
P II V S I C A I R E V I E W l3 VOLUME 1, NUMBER 1 l .JANUARY i9 io

Electromagnetic Contributions to the Charge Asymmetry in the
Semileptonic Decays of Neutral Kaons*

C. RYAN)

International Atomic Energy A gency, International Centre for Theoretical Physics, Miramare, Trieste

(Received 16 June 1969& revised manuscript received 19 August 1969)

While the measured charge asymmetry in the semileptonic decays of El. is clear-cut evidence for CP
violation in these processes, the detailed theoretical interpretation of this result is somewhat complicated
by the presence of electromagnetic effects. It is shown, however, that whereas these electromagnetic effects
can produce sizable differences in decay distributions for decays into charge-conjugate states, their con-
tribution to the asymmetry parameter Sr~ is not greater than oI'(lena)/P (Kr~')

I. INTRODUCTION
' 'T is well known that the charge asymmetry in the
~ - semileptonic decays of neutral kaons is an important
source of information concerning CP violation. ' This
asymmetry is defined as the difference between the rate
of decay of a neutral kaon state into a state consisting of
a charged lepton, a neutrino, and any number of
hadrons and photons, and the rate of decay of the same
state into the corresponding charge-conjugate state. In
the case of EI,' decays, the existence of such an asym-
metry automatically implies CP violation, since if CP
were not violated by any interaction, then EI.' would
be a CP eigenstate and its decay rates into charge-
conjugate states would be equal. By now, four mutually
consistent experiments have established the existence
of such an asymmetry in EI,' decay' '; this confirms
the earlier finding of CP violation in the 2x decays of

0 6

Now, while the fact that CP is violated is a simple
deduction from the above-mentioned experimental
asymmetry, the detailed theoretical interpretation of
this result is not so straightforward. In the first place,
there is a complication arising from the possible
presence of AS= —AQ transitions, but this can be
overcome, as is known, by working with a regenerated
kaon beam. ' The second difficulty, and the one on which
we wish to focus here, has to do with the effect of the
electromagnetic interaction on these semileptonic de-
cays. Since there are charged particles involved, it is of
course clear that the electromagnetic interaction plays
a role, but in most treatments of the charge asymmetry
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question it is assumed that this role is unimportant. ' We
should like to examine this assumption in order to see
how far it is justified. We shall discover that while
electromagnetic effects can produce sizable differences
between the decay distribution for EL,' —+m. l+u~ and
E~'~x+l f ~, the electromagnetic contribution to the
difference in the rates is extremely small, the correction
to the usual formula for 4~ being of the order nl" (E~4')/
/I'(E~ss)~10 sn. Hence the usual procedure of neglect-
ing electromagnetic effects when computing 81. is well
justified.

Ke shall proceed as follows: In Sec. II we outline the
basic facts about X~3' and K~3' matrix elements.
Sections III and IV we devote to a discussion of the
charge asymmetry parameter in the ~ls decays of
EJ.', ffrst neglecting electromagnetic effects (Sec. III)
and then including them (Sec. IV). Finally, in Sec. V
we show quite generally that electromagnetic con-
tributions to this asymmetry are no greater than
nI'(Ei4')/I'(Eis').

II. K)3 AND K(3 MATRIX ELEMENTS

We shall base our discussion on two fundamental
assumptions:

(a) All interactions are TCP-invariant.
(b) Strangeness-changing semileptonic decays are

first-order processes in a semileptonic weak-interaction
Hamiltonian

Hs~= g H' with H'= d'x H'(x).
l=e, y

We are aware that either or both of these assumptions
may be wrong, in which case our discussion will be no
longer valid; generally, however, they are regarded as a
suKciently sound basis for discussions of the present
kind and we shall accept them.

7 L. B. Okun and C. Rubbia have touched on this matter in
their report in Proceedings of the International Conference on
Elementary Particles, Heidelberg, 1967, edited by H. Filthuth
(North-Holland Publishing Co., Amsterdam, 1968).Related work
is to be found in N. Byers, S. McDowell, and C. N. Yang, High-
Energy Physics and Elementary Particles (International Atomic
Energy Agency, Vienna, 1965), p. 953; I. B. Khriplovich and
L. B.Okun, Phys. Letters 26$, 672 (1967).
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where E' and E' are eigenstates of the Hamiltonian of
strong and electromagnetic interactions, FIs+H&, with
IKP) defined in the appropriate one of the following
three ways:

(i) IKp)—:CIE') if Hs+H& is inva, riant under C;
(ii) IK')= CPI E—") if H +H"r is not invariant

under C but is invariant under CP;
(ni)

I
K') =——TCP

I
E') if Hs+H& is invariant

neither under C nor under CP but only under TCP.

Assumption (b) has the consequence that the reduced
T-matrix elements (defined below) for the transitions
E' —+ ~lv and Ko ~ ~le are given, respectively, by
(irlvo„iIH'(0) IE;~p) and (irlv«pIH'(0) IE;„'), where the
states in these expressions are "in" and "out" states of
the Hamiltonian Hs+H&.

Now, there are four basic transitions to be considered:

(1) E' +pr l+vi,-
(2) KP +or l+v i,—-

(3) KP ~ sr+1 vi,

(4) EP ~ 7r+1 vi

(2.2)

(2.3)

(2 4)

(2.5)

Transitions 1 and 3 correspond to AS= &Q, while transi-
tions 2 and 4 correspond to DS= —&Q.

Assuming only that the neutrino involved in these
decays is a left-handed particle, we may write the re-
duced T-matrix elements for processes 1 and 2 as'

T, =(~ l+vi.„, H'(0)
I

ItP(K');„)

G' 1 mim,
~(v)(1 —Vp)

V2 (2ir)p 4kpirplpvp)

X(A,+iB,&. (k+m)]&)(l), j=1, 2 (2.6)

and for the processes 3 and 4 we have, in like manner,

T, =( l-.—,.„,IH (0) IEo(Ko);.)

G' 1 ( mim„
n(l)pA, +iB,p (k+7r)]

V2 (2ir) (4kpprplpvp

X(1+~,).(v), j=3, 4. (2.7)

In Eqs. (2.6) and (2.7), the reduced T-ma. trix element
T is defined in terms of the S-Inatrix element by

f f~ (Pf 'P )( ~) b (Pf P~) f'

8 C. Ryan, in Lectures irl IIigh-Energy Physics II, edited by
H. H. Aly (Gordon and Breach, Science Publishers, Inc. , New
York, to be published).

From assumption (a) it follows that the short- and
long-lived neutral kaon states are given, respectively, by

IE,,o)1
I

=p IEP)~v IKP&, IP I'+ Iv I'=I, (2 1)
IE,p))

G' is the coupling constant for strangeness-changing
semileptonic processes; 0, 7r, l, and v are four-vectors
representing the four-momenta of the corresponding
particles; the y matrices are chosen Hermitian with
y, =yiypppy4. , the factors (1&yp) appear because of the
assumed two-component nature of the neutrino; and
the A; and 8; are scalar functions of the invariant
variables s and t defined by

s= —(k —l)', t= —(k —pr)'. (2.8)

a;=mif &(t)

mif &(t)—
b = f+'(t),

(j=1,2)

(j=3,4), (2.10)

where f+'(t) and f '(t) are the familiar Eip form factors.
Notice that in Eqs. (2.9a) and (2.9b) we have intro-
duced a further separation of the functions c; and d, into
their CP even (+) and-CP-odd (—) parts. This separa-
tion corresponds to the fact that, to the order to which
we are working, the matrix elements may be written as

( l". IH'(o) IE'(K') .)
= (~lv

I
H'(0)+ T(H'(0)S&'»)

I
E'(K')), (2.11)

where the states on the right-hand side of this equation
are eigenstates of the Hamiltonian of strong inter-
actions, and S(2» is the second-order S matrix of the
electromagnetic interaction. Now, in general, H'(0) and
S&'» both contain CP even and CP-odd-parts. (This is
true in the case of S"», for example, if we adopt the
explanation of CP violation proposed by Bernstein
et al. ,

' according to which the electromagnetic inter-
action of hadrons violates C and CP.) We may express
this by writing in an obvious notation:

H'(0) =H~'(0)+H '(0),
Si~)v=S &P)v+S &&)v

(2.12a)

(2.12b)

Then the CP-even parts of c, and d, arise from the
CP-even part of T(H'(0)S&p) &), namely, T(H+'(0)S+&"&

+H '(0)S &P»), while their CP-odd parts arise from
its CP odd part T(H '(0)S-~"')'+H~'(0)S "'7). We

9 J. Bernstein, G. Feinberg, and T. D. I-ee, Phys. Rev. 139B,
&850 (&965).

We now make a separation of each of the functions
3; and 8, into a part which arises from the weak inter-
action alone and a part which comes from second-order
electromagnetic corrections to the weak interaction.
(In principle, we could consider higher-order electro-
magnetic corrections, but we shall not do so since they
are probably too small to play any significant role in
the phenomena we are discussing. ) Thus we write

A; = u,+nc, = a+n(c++c, ), (2.9a)

B;= b,+o&d, = b, +n(d, ++d, ) . (2.9b)

In the V, A theory of weak interactions, a, and b, are
given, respectively, by
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remark also that thefunctions cj+ and dj+ are essentially III. CHARGE ASYMMETRY IN ~lv DECAYS OF
complex, since they describe final-state interactions. El.s WITH ELECTROMAGNETISM

Next we list the relations satisfied by functions NEGLECTED
appearing in Eqs. 2.9a and 2.9b corresponding to
the various possibilities of CP invariance or noninvari- For purposes of orientation it seems worthwhile at

this stage to go through the usual derivation of the ex-

(i) H'(0) CP invar-iant; St'» CP invari-ant:

Qj & bj real with a3, 4
——a&, 2, b3, 4 = —b&, 2, also

c3,4 = c~,2, d3, 4 = —d&,2;
cj =dj =0. (2.13a)

(ii) H'(0) CP invari-ant; St'» CP noninv-ariant:

Relations the same as for (i) except that now c,
and dj are nonzero and satisfy c3,4 = —c&,2,

ds, 4
——di, s . (2.13b)

(iii) H'(0) CP non~'nva-riant; St"'r CP invarian-t:

a;, b, complex with a3, 4—(ai 2) 5s, 4
— (6i 2)*;

also c3,4 +ot, s d3, 4 Wdi, s (2.13c)

pression for the charge asymmetry in the decays of
El.' into vrlv where the effect of the electromagnetic
interaction is neglected. We begin by noting that from
the discussion of Sec. II it follows that the reduced
T-matrix elements for the decays EI.'~~ l+v& and
El.' —+m-+l v& are given, respectively, by

&sr-l+v( ...I
H'(0)

I
Er. ;„s&= p(sr-l+v(. „e I

H'(0)
I
E;„')

+q&7r l+vi.„tla'(0) IK;ss&, (3.1)

&~+i vi-cia'(0) IE"-'&=p&~+i vi-cia'(0) IE.')
+q(sr+i vila'(0) IK '). (3.2)

Squaring these matrix elements, doing the polarization
sums and the phase-space integration, and making use
of TCP invariance in the form of the relations

Relations the same as for (iii). (2.13d)

(iv) H'(0) CP noninvan-ant; St"'r CP noninvari-ant:
&~

—l+„
I
Hi(0)

I
Eo(Ko)
= (sr+i' v(;„I—H'(0)l K'(E');„)" (3.3)

Possibility (i) is the one which obtains in the super-
weak theory of CP violation, I possibility (ii) is the one
realized in the theory of Bernstein et al. , while in the
ordinary weak theory of CP violation it is possibility
(iii) that occurs. We shall make use of this analysis in
Sec. IV.

and

&~+i vi.„,la'(0) IE'(K');„&
= ( l'+v~;

I
H'(0)

I
K'(E');„)* (3.4)

(l' denotes the spin-flipped state of l), we find the
following for the sum and difference of the decay rates:

P.( l+ )~P (+l i)=(2 )'2 6'(& ——l—)d' d'«"(lpl'I( l+ i- Ia'(0)IE'-')I'
pol

+ I&I I&~+i-;„„la(0) IE o&I ~lpl'I&~+i-. ..., la'(0) IE;.&I'~ lql l&~-i+v„„la'(0) IE,„o

+P~*L«;. Ia (0) l~ i"i-.&&- i+»-ala'(0) IE'-'&~&K'-'la (0) I~ l+vi'-)&- l+vi -Ia'(o) IE'.'&j

+p*~l &E;.o I
a~(0)

I
~-l+v. ..,&&~-l+„.„„fat(0)IK„o&+&E,.o

I
a~(0)

I
~-i+„,„&&~-l+vt;.

I
at(o) IK,.o&j) . (3.5)

Notice that in this expression we have "in" rather than
"out" ~lv states in every second term; this is because
we have made use of the relations (3.3) and (3.4) to
replace the terms (involving out states) which originally
stood in those positions. Now, as we have said, the usual
discussion of this problem neglects the electromagnetic
effects completely. In that approximation, one can
simply disregard the distinction between the in and out
srlv states in (3.5), because in the absence of electro-
magnetism there is no interaction between the particles
in these states. Thus with the neglect of electromag-
netism and the additional postulate that

l+, .„,I
H'(0)—

I
K;„')

= X(sr l+vz. „,IH'(0)
I
E;„') (.3.6)

(X, which is assumed constant, can be regarded as a

re L. Wolfenstein, Phys. Rev. Letters 13, 562 (1967).

measure of the violation of the 65= AQ rule in the 7rlv

decays of neutral kaons), it immediately follows that the
charge asymmetry in these decays is given by

1 r.(v l+v i) Pr—,(s.+l v—()—
I'z(sr i+vi)+Fr(sr+i vi)

1 —Ixl'
=(fpl' —Iql')—,(37)

I
1yX

I
'+ O(e)

where e= (p —q)/(p+q) is probably not greater than
3&&10 ' in absolute value, " so that the term 0(e) in
(3.7) may be safely neglected.

"We derive this limit from the phenomenological relationship
e= ssv+-+ lvoo, the value

f v+ f
=1 90X10 s [J. Cronin, in

Proceedings of the Fourteenth International Conference on High-
E&sergy Physics, Uiessaa, t96$ (CERN, Geneva, 1968), p. 281),
and the assumed upper limit fvw f (SX10 ' (J. Steinberger,
Ref. 5).
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It is on the basis of the relation (3.7) that the
theoretical analysis of the experimentally measured
charge asymmetry in El.' has been carried out. Using
this relation and another similar one for the time de-
pendence of the charge asymmetry in the decay of a
regenerated neutral kaon state (also derived with the
neglect of electromagnetic effects), Bennett et al. i2 have
deduced values for lpl' —lql'=4 Ree snd (1—l&l2)/
(l 1+Xi') separately. We must recall, however, that
in deriving the formula (3.7) we have neglected terms
which in principle could be of order o., and since the
measured asymmetry 51," is in the range 2 —4&10 ', it
is at least a possibility that the terms neglected in
Eq. (3.7) might be comparable in magnitude to the
effect itself. It is necessary, therefore, to have some
estimate of the electromagnetic corrections to the
formula (3.7).

In clari6cation of a point made above, we should ex-
plain that when we said that in deriving Eq. (3.7) we
had neglected terms which, in principle, could be order
n, we did not mean that conventional electromagnetic
effects by themselves could produce such terms. What
is needed to produce any correction to the formula (3.7)
is obviously a combination of electromagnetic effects
and CP violation in either the electromagnetic or weak
interaction; for, on the one hand, as we have seen, (3.7)
is an exact formula if electromagnetic effects are
neglected while, on the other hand, if CP is conserved
in strong, electromagnetic, and weak interactions (with
CI' violation restricted to the superweak interaction"),
we can use the CP operation rather than TCP to ob-
tain, instead of (3.3) and (3.4), relations of the form

(
—i+, i.„,l

Ht(0)
l
E'(E');.)

= ( -2r+, l , vtl H-'(0)
l
--E'( -E');„), (3.8)

( +l—vi.„,lH'(0) lEP(EP) .)
=(—2r—,—I+, —vi.„&lH'(0) l

—E'(—E'); ) (3.9)

(the minus signs signify changes in sign of the cor-
responding three-momenta), and, with the use of these
relations, (3.7) again becomes an exact formula. Thus,

strictly speaking, we should say that corrections to (3.7)
are of order eX, where X is a measure of the strength of
the CP-violating interaction. Now, in weak theories of
CP violation, X is expected to be of order 10 ' and so the
corrections may be very small; in the electromagnetic
theory of CP violation, ' X could be of order 1, in which
case the corrections might be appreciable. It is with this
latter case that we are especially concerned. Let us
therefore proceed to a discussion of bz, which does not
neglect electromagnetic effects.

IV. CHARGE ASYMMETRY IN ~lv DECAYS OF
Kl. WITH ELECTROMAGNETIC

EFFECTS INCLUDED

A L+ pA 1+qA 2 p
BL+——pB1+qB2, ——

Ar, ——PA4+qA2, Br, PB4+qB2. ——
(4 3)

(4 4)

A straightforward calculation shows that the differential
decay rates for the two decays under consideration are
given by'

For the purpose of the present calculation, we write
out the reduced T-matrix elements for the decays
El, ~ z t+v~ and EI, ~ m+l v~ explicitly as follows:

(2r t+vi .„4 l

H—'(0)
l Er.')

G' 1 ( m&m, q't2
~( )(1—v.-)

K2 (22r)'(4kp2rplpvp)

X(Ar++iBr+y (k+2r)]p(l), (4.1)

(2r+I v( „&IH'(0) IEi, )

G' 1 ( m&m„q'~2
24(l)(Ar, +iBr. y (k+2r)]

v2 (22r) p (4kp2rplpvp)

X(1+~.;).(.). (4.2)

The superscripts + and —on the amplitudes in these
equations refer to the charge of the charged lepton, and,
obviously, from the definitions (2.1)—(2.7), we have

1
=-', (G')' {'2(1—mt')

l Az, +
l
'am(L(s —m ') —

—2, (1—m(') j(Ar+(Br+)*+(Ar,+)*Bi,+)
(22r)' 4mip

——2'L(t —mi2)2+(2s —t)(1—mp)+4(s —m. ')(s —mp2) j l
Bz,+

l
2), (4.5)

where s and( are the invariant variables defined in Eq. (2.8). On using Eqs. (4.3) and (4.4) as well as Eqs. (2.9)
and (2.13),we find for the difference between the decay distributions in (4.5) the expression

di'r, (2r 3+vi) di'r. (2r+I vi) 1 1
= l(G') 2 {l(1—mi')L(l p I' —I ql')(lail' —ln21')+2n Re(ni+~2) Re(ci +c2 )

dS dt dS dh (22r)2 4mpp

+2n Im(ai+a2) Irn(ci++c2+) g+mil (s—m ')+ 2 (1—mi') jL( l p l

'—
l q l

') (aibi*+ai*bi —a2b2* —a2*b2)

+2n Re(ai+a2) Re(di +d2 )+2n Im(ai+a2) Im(di++d2+)

' S. Bennett, D. Nygren, H. Saal, J. Steinberger, and J. Sunderland, Phys. Rev. Letters 19, 997 (j.967); Phys. Letters 278, 244
(1968);278, 288 (1968);cf. J. Steinberger, Ref, 8.
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+2n Re(bi+b, ) Re(ci +c2 )+2n Im(bi+b2) Im(ci++c2+)5

—2C(t —mi')'+(2s —t) (t —mi')+«s —m-') (s —mi') 5L(l p I

'—
I v I

') (l » I

' —
I
b-

I
')

+2m Re(bi+b2) Re(di +d )+2a Im(b, +b2) Im(di++d2+)5), (4.6)

where we have neglected all terms of second order in CP
violation as well as those of order n(l p I'—

I ql'). If one
integrates this quantity over the region of the Dalitz
plot, one obtains the numerator of the quantity 8I. ,
Eq. (3.7).

Before coming t.o this integration, let us look at the
general features of the expression (4.6). In the first
place, we see that it contains a term proportional to

I pl '—
I ql ', and this is the term which gives rise to the

result obtained in Eq. (3.7). In addition, however, we
have two terms proportional to n. The erst of these
involves combinations of functions like Re(ai+ u2)

XRe(ci +c. ), and this term will be present as long
as there is a CP-violating part in either the weak or the
electromagnetic interaction. In the case that CP' viola-
tion occurs only in the weak interaction, Re(ci +c2 ),
and Re(di +d2 ) will be proportional to the parameter
of weak CP violation, and since this is taken to be of
order 10 ', the term in question is likely to be very
small. If, however, there is CP violation in the electro-
magnetic interaction, Re(ci +c2 ) and Re(di +d2 )
could be of the same order as Re(ai+a2) and Re(bi+ b2),
in which case the first electromagnetic term in (4.6)
could be quite sizable and could, on integration over the
Dalitz plot, give a contribution of order nl'z, (2rlv) to the
numerator of 81. . This is the correction to the quantity
81." we are mainly concerned with. Unfortunately, no
calculation of the functions c, and d, is available for
this case, and so the discussion must remain at the
qualitative level. However, one very important fact
which has not been appealed to in this discussion is
that of TCP invariance. In Sec. V we shall show from
TCP invariance and the completeness of out and in
states that the electromagnetic contribution to the
numerator of 81. is, in fact, a great deal smaller than
nl'r, (2rlv)

The second term proportional to a in (4.6) is the
one which involves the quantities Im(ai+ a2) and
Im(bi+b2). This term is present only if there is CI'
violation in the weak interaction. Now, as remarked
above, the parameter of this violation is expected to be
about 10 ', and so this second electromagnetic term in
(4.6) is likely to be negligible. It is possible to check. this
in a model calculation. %e take the radiative correc-
tions to E, K ~mdiv as calculated by Ginsberg" in
lowest-order perturbation theory using a phenomeno-
logical vector interaction with constant form factors
and neglecting hS= —tiQ transitions. In this model,
all amplitudes with the subscripts 2 and 4 (i.e. , the
6$= —t) Q amplitudes) vanish, while the remaining

' E, S. Ginsberg, Phys. Rev. 171, 1675 (1968); 174, 2169(E)
(1968); 187, 2280(E) (1969).

ones are given by

f+ ~ci ', f+——A-, (4.7)

bi ——mif . , ndi ——2mi[f—B+f+(A —B)5,

G2= f+, QC2= 2 f+ A

b, = m, f *—
,

nd2= 22mi—ttf *B'+f+*(A' B')5—.

(4.8)

(4.9)

(4-.10)

7 mt'——' lnl +2 ln —I+ti-
km, 4 ))

2t2
(4.12)

where A is an ultraviolet cutoff and X is the 6ctitious
photon mass (or infrared cutoff), $ is the quantity
f /f+, u is the invariant variable —(tt —v) ', and ti and t2

are two functions of s and t whose explicit forms are
given in Ref. 13. A' and 8' are obtained from A and 8,
respectively, by making the substitution $ —+ P.

We see from Eqs. (4.11) and (4.12) that the electro-
magnetic corrections are logarithmically divergent.
However, it turns out that all the divergences cancel
out in the term in

dI'r, (2r l+v() dl'r, (2r+t v&)

dsdt

which is proportional to Ot. In fact, one finds for this
term

(n(2r) Im& mi22(G')2(22r) 28m' —'I f+I
'

Xu 'P(s mk' m—P)(m2—2 u)+(t —mt')( —m+12)5u

(u+m. ' —mi2)
X2r—,(4.13)

L(u m 2 mi2) 2 4ml2m 251/2

u =m1,2+m. '+mP —s —t.

We see that this quantity is proportional to Imt, which
is a measure of CP violation in the weak interaction.
When we now integrate (4.13) over the Dalitz plot to
find its contribution to the difference of the rates for
El,' —+~ t+v~ and EL,0~m+/ v~, we 6nd, rather sur-
prisingly, that the result is zero. Technically, the reason
we get zero for this integral is connected with the fact

Here, A and 8, which represent the electromagnetic cor-
rections, have the forms

n A) mi) -', t2mP(1 —&)-
A=-

2 ln —
I

—1+2)n —I+ti-
mid ), J I

(4.11)
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that the last function in (4.13), which describes the
electromagnetic correction, is a function of I only and
also that the t dependence of f+ is neglected. If either of
ihese features did not obtain, the integral would not
necessarily vanish. We may conjecture, however, that
this result is not simply a consequence of this particular
model calculation and, in fact, it will turn out that it is,
rather, an illustration of a more general result which we
shall prove in Sec. U.

In summarizing the present section, we may say
that the electromagnetic contribution to the diRer-
ence between the decay distributions for the decays
El.'~ ~ l+u~ and EJ'~ ~+1 s ~ can provide a way of

distinguishing between theories in which CI' violation
is located in the electromagnetic interaction and those
where it occurs in the weak interaction; in the former
case the difference in question should be of order o.,
while in the latter o,/ 10 ' is more likely.

V. EXACT RESULTS FOR THE MAGNITUDE OF
ELECTROMAGNETIC CORRECTIONS TO SI,

In order to obtain an exact result for the magnitude
of the electromagnetic contribution to 61. , we return
to the expression for rr, (m t+v~) —rr, (7r+t v&) in Eq.
(3.5). KVe may write this as
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Let us consider this expression term by term.
The first term is proportional to Res([ pl

—
I
q[' 4 Res), and so neglecting the difference between in and out

states in this term means neglecting terms of order n Res which, of course, are far too small to be of any conse-
quence in 6r, ~. This is the term which gives us the numerator of the result in Eq. (3.7) (third member).

Coming now to the second term in Eq. (5.1)—that proportional to ~
—we wish to show that this term is of order

nr(E'&4'). In order to do so we begin from the identity

&&'-'I(2~)' d'x a'(*)e&(o) Il~'-"&=(&'-'I(2~)' d'~ H (*)e'(o) II~'. '& (=—&It'-'Ir'I tt'-')), (5.2)

where I' is the I-lepton part of the E-meson decay operator. Next we insert a complete set of out states of the
Hamiltonian of strong and electromagnetic interactions, Hs+H&, between the two operators on the left-hand side
of this identity. , and a complete set of in states of the same Hamiltonian between the two operators on the right-
hand side. It is sufficient now to consider only the three most important contributions to the sum on each side,
namely, those coming from mls, mmtv, and mylp states. On doing this and rearranging the terms somewhat, we find

(2n)' P 5'(k —vr —t —v)d'md'td'vL
I (~ t+vt ..tl a'(0)

I
&;.'&

I

'
pol

+ [(n+t—vt. „,ie'(0) IK;„'&['—I(7r
—t+vl;. [a'(0) I~;-'&~' —

I

&~+t-vt .[a'(o) [&'.'&I']

= —(2~)' P 5'(k m w, t v)—d'md—'~ad—'td—'vP[(~ ~'t vs ...[H'(0) [K—.'& ['
pol

+ l(~+m't —
vg..&[a'(0) [K ")

I

' —[(7r ~'t+v~ .[a'(o) [It;.'& I' —[(~+~'t v~ -Ia'(o) I&.'& I'j

—(2')' Q 84(k n t v Q)d 7rd td vd QL [—(7r V—t+—v&,„—t ia'(0)
I
&

pol

+ I
&~+et-.—,.„,I

a'(o)[x;.o&
I

' —
I
&~-vt+v„.

I
a&(0)

I
x 0&

I

—
I
&~+~t-v-„„Ia&(0)[z;.o&12j. (5.3)



ELECTROMAt NETI C CON'I RI BUTIONS IN SERI ILEI' I ONI C DECAY&

FIG. 1. Feynman diagrams for radiative
corrections to K&30 decay.

(a) (b)

The expression on the left-hand side here is the expres-
sion which appears in the second term of Eq. (5.1).

Consider now each side of (5.3) expanded as power
series in o.. To order n', the left-hand side vanishes, and
so indeed does the right-hand side. For the ~ivy term
on the right-hand side this is obvious; for the xxlv term
it follows by using the TCP relations

(~ orot+v (Ht(0))K. o)

=(7r+7r I' vr t, [H (0) [K ) (5 4a)
and

+orot v,
~

H—(i0) ~E. o)

= (or
—7r't'+vr .„t

~

II'(0)
~

K;„')*, (5.4b)

and the fact that in the absence of electromagnetic
interactions TCP- invariance ensures the equality of the
rates of E' ~ ~ ~'l+v~ and K' —+ ~+m'l v~, and of
E' —+ m+~'l v~ and K'~m 7f'3+v&, respectively.

Turning next to the terms of order n on each side of
(5.3), we see that the orytv term on the right-hand side
does not have any term in this order since the matrix
elements themselves are of order n, while the difference
between in and out states is also of order n, thus the
7rtv& term in (5.3) only contributes to order n' From.
this we deduce that the order o, term of the left-hand
side of (5.3) is equal to the order n term of the 7r7rlv

part of the right-hand side; in other words, the term of
order n in the second term of (5.1) is of magnitude
r(E„).

With regard to terms 3 and 4 of Eq. (5.1), arguments
similar to that just given show that they are also of
order ni'(K&oo). For term 3 one starts from an identity
for the quantity

(K;„'t (2 )' d'x H '(x)H, '(0)
i
E;.'), '

where Hi'(x) and H i'(x) are, respectively, the AS= AQ
and AS= —AQ parts of H'(x), while for term 4 the
starting point is an identity for the quantity

(EC;„'~ (2ir)' d'x IIi'(x)II i'(0) ~K; ').

Hence, since the first term in (5.1) is of ma, gnitude
Reoi'(K, oo), we have the result stated previously that
the electromagnetic correction to 8L, is of order
nl'(E«') I'/(E&o ). Actually, to be more accurate, it is of
order nXI"(Ki4o)/I'(Kroo), where X is the parameter of
CJ violation in either the weak or the electromagnetic
interaction, since all terms on either side of (5.3)
vanish identically if CP is conserved by both these
interactions. Hence, since I'(Ki4o)/I'(K~oo) is expected
to be of order 10 ' Ll'(Kr4) has not been measured

yet, but we may take it to be of the same order as
I'(%4+)j, it follows that the electromagnetic correc-
tions to b~ are no greater than 10 'o and hence are
completely negligible.

We conclude with some comments on this result. In
the fIrst place, it is now possible to understand why we
obtained the result zero for the electromagnetic cor-
rections to bL, in the calculation at the end of Sec. IV.
The reason is that the correction to the dift'erence
I'i, (or 1+vi) —I'r, (or+I vi) being calculated there was of
order nial"(Kioo), and, as we have seen, this correction
vanishes. If the expression for the radiative corrections
on which this calculation was based had included the
effects of higher intermediate states, such as that shown

in Fig. 1(b), as well as the Born term )Fig. 1(a)$, we

would not, in general, have obtained a zero result, since
then the correction to bL, could have had a term pro-
portional to nl'(Kt4o). Technically, this would cor-

respond to having the radiative correction term in

Eq. (4.13) depend on s or t as well as u.
The second comment we wish to make is that the

result about the electromagnetic corrections to 8L,

obtained above depends crucially on summing equally
over all variables in the Gnal mlv state; that is, it is a
result which holds for the rates and not for the differen-

tial rates. This means that in performing an experi-
ment to measure 5L, it is necessary to be sure that there
is no bias in the events measured. If there is, then the
radiative corrections could be signifi. cant. The existence
of a bias in the events measured would mean that in

the numerator of bL, one was not measuring the integral

of the right-hand side of (4.6) over the Dalitz plot, but
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rather the integral of this quantity multiplied by some
weighting function. In such a case the result of this
section would not hold.

Thus, in summary of what we have seen, we may say
that while the electromagnetic effects may give rise to
measurable differences between the decay distributions
for EL,' —+m 3+v~ and El.' —+++I v~, their contribution
to the diRerence between the rates is not greater than
nF(E'~s7rlv) Thi. s latter result removes a possible
nagging doubt about the interpretation of EL,' charge
asymmetry experiments.

Ãofe added i' proof. After submitting this work for
publication I became aware of a very similar contribu-
tion on this subject by L. B. Okun, Soviet Phys. —
JETP Letters 6, 272 (1967).
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The finite-energy sum rule, and a class of sum rules which can be used to probe the existence of fixed poles,
are obtained for amplitudes whose lef t- and right-hand cuts are not related by crossing symmetry. The finite-
energy sum rule is evaluated for each of four independent ark amplitudes with I fixed at (1236 MeV)', both
sides of the resultant four sum rules being obtained from the properties of the low-energy mE resonances.
Results are presented for three choices of end point: (1336 MeV)', (1808 MeV)', and (2313 MeV)s. For the
intermediate end point, all four sum rules work. For the highest one, however, they all fail. These results,
while pointing to a failure of the resonance dominance approximation above 1800 MeV, give us a new con-
firmation of Regge high-energy behavior on the basis of low-energy data alone. In particular, they verify in
some detail the relation predicted by Reggeism between the high-energy, fixed- n behavior of the amplitudes
and the low-energy u-channel resonances. They also show that for u= (1236 MeV)', all the xE amplitudes
have Regge behavior on the average (duality) above 1800 MeV. The finite-energy sum rules are shown to be
violated in a fictitious universe where the lowest particle on each of the leading ~S Regge trajectories is
accompanied by a degenerate partner of opposite parity.

I. INTRODUCTION

LTHOU| H they follow very simply from assump-
tions of analyticity and Regge behavior, finite-

energy sum rules (FESR) ' provide a powerful tool for
gaining new information about Regge trajectories and
their residues, for obtaining theoretical insight into the
nature of physical scattering amplitudes, and for con-
structing bootstrap models of remarkable computational
simplicity. ' As a test of the assumptions on which the
FESR and their practical applications are based, we
have investigated whether these sum rules are satisfied
in xE scattering with the cross momentum transfer I

* Supported in part by the Atomic Energy Commission, under
Contract No. AT(30-1)-36688.

' R, Dolen, D. Horn, and C. Schmid, Phys. Rev. Letters 19, 402
(1967); Phys. Rev. 166, 1768 (1968); A. Logunov, L. Soloviev,
and A. Tavkhelidze, Phys. Letters 24$, 181 (1967);L. Balazs and
J. Cornwall, Phys. Rev. 160, 1313 (1967); K. Igi and S. Matsuda,
Phys. Rev. Letters 18, 625 (1967).

fixed at 3f*'= (1236 MeV)', —the mass squared of the
3-3 resonance. Our results provide a new verification of
Regge high-energy behavior from low-energy data.
They also support the idea that the xS scattering
amplitudes, as functions of energy, have Regge behavior
on the average even in the intermediate energy region
(around 2 BeV) where significant resonance structure is
still present. However, the popular resonance dominance
approximation appears to fail above 1800 MeV in the
particular process we studied, which suggests that this
approximation should be used with caution.

In Sec. II we derive the sum rules we have used.
These are independent of any 6xed poles that may exist
at wrong-signature nonsense points in the J plane. We

' For examples of the various applications of FESR, see Ref. 1
and also F. Gilman, H. Harari, and Y. Zarmi, Phys. Rev. Letters
21, 323 (1968); S. Mandelstam, Phys. Rev. 166, 1539 (1968);
D. Gross, Phys. Rev. Letters 19, 1303 (1967);C. Schmid, ibid. 20,
628 (1968); V. Barger and R, Phillips, ibid. 21, 865 (1968).


