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Proton Polarization in Elastic Electron-Proton Scattering
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The proton polarization in elastic electron-proton scattering is calculated. In order to calculate the
imaginary part of the scattering amplitude, unitarity is used taking only the electron-proton state as the
intermediate state. The maximum magnitude of the polarization for energies near about 1 GeV/c is ~0.2%.
The energy value at which the polarization vanishes independently of scattering angles is found.

I. INTRODUCTION

'T is well known that the electron-proton elastic
~ - scattering process is well described by the Rosen-
bluth formula with phenomenological form factors. '
This means that contributions from higher-order
(in n=e'/hc) diagrams to the unpolarized cross section
are negligible and cannot be detected with present
experimental techniques. ln fact, Drell and Ruderman,
and Drell and Fubini' estimated the correction for the
two-photon-exchange process to the elastic electron-
proton scattering and obtained for the incident electron
energy up to 1 GeV/c, a correction of (1%.

Both theoretically and experimentally, the higher-
order contributions from the electromagnetic inter-
actions to the e-p scattering process are very interesting
and several efforts have been made to study these
effects. The most direct approaches are (1) to detect
the recoil proton polarization, and (2) to detect the
difference between the cross sections

o.(e+p —+e+p) and o.(e p~e p).
Since the one-photon-exchange process gives no

proton polarization and no e+—e differences, the
higher-order processes will be revealed in these two

experiments. The polarization of the recoil proton is
related to the imaginary part of the electron-proton
scattering amplitudes. The simplest process whose
amplitudes have nonzero imaginary part is the two-
photon-exchange process (Fig. 1). Barut and Fronsdal'
calculated the polarization for the e-p and e-e scatterings
and obtained values which are smaller than 0.1% for
any energy and angle. Guerin and Piketty4 used the
isobar model and concluded that

~
P

~
(0.5% for incident

electron energy around 1 GeV/c.
For completeness, we list the available experimental

data of the proton polarization:

Bizot eI, al. ,
'

P = (3.1a2.5)%,
E'I, ——950 MeV/c, ps=16 F '=0.6 (GeV/c)'

Bizot et al. ,
'

P = (4m 2.7)%,
Er, ——950 MeV/c qs =0.6 (GeV/c) '

and Anderson, ~

P = (1.3W2.0)%,
Ez ——900 MeV/c, g'=0.4 (GeV/c)'

where I' denotes the polarization, El. is the incident
electron energy in the laboratory system, and q' is the
square of the four-momentum transfer.

p FIG. 1. Two-photon-exchange
process.

II. FORMALISM AND CALCULATIONS

The polarization of the recoil proton is defined by

P =Tr(Ftrr toF)/Tr(FtF), (2.1)

' There are many reports on the proton form-factor measure-
ments. For example, see a review given by S. D. Drell, in Proceed-
ings of the Thirteenth Annual International Conference on High-
Energy I'hysics, Berkeley, 1966 (University of California Press,
Berkeley, 1967), p. 85.

2 S. D. Drell and M. A. Ruderman, Phys. Rev. 106, 561 (1957);
S. D. Drell and S. Fubini, ibid. 113, 741 (1959).

1

~ A. O. Barut and C. Fronsdal, Phys. Rev. 120, 1871 (1960).
4 F. Guerin and C. A. Piketty, Nuovo Cimento 32, 971 (1964).

The maximum polarization at Eg=105 MeV/c is found to be
0.05% in our calculation, whereas these authors give the value
0.13'Po, which is about twice as large as ours. Our result is con-
sistent with that of Ref. 3 in the limit of vanishing anomalous
moment.

6 J. C. Bizot et al. , Phys. Rev. Letters 11, 480 (1963).
6 J. C. Bizot et al. , Phys. Rev. 140, B1387 (1965).
7 R. L. Anderson et al. , see Ref. 1.
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where F is related to the 5 matrix scattering is given by

S=1+iF

and ~ is the spin direction of the recoil proton (~'=1).
Expanding F in powers of o', Xu(k')ie'Y„u(k) U(p')eZF„(p', p) U(p), (2.9)

F=F(o)+F(i)+ (2.3)

P=2i Tr(F(0)e.aa lmF(i))/Tr(F(i)F(0)). (2.4)

where F(0) corresponds to the one-photon-exchange
process and F(O~~=F(0). To the lowest order in o', the
polarization is

(2.10)q"'=(k —k')'=(p —p')',

where m, 3I; e, F-; and e', E' are the masses, initial
energies, and 6nal energies of the electron and the
proton, respectively. u(k) and U(p) are the Dirac
spinors of the electron and the proton, respectively.
With

the square of the four-momentum transfer, the proton
Using unitarity, the ™aginarypart of F(&) is given by current is given by

Im(eplF(» lep) =p (eplF+lu&&ulFlep), (25) ~.(p', p) =u„G(q"')(i&,—(~/2M". )(p+p').], (2.»)

and

A(k'p', kp)I'=
2 I(k'p'IF(o) Ikp&I'

Spina

where the Ie&'s are intermediate states consisting of
lep), le%*), etc. Guerin and Piketty calculated the
polarization taking le~(1238)) and leN*(1520)& as
the intermediate states, and the state lep) only for the
incident electron energy Ez,(340 MeV/c where no
isobar could be produced.

There is no reason why the contribution to the
polarization from the elastic unitarity part (lu) = lep))
should be discarded from the inelastic unitarity part
(In)=lecV*&), for the energy spectrum of electrons
scattered by proton targets shows a very large elastic
peak.

In this paper, we consider only the contribution to
the polarization from the elastic unitarity part. Thus
the polarization is now given by

2

G ii2)

(1+A"'/X)

X=18.1 F '=0.71 (GeV/c)'

(2.12)

(2.13)

2M@' 1+q"2/4M223IIp'
(2.15)

in Eq. (2.11). We will omit this kinematical factor for
simplicity. The proton charge is given by eZ, Z= —1.

With Eq. (2.9) (and similar expressions for the pro-
cesses k+p~ k"+p", k"+p"~ k'+p'), we get

where p„and I(: are the total and anomalous magnetic
moments of the proton, respectively, (u„=1+~). The
function G(q') is related to the proton form factors'
as follows:

Gu(q') =p„G(p'), Gz(q') =G(q'). (2.14)

Strictly speaking, Eq. (2.11) is not correct, and the
correct form of the proton current F„(p',p) is obtained
by the replacement

A(k'p'; kp) = —i
d'k" d'p"

(2m)454(k+p —k"—p")
(2m)'(2m)'

&kpl F o Ik"p"&&k"p"IF o Ik'p'&&k'p'IF o Ikp&
spins

"=-:(1~a), a'=1 (2 8)

X ~ &kplaF„) lk"p"&&k"p"IF()
spins

xlk'p'&&k'p'IF(»lkp), (2.7)

where the summations are over spin directions.
Momenta k, k', and k" are used for the incident electron,
the final electron, and the intermediate electron, and p,
p', and p" for the corresponding proton momenta. The
operator a is defined so that

—(e2Z)3 Try( 4u+n)iV„zV—i]I II 8+g/g/I

XTrD ip+M)i'Y,—v F„(p,p") .I'(p', p)].
(2.16)

The calculation was done in two steps: (1) calculation
of the traces appearing in Eq. (2.16); (2) integration
over the intermediate momenta k" and p".

The calculation of the traces is very tedious but

represents the projection operators of prot, on spin. 'The met»~s used in this paper are as follows:
(Hermitian), (A.B)=A B—AOBO, where A and 8 are arbitraryThe Born amplitude of the elastic electron-proton four-vectors.
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straightforward, and the result is given by

E „„iP„„),—=Trg( —ik) iV„(—ik")iv„(—ik') iVi, g

X«r( iP+—M)i&4& ~I'p(P P")( iP"—+M) I' (P" P')( —'&'+M) I'i (P' P) ~

=32(ppW40) 2(Wp) +M G(q')G(q")G(q"')
2Mp,„(kk')S

X[2(W k)(k. k')(ir/2MI4„)'K+4M(ir/2MI4„)L —H], (2.17)

where the electron mass is neglected, ' W is the total
four-momentum of the system,

The reason is as follows: If we put

(p+p'). =2W. (k+—k')u

and
(pp'W~) =4 Tr(PP'W75 r ~). (2.19)

W =k+p =k'+ p' =k"+p", (2.18)
in the proton current, Eq. (2.11), we can neglect the
second term (k+k')„by observing

where

E=—W'P+L4(W k)' —W'(k k'))Q,
L= (W.k) ~P —258,
H=2L+(W k)(k k')P,

P =L(k+k', k")—(k k') j(k+k', k"),
Q=(k+k', k")—(k k'),
R=(k k")(k' k"),
5=2(W k)' —W'(k k').

(2.21)

(2.22)

Throughout the calculations, electron mass is always
neglected, so that the quantities P, Q, and R vanish
whenever any two of the'three electron momenta k,
k', and k" are equal.

In this case P, Q, and R must vanish in order to
obtain 6nite values of the integrals, since they contain
photon propagators which diverge at the forward
direction.

From Eq. (2.17), one can conclude that the polariza-
tion vanishes for any angle, when

f=2(W.p)(r/2M'„)+M=0 (2.23)

is satisfied for physical momenta. In the laboratory

(W p)=(k p)+p'
= —HEI, —M'

so that from Eq. (2.23) we find the energy at which the
polarization vanishes:

Ez = (1/i4)M = 530 MeV/e. (2.24)

The factorizability of the factor f can be understood

by noticing that the proton helicity-ftip matrix element
vanishes at this energy in the Born amplitude, Eq. (2.9).

In the laboratory system this becomes

iM—u (Irz'.Xkz), (2.20)

where ~ is the direction of proton spin and kL, and kL,
'

are incident and scattered electron three-momenta in
laboratory system. K, L, and H in Eq. (2.17) are
defined as follows:

1 1 (Wk)

(24r)' 4 W'

B(q',q'2)
dQA;»

qq

(2.26)

Combining Eqs. (2.7), (2.16), (2.11), (2.25), and
(2.26), we obtain

A(k'p', kp) = i (e'—I4„Z)' (pp'W40)
(24r) ' ee'EE'

G(q"') (W k)
X 2(W p) +M

W2

&(q', q'2)
dily~I . (2.27)

q'q"

(k+k') „u(k') iV„u (k)
= —2mu(k') u(k)
=0 (in the limit of vanishing electron mass) .

Therefore, the proton current, Eq. (2.11), is equiva-
lent to

I"„=p,G(q"') Lit„—(ir/Mp„) W„j.

By making use of this form for the proton current, it
is easy to demonstrate that the helicity-Rip part of the
proton current vanishes at this energy. Since the
polarization is given by the interference of the helicity-
Qip and helicity-nonQip part of the amplitudes, we
obtain the vanishing of the polarization for any scatter-
ing angle at this energy.

The next task is to perform the integration over
intermediate momenta. Let us dehne the quantity

P(q2 ql2) G(q'I)G(ql2)L (W k)qll2(&/2M )21'

+4M(a/2MI4~)L —Hj. (2.25)

Since B(q,q') is expressed in the Lorentz-invariant
form, the integration can be performed in the center-of-
mass system:

d 4k/i d3 pl I B(2 l2

(2 )4)4(kll+ II W)
(24r)' (2~) ' 4e"E" q'q'2
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The angular integration of Eq. (2.26) can be done
analytically, but the results are so complicated that we
do not reproduce them here.

If we set a =0, i.e., p,„=1and replace all G functions
by unity in Eq. (2.27), we get an expression for the
polarization which is identical to Eq. (15) of Barut and
Fronsdal' with nz&=M and F2=0 in their equation.

The results of Guerin and Piketty, 4 for the incident-
electron energy smaller than 340 MeV/c, may be
obtained using the Clementel-Villi form factors,

P„,
0/

0

-.2 .
I
I

I I
~I'&use +

I

G(g') = 1—h+hX/(q'+X),
h = 1.06, X =0.36 (GeV/c)',

instead of ours t Eq. (2.12)j.This may be considered as
a small-g' limit of our double-pole-type form factor.

Fro. 3. Maximum magnitude of the polarization versus incident
electron energies in the laboratory system. Solid line: contribution
from the elastic intermediate state. Dashed line: isobar contribu-
tion taken from Ref. 4.

III. RESULTS AND DISCUSSIONS

A computer was used to calculate the angular integral
in Eq. (2.26). The polarizations of the recoil proton are
given in Figs. 2 and 3.

(1) Since the factor f depends linearly on the energy
El, , the maximum value of the polarization increases
slowly to 0.5%%uo at 10 GeV/c. Of course, this value is not
reliable, because we have neglected the effects of the
kinematical factor in the proton current Eq. (2.11).

(2) Near 1 GeV/c, where the kinematical factor can
be approximated by unity, the contribution of the
elastic unitarity part to the polarization is comparable
to that of inelastic unitarity part as calculated in Ref. 4.
Furthermore, comparing our results with those of Barut
and Fronsdal, ' we may conclude that the anomalous

0/

.2"

magnetic moment plays an important role in the in-
crease of the polarization at high energies. This can be
seen from the fact that the anomalous moment appears
with a factor

(p+p')/m,
which increases linearly as the energy. Since the form
factor decreases rapidly as energy increases, the polariz-
ation cannot reach large values.

Combining the results of Guerin and Piketty, ' we
find that the "elastic" contribution and "isobar" con-
tribution have opposite signs, so that in some energy
region they compensate, and the magnitude of the total
polarization becomes small or zero. However, the
"isobar" contribution decreases rapidly as energy
increases.

(3) We conclude that the detection of proton polar-
ization will be very diKcult for any available energies
with present experimental accuracy.
(4) The remaining theoretical problem is to estimate
the inelastic contributions at high energies.

Note added Az proof Since this. paper was submitted
for publication new data of the proton polarization
experiments have been published: T. Powell et al. ,
Phys. Rev. Letters 24, 753 (1970).

0
COS~c.m.

F&G. 2. Typical angular distribution of the proton, polarization
P(B) due to the elastic intermediate state where g denotes the
scattering angle of electron in the center-of-mass system. The
energy of the incident electron in the laboratory system is
indicated.
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