "'/Dio'= Tp; ""/Doi'= T~,p p""/Doi'= —fo[(s—1)/2]'",

T+ —;—-"'/D»' = T+ —;++"'lDoi'=- T++;-+"'/D io'= T++;+ -""/D»'= L-fo f» sfo]—J/[2—(s —»]"'—
(A7)

&y evaluating Eq. (AS) using Eqs. (A6) and (A7) and explicit formulas for the D s, we find that it is in all cases
identical to

—(2v2) '[ (s—1)/s]"' f e'"&'[ (2hi' cos8' i- X)T i;+ (24' cos8' —X)T i, ]
+e+&[(2Ãi cos8—X)T i,+ (24 cos8+&) T &,,]} (Ag)

Combining this with the contributions already calcu ated, we obtain Eq. (4.29).


