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rather the integral of this quantity multiplied by some
weighting function. In such a case the result of this
section would not hold.

Thus, in summary of what we have seen, we may say
that while the electromagnetic effects may give rise to
measurable differences between the decay distributions
for EL,' —+m 3+v~ and El.' —+++I v~, their contribution
to the diRerence between the rates is not greater than
nF(E'~s7rlv) Thi. s latter result removes a possible
nagging doubt about the interpretation of EL,' charge
asymmetry experiments.

Ãofe added i' proof. After submitting this work for
publication I became aware of a very similar contribu-
tion on this subject by L. B. Okun, Soviet Phys. —
JETP Letters 6, 272 (1967).
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The finite-energy sum rule, and a class of sum rules which can be used to probe the existence of fixed poles,
are obtained for amplitudes whose lef t- and right-hand cuts are not related by crossing symmetry. The finite-
energy sum rule is evaluated for each of four independent ark amplitudes with I fixed at (1236 MeV)', both
sides of the resultant four sum rules being obtained from the properties of the low-energy mE resonances.
Results are presented for three choices of end point: (1336 MeV)', (1808 MeV)', and (2313 MeV)s. For the
intermediate end point, all four sum rules work. For the highest one, however, they all fail. These results,
while pointing to a failure of the resonance dominance approximation above 1800 MeV, give us a new con-
firmation of Regge high-energy behavior on the basis of low-energy data alone. In particular, they verify in
some detail the relation predicted by Reggeism between the high-energy, fixed- n behavior of the amplitudes
and the low-energy u-channel resonances. They also show that for u= (1236 MeV)', all the xE amplitudes
have Regge behavior on the average (duality) above 1800 MeV. The finite-energy sum rules are shown to be
violated in a fictitious universe where the lowest particle on each of the leading ~S Regge trajectories is
accompanied by a degenerate partner of opposite parity.

I. INTRODUCTION

LTHOU| H they follow very simply from assump-
tions of analyticity and Regge behavior, finite-

energy sum rules (FESR) ' provide a powerful tool for
gaining new information about Regge trajectories and
their residues, for obtaining theoretical insight into the
nature of physical scattering amplitudes, and for con-
structing bootstrap models of remarkable computational
simplicity. ' As a test of the assumptions on which the
FESR and their practical applications are based, we
have investigated whether these sum rules are satisfied
in xE scattering with the cross momentum transfer I

* Supported in part by the Atomic Energy Commission, under
Contract No. AT(30-1)-36688.

' R, Dolen, D. Horn, and C. Schmid, Phys. Rev. Letters 19, 402
(1967); Phys. Rev. 166, 1768 (1968); A. Logunov, L. Soloviev,
and A. Tavkhelidze, Phys. Letters 24$, 181 (1967);L. Balazs and
J. Cornwall, Phys. Rev. 160, 1313 (1967); K. Igi and S. Matsuda,
Phys. Rev. Letters 18, 625 (1967).

fixed at 3f*'= (1236 MeV)', —the mass squared of the
3-3 resonance. Our results provide a new verification of
Regge high-energy behavior from low-energy data.
They also support the idea that the xS scattering
amplitudes, as functions of energy, have Regge behavior
on the average even in the intermediate energy region
(around 2 BeV) where significant resonance structure is
still present. However, the popular resonance dominance
approximation appears to fail above 1800 MeV in the
particular process we studied, which suggests that this
approximation should be used with caution.

In Sec. II we derive the sum rules we have used.
These are independent of any 6xed poles that may exist
at wrong-signature nonsense points in the J plane. We

' For examples of the various applications of FESR, see Ref. 1
and also F. Gilman, H. Harari, and Y. Zarmi, Phys. Rev. Letters
21, 323 (1968); S. Mandelstam, Phys. Rev. 166, 1539 (1968);
D. Gross, Phys. Rev. Letters 19, 1303 (1967);C. Schmid, ibid. 20,
628 (1968); V. Barger and R, Phillips, ibid. 21, 865 (1968).
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also obtain sum rules which are explicitly sensitive to
such fixed poles, and could be used to learn something
about them. All of our sum rules apply to amplitudes,
such as those for xE scattering at fixed u, whose left-
and right-hand cuts are not related by crossing
symmetry.

Section III describes our application of FESR to mX
scattering in detail. In Sec. IV, we present the results
and attempt to interpret them. ' We also report the
result of applying the FESR to a hypothetical universe
which differs from the real one by containing a few
additional, 6ctitious particles.

In an Appendix, there is shown to be an interesting
theoretical difference between Chew's reciprocal boot-
strap of the S and the lV»*4 and any Reggeized version
of this bootstrap, such as might be based on FKSR for
mS scattering. The difference is that in Chew's boot-
strap, direct forces (t-channel singularities) play a very
minor role, whereas if one were to bootstrap entire
Regge trajectories in the absence of direct forces, these
trajectories would necessarily be accompanied by others
along which lie ghosts.

II. FINITE-ENERGY AND FIXED-POLE
SUM RULES

We begin with the trivial derivation of the FESR
which is independent of any fixed poles. Suppose an
invariant amplitude A(s, u) ' for some process has the
analyticity properties implied by the Mandelstam
representation and the fixed-u asymptotic behavior
implied by

where

A (s,u) =R(s,u)+G(s, u), (2 1)

s~, (~) ( s)~;(~)
R(s,u) =Q y, (u)

sin~u, (u)

s )'(")y (—s) ~'(")

+2 —V (u)
sinvro. '~ n

(2.2)

Imt A (s,u) —R(s,u)7ds =0. (2.4)

' A brief statement of our procedure and main results was pre-
sented in B. Kayser, Phys. Rev. Letters 21, 1292 (1968).

4 G. Chew, Phys. Rev. Letters 9, 233 (1962).' Here s is the usual Mandelstam energy variable, and u may be
thought of as either the momentum transfer or the cross momen-
tum transfer.

sG(s, u) ~ 0 as isi —+ ~ . (2.3)

Here i runs over odd-signature terms, j over even-
signature terms. At fixed I, A will typically have cuts
along much of the real s axis t cf. (2.8) below7; to be
general we suppose that A, like R, has a cut along the
entire real axis. In view of (2.3), A —R will then obey
the superconvergence relation

To arrive at a practical sum rule, one must truncate this
convergent integration at some hnite points, say, iV„
and —X~. This leads to the approximate relation

ImLA (s,u) —R (s,u) 7ds—-0, (2 5)

which will be well satisfied if A(s,u)=R(s, u) for s
beyond N, or —'Ã&. Using (2.2), one may integrate
ImR explicitly, obtaining the finite-energy sum rule

Q ~~(~)+&+g 0'i(~)+i

ImA (s,u) ds—-P p;(u)-
n, (u)+1

+2 V (u)
g ug'(u)+1 g ag (u)+l

n, (u)+1
(2 6)

Note from (2.5) that the sum rule may still hold even
if X„is at some point S„,in the low-energy region where
A still has resonance wiggles and is not yet well repre-
sented by R. This will happen if A has Regge behavior
on the average beyond S„,in the sense that

Nr,

ImA (s,u) ds=
Nr

Nri

ImR (s,u) ds, (2.7)

6 S. Mandelstam and L. Wang, Phys. Rev. 160, 1490 (1967).
The zeroth-moment sum rule for the special case where A is

odd under crossing with "I" 6xed (Dolen, Horn, and Schmid,
Ref. 1) follows inimediately from (2.6) when "s" is replaced by
the variable in which A is odd. For an amplitude which is crossing-
even, there is no nontrivial zeroth-moment sum rule which is
independent of fixed poles.

where X„,is a high energy beyond which A (s,u)=R (s,u)
does hold locally.

The FESR (2.6) makes no reference to the fixed poles
which may occur at wrong-signature nonsense points in
the I-channel J plane. ' Moreover, such poles cannot
lead to errors in (2.6), because they do not affect the
asymptopic behavior of the physical scattering ampli-
tude, ' and that behavior is all that this sum rule
depends on.

Sum rules for higher moments of the amplitude may
be obtained exactly as the zeroth-moment sum rule
was.

To obtain sum rules which explicitly contain a term
related to the leading wrong-signature nonsense fixed
pole, one has to work with some quantity whose
asymptotic behavior is affected by this pole. A suitable
quantity is the dispersion integral over only the t-

channel, or only the s-channel, absorptive part. Imagine
that we are dealing with xS scattering, but with spin
neglected for simplicity. Suppose that for some range
of u above u-channel threshold, the amplitude A(s,u)
whose asymptotic behavior is given by (2.1)—(2.3) obeys
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N—].

A(s,n)= P c„(u)s"+—
dt'

p, (t',u)
g„)& t,

' —t t' —t

an E-subtracted dispersion relation: (Here the integral on the left-hand side is understood to
include any Born contribution. )

The analogous treatment of ri and Qi gives the sum
rule [Z—=2(M~'+)a ')]

s B)~+-
s s s 8)

Denoting the t and s integrals in this relation by
r&(s,u) and r, (s,u), respectively, we see from (2.1)—(2.3)
that

Z—u—4P tr2

Ng

where

g ai(u)+I

p, (Z —u —s, u)ds —g v, (u)
u;(u)+1

g aj(n)+I
—Q v, (u) +f,(u), (2.15)

n;(u)+1
aj

r, (s,u) = —P v, —Q v, +Q, (s,u),
Sin7ro i ' Sine+,

(2.9) fi(u) —=

Z—n—4 „2

ds' Img, (s',u) .

Sai Sag

(2.10)

s Imggi() — —+ 0.
gazoo (—oo)

Then Q„ for example, can be written as

1
Q, (s,u) =Pq(s, u)+—

Img, (s',u)
ds'—,(2.11)

s —s

r, (s,n) =P V; —P V, +Q, (s,u),
sin7rni ' sin@ o,,

where Q, l, ) has a right (left) s cut, and

The coeRcients f, and f, of the 1/s terms in the
asymptotic forms of r, and r& are simply related to the
residue of the leading fixed pole. To establish the con-
nection, one requires a Sommerfeld-Watson representa-
tion for r, or r~. Since I is above its threshold, one can
make a I-channel partial-wave expansion of 2 and of
A=—r&—r, . Obviously, for l&E, the partial-wave pro-
jections f)(u) of A and f)(u) of A will differ only by the
sign of the contribution from r, . Thus the usual partial-
wave amplitudes of definite signature, f+(l,u), and the
corresponding analytic continuations from even-/ and
odd I(I&Ã) va-lues of fi(u), f+(l,u), are related by

with I'q a polynomial in s. Thus, setting'
Then

f+(l,u) = f+(l,u) .

we have

ds' Img, (s',u) —=f, (u),
r, (s,u) =-,'(A+A) —g —',c„s"

n=o

Integration of the function

ai S aj 1 f, (u)
r. (s,«)+2 v* +2 v, —Po(s,n)+-

slnan; i sinai~

along a contour surrounding the positive real s axis and
the pole at s = 0 then leads immediately to

0= Lp, (s,u) —Q v;s ' —g v, s ~]ds f, (u) . (2.1—3)

Truncation of the convergent integral in (2.13) at X,
yields the sum rule

~ iVr + ai(u)+I

p (s «)ds=Z v'(u)
(ilr jy+pr") &i (u) + 1

+ a j(u)+1

+2 v (u) +f.(ti) (2 14)
n, (u)+1

' It is assumed that Img, is dominated at large s by a Regge
pole with p.(—1, so that s'+'ImQ, ~ 0,

1 f, (u)
Q, (s,u) —+ Pq(s, u)—

I 8l~~ 7r S

+terms which vanish faster than 1/s. (2.12)

L=o

+2 (2t+1)pr f'(f,u)+f (i,u)]Pi(s-) —Z lc-s"
n=o

= & (2f+1)lLf'(I,u)+f (l,u)]
L=N

XPi(s„)+P(s,u), (2.16)

f, (u) = —prspX(n). (2.17)

For f, («), we simply note that since A has no 1/s tenn,
f.(«) = —f~(u).

We assume f cannot have a pole at this point, which would
be right-signature for jt,

where s„ is the cosine of the I-channel scattering angle
and P(s,u) is a polynomial in s. All factors in the
Legendre series of (2.16) are analytic in /, so that the
Sommerfeld-Watson transformation may be applied.
If f+(l,u) has a fixed pole of residue X(u)(q '/sp) i at
l= —1, the leading wrong-signature nonsense point,
one easily finds that r, (s,u) will have a corresponding
term X(u)(sp/s) in its asymptotic behavior. It follows
that
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From analyticity, it is apparent that the sum rules
(2.14) and (2.15) are valid both for zz above and below
I-channel threshold. When A is superconvergent and
there is no fixed pole, these fixed-pole sum rules (FPSR)
reduce to the Schwarz superconvergence relations. '
Given what one knows and what one wants to find out,
one may take linear combinations of (2.14) and (2.15)
to obtain the most suitable FPSR. Note that if one
adds (2.14) and (2.15), the fixed-pole terms f, and f&

cancel, and one recovers the FESR (2.6), with ImA now
expressed in terms of the absorptive parts.

III. APPLICATION TO mN SCATTERING
AT u= (1236 MeV)'

The sum rule (2.6) (with n replaced by n —-'„as
appropriate for zriV scattering) has been evaluated for
both of the zrN invariant amplitudes" A (s,zz) and 8(s,u)
in each of the isospin states I„=-,' and I,=1. Each of
these four evaluations was made at u= M*'. The choice
of this value of u, and of the isospin states, is governed
by the desire to have sum rules which provide a mean-
ingful test of their underlying assumptions, and which,
therefore, should involve a minimum of poorly known
quantities.

Choosing u in the physical region of the u channel
makes it possible to obtain the Regge parameters
required for the right-hand side of (2.6) directly from
the +S resonance spectrum. '2 It is then unnecessary to
make any use of the Regge fits, whose details are some-
what uncertain, to high-energy backward data. In
descending order, the leading zriV trajectories (along
with a familiar particle on each) are d, q (3-3 resonance),
E (nucleon), and zV~L-', (-,' )1518]." With the specific
choice I, =M*', the A~ contribution to the right-hand
side of (2.6) depends only on the properties of the 3-3
resonance and on the slope of the trajectory at zs= M*'.
Thus the I„=~ sum rules have an accurately known
right-hand side. However, the t-channel contributions
to the left-hand sides of these sum rules Lcf. (2.8)]
involve both I&——0 and It,——1. Now the only t-channel
effect which we know well enough to be able to include
is the p-meson pole. To avoid the unknown contri-
butions of higher states, particularly the f' and g, we
choose —S~———0.8 BeV'. At I=M*', this corresponds
to a t-channel cutoff midway between the p and the
fo '4 With this E.i, the omission of a term from the low-
energy (I&——0) zrzr s-wave resonance remains as an error

"J.Schwarz, Phys. Rev. 159, 1269 (1967).
"The notation is that of G. Chew, M. Goldberger, F. Low, and

Y. Nambu, Phys. Rev. 106, 1337 (1957).
"For FKSR corresponding to the alternative choice of N=O,

see C. Chiu and M. DerSarkissian, Nuovo Cimento 55A, 396
(1968); and V. Barger, C. Michael, and R. Phillips, Phys. Rev.
185, 1852 (1969).

'3 The notation is I(J )3E, where 3E is mass in MeV."For simplicity we use this value of E~ for all four of our sum
rules, whose success then depends on the invariant amplitudes
having Regge behavior, on the average, to the left of s= —0.8
SeV'.

in the sum rule for A ='". (The zrzr s wave does not
couple to the spin-Rip amplitude B.)

In computing the contribution of the p, we use the
narrow-resonance approximation, and take the p~m

coupling to correspond to a p width of 130 MeV."The
p„-type pXN coupling is inferred from g,„,assuming
universal coupling of p to the isospin current. " The
o „„q„pÃLV coupling is then inferred from the y„coupling,
assuming p dominance of the electric and magnetic
isovector nucleon form factors. (Discrepancies between
various determinations of the pÃiV couplings and the
uncertainty over the p width suggest that our estimates
of the p contributions could be off by 50%%u~. It will
later be clear, however, that 50/o changes in these terms
would have no qualitative effect on our results. )

In contrast to the I =
2 sum rules, those for It ——1 are

free of unknown I&——0 contributions to the left-hand
side. These sum rules, however, involve the E and Ev
trajectories, in addition to the 6&, on the right-hand
side. Since zz= (1236 MeV)' is not the position of a
physical particle for either S or N~, it is necessary to
parametrize these trajectories and their residues in some
detail to obtain the terms appearing in the FESR. We
have assumed that the trajectories are linear functions
of u":

n~ = —,'+1.01(n—M'),

nii, = —,'+0.80(zz —Miz) .

(3.1a,)

(3.1b)

f~+iiz+""'(J W )

q„"~ 'tzi (E„&M)/W„
(3.2)

Here J is the total angular momentum, JW —', is the
orbital angular momentum, the superscript & is the
signature, I„is the isospin, W„=+zz is the c.m. energy,
E„is the nucleon energy, and q„ is the c.m. momentum.

f is (sin5)e'z/q„. Near their respective Regge poles, we
write

Pii. (IV„)/so~
hg+i(z+('"i (J,W )=, (3.3a)J n~. (zz)—

~', (»-)/ '
hJ+»z ""'(J~&&~~)=

J n~, (u)—
"X.Barash-Schmidt et a/. , Rev. Mod. Phys. 41, 109 (1969)."J.Sakurai, Phys. Rev. Letters 17, 1021 (1966)."V.Barger and D. Cline, Phys. Rev. 155, 1792 (1967).
'8 V. Singh, Phys. Rev. 129, 1889 (1963), which, however, con-

tains some misprints.

(3.3b)

Here I is in BeV', M=0.938 BeV is the nucleon mass,
and Mi ——1.525 BeV is the mass of the ~z(~3 )1518. Our
n~ is taken from Barger and Cline. "For n~„which
shows some curvature, we use a linear form which fits
the two lowest E7 resonances, rather than the Barger-
Cline form, which does not fit well below the second
resonance Lwe will be interested in nii, at zz= (1236
MeV)'].

Our residues P are defined in terms of the kinematical-
singularity-free u-channel partial-wave amplitudes A':
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with so and s~ constants. The Regge-pole contributions
to the large-s behavior of the invariant amplitudes are
then computed via the Sommerfeld-Watson transfor-
mation for the usual amplitudes f),2(W„,s)." '" For any
isospin, we have

dJ
pi 2(1IV,S)=-

4i C' coszJ
&&(f~+1/2+(~,W-)L~~+1/2'( —2-)+p~+1/2'(z-) j
+fJ+1/2 (J3II 13)P J—1/2 ( z16) I J—1/2 (213)j
+fbi/2 (I3&V ) t.I'&+1/2'( —z ) —&~+1/2'(& )]
+f~+1/2 (~&&V-)LI'~ »'( -z-)+—I'~ »2'(&--) j) (3 4)

The contour, before distortion, is around the positive
real axis in the sense shown, and the upper (lower) signs
on the right are for fi (f2).

For large s, we have

(~+1) 2 g a—1/2

I'-+1/2'( —z-)~, , (3 5)
I'(62+-2, ) +2r q„2

Thus, to avoid poles in the contribution from the tra-
jectory n when n= —1, —2, ~, we take the quantity
Pl'(n+1) to be a smooth function of W„For .P/(. we
have used two alternative parametrizations:

P))/. (W„)I'(n+1) =yp (1+IV„/M), (3.6a)

1IV ) N~„+N'
3 ())')I(+. 1),=6',(1+ ~, (3.66)

M / 3II+N~()

in which y() and W() are constants. For (3.6a), y() and so

are fitted to g ))/))/ /4r and the width of the first nucleon
recurrence at 1688 MeV. The form (1+W„/M)
guarantees that pN, will have the correct sign for
generating resonances of positive width both for
W &M+p, „and for W (—(3II+/2 ).'2 Also, the
nonexistent 2 (2 )938 expected from the trajectory
(3.1a)" is extinguished by the property P/)/. (—M) =0.

If one believes that the -', (2 )1680 belongs to the /V

trajectory as the parity-doublet partner of the 21(-,'+)
1688," then p))/, (—1680 MeV) ought to correctly
predict the —', (2 )1680 width. The form (3.6a) fails to do
so by a factor of 4.5. For u= (1236 MeV)', the right-
hand side of the FESR receives contributions both from
W„=1236 MeV and W = —1236 MeV Lcf. (3.4) and
the MacDowell rule). With P)v (—1680 MeV) appar-
ently very poorly approximated, one suspects that
P)v (—1236 MeV) probably is also, and one fears that
this may have serious consequences for the sum rules.
To settle this question we have evaluated the sum rules

"B.Desai, Phys. Rev. Letters 17, 498 ('1966).
' C. Chiu and J. Stack, Phys. Rev. 153, 1575 (1967).
2' V. Barger, in Proceedings of the 1067 International Theoretical

Physics Conference on Particles and Fields, Rochester, Eez York,
1967, edited by C. R. Hagen et al. (Wiley-Interscience, Inc. ,
New York, 1968), p. 655.

using the alternative parametrization (3.6b), which
contains the additional parameter )Vo and can fit
simultaneously the widths of the —', (2+)1688 and
—', (22)1680, the 2rNE coupling constant, and the zero at
—938 MeV which extinguishes the —,'(-,' ). Like (3.6a),
(3.6b) has the correct sign both for W„)M+/2 and
W (—(M+/3 ). The harmless double zero of (3.6b)
turns out to be at I/I/"„= —8'0= —606 MeV. Had we
introduced an extra parameter via a linear correction
factor of the form (W„+Wo'), rather than the quadratic
correction factor (W +W())2 of (3.6b), P would have
changed sign at PV„= —H/'0'= —2640 MeV, thus
violating unitarity to the left of this point. "

The scale factor so is found to be 1.17 BeV' when

(3.6b) is employed, and 0.79 BeV2 when (3.6a) is
employed.

For p))/, we use the linear form analogous to (3.6a):

P))/, (W„)I'(n+1)=pi(1+IV /Mi). (3.7)

The parameters y~ and s~ are fitted to the widths of the
-,'(-,' )1518 and the —', (—,

'
)2190. The zero at W„= —Mi

extinguishes the nonexistent —,'(2+)1518.If one identifies
the —',(72+)1983 reported by Donnachie et al.22 as the
parity-doublet partner of the —,'(-,' )2190, one finds that
(3.7) does indeed correctly fit the width of the 2+, so
there would be no point in considering a more compli-
cated p))/„analogous to (3.6b)."

For the part of the left-hand side of each sum rule
which corresponds to s-channel processes, we use a
narrow-resonance approximation, being unable to use
&E scattering data directly, since u= M*' is outside the
s-channel physical region. For given end point E„, we
include all known xlV resonances up to that point,
including the new resonances found by Donnachie,
Kirsopp, and Lovelace. ""For given isospin, the con-
tributions to A and 8 of a resonance of mass M„,
orbital angular momentum 1, and total angular momen-
turn J, are

A
Im—= ( 1)~ ** '3rEh(s —M')—

4z

M„+M M, —M
X p ~,'(~.)+- I' '(~.)), (3.80)

E„+M E„M—
8 P)~1'(s,) Pi'(2, )

Im—=(—1)~ ' '3rE8(s M')—
4z E,+M E„M—

(3.8b)

Here E„is the nucleon energy at resonance. The cosine of
the s-channel scattering angle, s„ is to be evaluated at

"A. Donnachie, R. Kirsopp, and C. Lovelace, Phys. Letters
26B, 161 (1968).

"Since the existence of the -', (-,'+)1983 is poorly established
(Ref. 15), constraining p~~ to fit the width of this resonance would
be of questionable value anyway.

'4 Properties of long-established (before Ref. 22) resonances are
taken from A. Rosenfeld et al. , University of California Radiation
Laboratory Report No. UCRL-8030-Rev. , 1968 (unpublished).
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s= M„' and I,= (1236 MeV)'. R is related to the elastic
width of the resonance, F,i, the resonance mass, and the
c.m. momentum at resonance, q„, by

TAsxx I. Resonance contributions to the left-hand sides of the
four sum rules. The breaks in the table correspond to the various
end points of integration X,.

~=1 el~r/gr ~ State
Contribution to FESR involving

A 8 Ag Bg

Our calculation of ImA or ImB amounts to making a
partial-wave expansion in the physical region, approxi-
mating the partial waves by the observed resonances,
and then analytically continuing the I.egendre functions
P~'(s, ) in the partial-wave sum out to u= (1236
MeV)' ""This value of u corresponds to s,& —2 for s
below 2.2 BeV. Since

(3.9)

for large ~s~, the effects of high-spin resonances are
greatly enhanced relative to those of resonances (or
background) of lower spin. Lacking this enhancement
(and being highly inelastic), the generally low-spin new
resonances of Donnachie, Kirsopp, and I.ovelace are of
no qualitative consequence. "

For each amplitude to which it was applied, the
FESR (2.6) was evaluated (with 1V~=0.8 BeV') for each
of three values of X„:1.84 BeVs= (1356 MeV)', 3.27
BeV'=(1808 MeV)' and 5.35 BeV'=(2313 MeV)'
Each of these points is the midpoint (in s) of an 200-
MeV-wide region bounded at each end by a prominent
resonance, but free of significant resonances in its
interior. "Thus our results will not be sensitive to small
variations of N„. Beyond our highest N„, resonance
quantum numbers are not well established.

Since none of our values of N„ is terribly large, we
have included on the right-hand side of (2.6) the
contributions from the highest two terms in the large-s
expansions of hs and 1V exchange. From (3.4) and the
fact that our n's depend only on u= W„'

t cf. (3.1a) and
(3.1b)], the second term ( s '") from each exchange
has two sources. First, for I fixed, s„has the form
s =as+b. Thus the s„'"term from I' +r~, '(s„) goes
like ats '"+ass '~'+ . Secondly, the leading term
in s„from the 8 r~s'(z„) term resulting from (3.4) goes
like s„" hence like s '". These two sources of the
s '~' contribution have moderately complicated co-

"That this approach is valid despite the divergence of the real
part of the partial-wave series at I=ALII*2, and despite the presence
of nonvanishing double spectral functions at this I, has already
been commented on by Schmid, Ref. 2.

"The resonance dominance technique is not the only way to
extrapolate the amplitudes out of the physical region. We are
finding out whether other procedures lead to similar results."Since the existence and parameters of these resonances are not
well-established, this circumstance is highly advantageous. (At
the time of writing of Ref, 15, the existence of five of these nine
resonances was considered poorly established. Now A. Brody
et al. , Phys. Rev. Letters 22, 1401 (1969), has called the entire
analysis of Ref. 22 into question. g

28 1356 MeV is midway (in s) between the 3-3 resonance and the
Roper resonance, 1808 MeV is midway between the —', (-', +) 1688 and
the ~ (~+)1913, and 2313 MeV is midway between the ~(~ )2200
and the —,

' (r') 2420.

P
-', (-,'+)938
-', (-',+)1236

~~(~+)1470
-'(-' )1518
-', (-,'-) 1550
-', (-', )1640
-'(-' )1680
s (2+)1688
s(-+)1688 b

—,'(-', )1691'
-', (-',-)1710
-', (-,'+) 1751'

—,'(-;+)1863'
-', (-', +) 19&3'
—;(-,'+) 1934~
—;(-',+) 1950
—,'(—,

' )1954'"
-', (-,'+) 1983's
k(4 )2057"
-'(-' )2200

5.0

—59

1.0
49

—0.1
0.1

—3.0
24.9

—0.2
1.6

—0.3
0.5

0.5
705

—0,4
—7,7

0.9
2.3

—1.5
—20.4

12.2—14.5
11 i 2

—1.8
8.1
0.0
0.0

—5.9
—32.8
—0.3
—2.0
—0.1
—0.5

0.7
7.8
0.4

—16.6
1.7
5.0
1.3

17.5

5.0

5.9

2.0
—9.7
—0.1
—0.1
—59

49.9
0.2

—1.6
—0.7

0.9

0.9
7.5
0.4
7.7

—0.9
4.7

—2.9
—40.9

12.2—29.0
11.2

—3.5
16.1

—0.1
0.0

—11.9
—65.6

0.3
2.0

—0.2
1~ 1

1.3
—7.8
—0.4

16.6
—17

99
2.7

35.1

a New resonance reported by Donnachie et al. , Ref. 22.
b Existence considered poorly established as of Particle Data Group,

Ref. 15.

and similarly for Bz.
To summarize the main assumptions on which the

sum rules and their practical evaluation are based, they
are (0) analyticity, (1) Regge asymptotic behavior, (2)
Regge behavior, on the average, from our actual end
points X„and N~ in the resonance region out to the
asymptotic region, and (3) dominance of resonances
over background on the left-hand side of the sum rule.

IV. RESULTS AND INTERPRETATION

Table I gives the resonance contributions to the left-
hand sides of the four sum rules. Note that these
contributions can have either sign, so that it is possible
for a FESR to be so badly violated that the left- and
right-hand sides do not even agree in sign. [This con-
trasts with the situation which one Ands, for example, in
considering the xx FESR used by Schmid to bootstrap

efficients at any given I, and may tend to reinforce each
other or to cancel. Because of this complexity, the
s '" term is sometimes a much larger fraction of the
leading s '" term than one would naively expect.

Our normalizations are as follows: For I&——1, we
apply (2.6) to the amplitudes —A /4s'M and 8 /—
4vrs. "For I = ss, we apply it to —Az/4s'M and —Bs/
4x', where A& is an I = 2 amplitude delned by

As(s, u) =-',A'='"(s,u)+-'sA's='I'(s, N), (3.10)
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TABLE II. FESR for It ——1. The LHS and RHS columns list, respectively, the left- and right-hand sides of the sum rule. The 6&(1)
column lists the contribution to the RHS from the leading term of the 6& trajectory; the A&(2) column, the contribution from the second
term of this trajectory; etc. The entries in parentheses correspond to the use of (3.6b) for p~ .

1.84
3.27
5.35

1.84
3.27
5.35

LHS

—0.9
18.8

—15.0

—13.5
—48.9
—31.2

RHS

4.3 (5.8)
14.7 (10.8)
42.9 (27.0)

13.0(—5.7)
—42.9 (—32.9)
—104.2 (—91.4)

—2.83
—7.97
—20.6

A sum rule
6.58 0.0(—3.16)

18.5 0.0(—9.79)
48.1 0.0(—23.4)

J3 sum rule
—11.6(—11.5)
—36.2 (—35.5)
—86.0(—85.0)

2.80
5.32
9.72

4.48
8.52

15.6

ng(2)

—2.42
—5.73
—10.6

—2.98
—7.09
—13.1

X (2)

—2.64 (1.96)
—3.39(2.52)
—4.32 (3.21)

—0.09(7.14)
—0.11(9.18)
—0.14(11.7)

the p meson. "At the value of momentum transfer at
which Schmid works, all direct channel resonances
contribute to the sum rule with the same sign, regard-
less of their angular momentum. Their isospin does not
matter either; resonances with I=0 and I=1 contribute
with the same sign, and there are no resonances with
I=2. Thus as the end point E is increased and more
resonances are included, the left-hand side of the sum
rule necessarily grows, as does the ( N +') right-hand
side, and a violent disagreement between the E depen-
dences of the two sides is guaranteed not to occur. 7

From Table I, one sees that the p term is a small
fraction of the left-hand side of any sum rule by the time
one gets to an end point of (1808 MeV)', so that un-
certainties in the p contributions will not be important
except for the lowest E„.Also, one sees that the reso-
nances of Donnachie et al."make only small contri-
butions, in almost all cases very small contributions.
These resonances have no qualitative effect on our
results, either individually or collectively. "

Table II presents the l&——1 results. The A sum rule
is not satisfied for E„=1.84 BeV', which is a pretty low

energy at which to expect Regge behavior, even on the
average. At E„=3.27 the sum rule works. Left- and
right-hand sides agree in sign and roughly in magnitude.
If the numerical discrepancy between them seems large,
note that it is a small fraction of the largest single
contribution to the left-hand side, which comes from the
-', (~5+)1688 and is bigger than the entire left-hand side.
At i7„=5.35, however, the FESR does not work at all,
the resonances above 3.27 having caused the left-hand
side to change sign rather than to grow.

The results for the 8 sum rule are similar: partial
success this time at 1.84, success at 3.27, and failure at
5.35. Note that both the A and 8 sum rules are
obeyed at 3.27, and both are violated at 5.35, inde-
pendently of which parametrization we use for the
residue P~ .

The /„= —,
' results, shown in Table III, repeat the

pattern. Both the A~ and Bg sum rules are satisfied for
E„=3.27, and both are violated for E„=5.35. The
numerical discrepancies between left- and right-hand

~9 C. Schmid, Ref. 2.

TABLE III. FESR for I„=$.The column headings Aq(1),
Aq(2) have the same signi6cance as in Table II.

1.84
3.27
5.35

1.84
3.27
5.35

LHS

10.9
458
22.3

—5.6—69.5—13.8

RHS

Aq sum rule
12.4
38.3

112.5

Bg sum rule
—17.4—45.2—101.1

19.7
55.5

144.3

—8.49—23.9—61.8

a, (2)

—7.26—17.2—31.8

—8.94—21.3—39.3

"The author is indebted to F. Hayot for a conversation which
led him to realize this.

sides at E„=3.27 are small compared with the largest
single contribution to the left-hand side. Interestingly
enough, it is the A sum rule, which contains an error due
to omission of the sr& s-wave resonance, which works
best at 3.27. Note from Table III that the second term
from Aq exchange, Aq(2), is far from negligible compared
with A&(1), especially in the Bz sum rule when
N„=3.27. Indeed, in this instance the Aq(2) term is
crucial to the obtaining of a reasonably well-obeyed sum
rule. The reader may wonder about the importance of
the third term from h~ exchange. Because we work at
the value of u where o.q, (u) = ~3, the Legendre functions
P ~,+&~2'(—s„) coming out of (3.4) are only polynomials
of the form as+6, so that the third and all succeeding
contributions vanish identically. "

To sum up the results: All four sum rules work for
N, =3.Z7. All four fail for N„=5.35.

From the success of all four sum rules at 1V„=3.27,
we conclude that for this value of E„all of the basic
assumptions (0)—(3) are correct. In particular, the
relation which Regge theory predicts between the
high-s behavior of the amplitudes at fixed I and the
resonance spectrum in the I-channel is verified. In the
usual Regge-type fits to backward high-energy data,
this connection is really not checked in detail except to
the extent that it is possible to extrapolate trajectories
(fairly easy) and residues (very dificult) from the
I-channel resonance region to negative u. To be sure,
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we have had to continue the low-energy amplitudes in
the opposite direction, but it is significant that this
totally different procedure leads to results which con-
firm the relation. Amusingly, by using the sum rules,
and by working at I=M*', we have verified the high-
energy behavior expected from Reggeism on the basis
of low-energy data alone. This was possible because of
property (2) (duality), which the success of all four sum
rules also implies. Specifically, we find that for I=M*',
and for energies between 1808 MeV and the asymptotic
region where detailed Regge fits hold, all the ~l'Ir'

a.mplitudes have Regge behavior on the average.
It remains, however, to explain why all the sum rules

fail when E„ is increased to 5.35. We suggest that this
behavior is due to breakdown of the resonance domi-
nance approximation above 1808 MeV. Evidence for
significant background in the 2-BeV region may be
found in several features of the backward a.1V data (the
backward region, where N=O, is, of course, the part of
the physical region closest to I=M*'). First, there is a
dramatic dip at 2200 MeV in the 180' a p elastic cross
section as a function of energy. "Barger and Cline" have
found that this dip cannot be fitted with a superposition
of i.esonances alone, despite the existence of the
—,'(s )2200. However, Dikmen" has discovered that if one
varies the widths and elasticities of some of the reso-
nances somewhat from their experimentally favored
values, a good fit can be obtained. The presence of
nonresonant background is less ambiguous when one
looks at the tr p angular distributions corresponding to
—1(cos0&—0.7 and energies between 2.1 and 2.3
BeV. Here Carroll et al.33 find another, equally pro-
nounced, dip (this time in the cross section as a function
of angle), which moves forward with increasing energy.
In an effort to see whether a pure resonance amphtude
would still fit if one departed from 180', Carroll et al."
attempted to fit their a-+p and rr p angular distributions
over a range of energies around 2 BeV with the known
resonances alone, allowing the resonance parameters to
vary from their accepted values, within reasonable
limits. They were unable to achieve a fit, particularly
of the a. p dip. Thus, appreciable nonresonant back-
ground is definitely present in the backward region. If
this background involves high spin, then it remains
important when we go out to I=M*' Lcf. (3.9)j, and
this is why all the lV„=5.35 sum rules failed. '4"

"S.Kormanyos, A. Krisch, J. O'Fallon, K. Ruddick, and L.
Ratner, Phys. Rev. Letters 16, 709 {1966)."F.Ned Dikmen, Phys. Rev. Letters 18, 798 (1967).

"A. Carroll et ul. , Phys. Rev. Letters 20, 607 (1968). The
author thanks V. Barger for reminding him of these data.

"The other, rather unattractive, possibility is that the arnpli-
tudes are Reggeistic on the average if one averages from 1808 MeV
to the asymptotic region, but not if one averages from 231.3 MeV
to the asymptotic region."It would be interesting to have a m.S phase-shift analysis
extending up to 2.4 BeV, which could be used as a basis for
extrapolation to g =3II*' without dependence on resonance
dominance.

TAar, K IV. FESR for I = ~3 in doublet universe.

I,HS a, (2)

1.84
3.27

1.84
3.27

—48.2—11.6

31 ~ 1—93.2

Ag sum rule
10.3
31.9

Bg sum rule
—24.3—65.1

17.0
47.8

—17.0—47.8

—6.70—15.9

—7.30—17.3

Doublet Universe

"For completeness, we include on the left the insignificant
contributions from a hypothetical 2 (tm+) partner to the 2 (~ )1640.
The latter particle might be the lowest state on a trajectory with
I= ~3 and positive signature, for which, however, there is no goo'
evidence.

To get some further perspective on the fact tha, t with
'X„= (1808 MeV)' our four sum rules are satisfied in
nature, we ask whether they are still satisfied if we
change the universe a little by adding a few nonexistent
particles, namely, the extinct opposite-parity partners
of the lowest states on the leading xX Regge trajecto-
ries. There is the question of how big a coupling or width
to choose for each of the newparticles. For the-', (-,' )938,
which would form a parity doublet with the nucleon,
we take the newly introduced pole in the kinematical-
singularity-free r~(rs) partial-wave amplitude (3.2) to
have the same residue as does the nucleon pole in the
analogous —', (-',+) partial wave. The same prescription is
used for the —,'(2 )1236, which would be the parity-
doublet partner of the 3-3 resonance. This procedure
yields partial waves f= (sin6)e"/q —which would have
normal threshold properties no matter how close the
nucleon or 3-3 poles happened to be to threshold. Since
these poles are not too far away, this property seems
appropriate. For the new partner to the -', (2

—)1518,
however, we assume the same elastic width as that of
the existing particle. We are guided by the fact tha, t the
doublets which actually exist (at higher points on the
leading trajectories, or along lower-lying trajectories)
tend more to have roughly equal elastic widths tha, n to
have equal residues in the kinematical-singularity-free
partial waves. '4" Note that the existing doublets are
found at energies above 1400 MeV, where our imaginary
doublet at 1518 occurs.

With new particles in the xE spectrum, both sides of
the various sum rules are changed. On the left, new
resonance contributions are present, while on the right,
the y's are different, because the I-channel partial-wave
residues P no longer vanish to extinguish the absent
parity partners.

Including the effects of the new particles, we re-
evaluate the I„=-,' sum rules. The right-hand sides of
these FESR now depend on the properties of the 3-3
resonance and of its fictitious as partner. " (By not
using the I&——1 sum rules we avoid the necessity of
making a detailed parametrization of residue functions
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in a hypothetical universe. ) The results are shown in
Table IV-. For the values of iV„ for which it is obeyed in
the real world, the A~ sum rule is now drastically
violated. The main change is the large contribution
(—58.0) of the fake —,'(-,' )938 to the left-hand side. The
size and sign of this contribution are responsible for the
dramatic violation.

We see that the FESR can distinguish between the
real world and at least one rather natural fictitious one.
This result underscores the meaningfulness of the
success of the sum rules in nature.

For spinless scattering, there would be just one
partial-wave amplitude A&(u). If there were only ex-
change forces (s-channel singularities), so that p, =0,
we would have A+(l, u) = —A (l,u). From this it
immediately follows that any trajectory present in
A+(l, u) will be accompanied by a partner with the same
n and opposite P in A (l,u)

For ~.V scattering, the signatured partial-wave
aniplitudes, labeled as in (3.2), are related to the
quantities A'+(l, u) defined above by relations of the
fol m

APPENDIX ' EXCHANGE ANTIDEGENERACY

In Chew's reciprocal bootstrap of the nucleon and the
3-3 resonance, direct forces (t-channel singularities) are
very unimportant. Here we wish to show that if one
tries to bootstrap whole Regge trajectories in a model
in which there are no direct forces, then exchange-
antidegenerate trajectories will result. By this we mean
that for every trajectory of given signature and parity,
there will exist another of opposite signature and parity,
with the same trajectory function and equal but oppo-
site residue function. If normal resonances lie along the
one trajectory, resonances of negative width lie along
the other.

Let us make a partial-wave analysis in the N channel,
denoting the +E amplitudes A and 8 by A' and A',
respectively. From dispersion relations of the form
(2.8), it follows that

A i'(u) =— ds„Pi(s„)A'

dx'$p, '(x', u)
&gu xo&0

2

x'
))

+(—i) p. (x+(t/u, u) jg,(i+, l
(A~)

2q„'I

for /&1V. Here P—= (M)v' —u ')', and i= 1, 2. Amplitudes
A'+(l, u) that can be analytically continued in / are
defined by replacing the (—1)' in (A1) by &1, re-
spectively.
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f~+(/2+(J, W ) =g $c;(W„)A' (J+-', , u)

—c;(—W„)A'+(J——',, u)g, (A2)

f~ i/s+(~»—~~) = f&+i/s+—(J'~ —W~) ~ (A3)
2

f~+»s (~ W )=2 Ec'(W )A*+(J+s u)

—c;(—W„)A' (J——',, u) j, (A4)

f »s (~ W—) = f~+t/s —(J) —W-) (AS)

(A6)f.+»"(J,W-) = fJ+./-. (~P --)

and

fJ—1/2 (J)Wv) = fz 1/s —(JP—'~) . (A7)

The states for which the two amplitudes related by
(A6) are physical have opposite values of both signature
and parity, and similarly for the amplitudes of (A7).
Thus, for every trajectory of given signature and parity,
there will be another with opposite signature and
parity, having the same n(W„) and opposite P(W„).'s

"Chew et gl. , Ref. 11.' A bootstrap of the N and the 3-3 resonance, using the I„=$
FESR at N =Sf*', and the I„=& superconvergent sum rules which
hold at u=0 LD. Seder and J. Finkelstein, Phys. Rev. 160, 1363
(1967lg, was considered. In the spirit of a simple bootstrap, it was
planned to include only the N, 3-3 resonance, and p (thus including
at least some t-channel effects) on the left-hand sides of the four
sum rules. It is quickly apparent, however, that some of the boot-
strap equations coming out of such a model will be very poorly
satisfied by the experimental masses and coupling constants, so
that such a bootstrap would make no sense. If we include only the
p, N, and 3-3 on the left, then the I„=~~ sum rules must be eval-
uated with N „not far above the 3-3, or we make a serious error by
omitting the contributions of such resonances as the -', (—,

' )1518
(cf. Table I).But with such a low N „the 8& sum rule will be badly
broken in nature (Table III); duality does not hold to so low an
energy. As for the I„=-', superconvergence relations, we already
know from Beder and Finkelstein that the A sum rule is not
satisfied if one omits all t-channel contributions besides that of the
p. A realistic bootstrap calculation of this type must include more
than the p, N, and 3-3 resonance.

The c;(W ) are well-known kinematical factors. sr If
there are no l-channel forces, (A1) gives A'+(l, u)
= —A' (l,u). From (A2) —(AS), it then follows that


