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In the high-energy limit of ee elastic scattering, as given by all possible multiphoton exchanges, we have
considered a large class of radiative corrections. This class of radiative corrections is one in which one
ignores processes involving pair creations and anihilations. The resultant amplitude is found to be propor-
tional to the square of the c,m. energy, multiplied by the product of the e.m. form factors and the eikonal
form.

N an earlier paper in I'hysica/ Scrim Letters, ' we

„.studied, through the inhnite-momentum technique, '
high-energy ee, ey, and yy elastic scattering amplitudes

by summing all possible multiphoton exchange dia-
grams. These amplitudes are found to be proportional
to s, the square of the c.m. -system energy, multiplied

by simple combinations of the Glauber forms of high-

energy scattering. ' This is consistent with some earlier
finite-order calculations, 4 as well as with studies of the
same processes with different techniques. ' In the above
calculations, however, no radiative corrections to the
infinite-energy electron lines were included.

Recently, Yao' has made an important advance by
showing that the second-order radiative correction to
the e e+ scattering does rot change the eikonal form
of the spin-nonAip part of the amplitude. The only
modi6cation to the amplitude is to give the electron a
structure Ft(k), where Ft(k) is just the electric form
factor up to order e' and k= (kt, ks) is the momentum
transfer. The resultant spin-nonQip amplitude is simply

M(e e+) =-', isFt(k) Ft'(k) E~'(k),

g~'(k) = fd'b exp( —ib.k) I expL+i7/(1) j—1I, (2)

x(b) = —"fd'V(2~) '(q'+)t') 'exp(iq b) (3)
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X is a fictitious photon mass introduced to avoid possi-
ble infrared divergence. The amazing simplicity of ex-
pression (1) suggests that it might be valid in a more
general class of radiative corrections.

The purpose of the present note is to show that a
generalized formula holds for an entire class of radi-
ative corrections:

M(e e+) = sisLFt(k) + (i/2m) Fs(k) (0 xk) s$...
)()Ft(k) + (i/2ntl Fs(kl (o xk) s)s sE'(k), (4)

where P1,2 are electric and magnetic form factors, and

a, b are helicities of e, e+. This class of radiative
corrections is one in which one ignores processes in-
volving pair creations and annihilations $e.g., radiative
corrections corresponding to Figs. 1(a)-1(c) are allowed,
and 1(d) is ignoredj. ' Since the above class of radiative
corrections is quite large, our result strongly suggests
that Eq. (4) may also be relevant to strong inter-
actions.

The derivation of Eq. (4) follows closely the tech-
nique developed in Ref. 1, and the identical kinematics
are used throughout. In the infinite-s limit, each dia-
gram which contributes to the leading terms consists
of two parts joined by photon lines. One part includes
internal lines with infinite P+

——Po+P', which is propor-
tional to Qs in the c.m. system, describing particles
moving in the positive 3-direction with infinite momenta
(hereafter, we shall refer to it as the p+ part of the
diagram). The other part includes lines with infinite

p =p' —p', also proportional to Qs, describing particles
moving in the negative 3-direction with infinite mo-
menta. The momenta of the photons joining these two
parts are finite. For each part, one writes down a factor
which is the product of coupling constants, propagators,
etc. These factors transform in a well-defined way under
Lorentz transformation.

To analyze the part with infinite p+, we choose a
standard reference frame moving with the particle so
that the momentum variable p' in this frame becomes

7 The class of allowed radiative corrections is somewhat larger
than the class mentioned above. It actually includes the entire
class of radiative corrections in which only one electron (or
positron) is interacting with the exchange photons.
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FIG. j.. (a) Typical multiphoton exchange diagram for ee
scattering with radiative corrections; (b), (c), and (d) examples
of the p+ part of a diagram. Note that these are Weinberg's
infinite-momentum diagrams. See Ref. 2.

finite. The p' introduced here is related to the corre-
sponding p in the c.m. frame through

p.'=p.lv', p"'=p", p-'=(v') p

In particular, q+' is of order 1/s and can be ignored.
Now the s dependence becomes explicit and can be
factored out. Notice that, upon boosting the standard
frame to infinite momentum, the plus component (i.e.,
the 0+3 component) of a vector or a tensor picks up a
large factor Qs while the remaining components are
small. With the s dependence explicitly exhibited, it is
simple to ignore all but the leading term. Such a term
contains only the plus components. The algebra is thus
greatly simplified. Some of the typical p+ parts are
shown in Figs. 1(b)-1(d).

Our first conclusion after analyzing these p+ parts is
that processes with exchanged photons attaching to
more than one line segment of a forward moving elec-
tron line will not contribute. For example, Fig. 1(b)
does not contribute because the photons do not attach
to the same electron line, while Fig. 1(c) does.

Verification of the above result is quite straight-
forward in a superrenormalizable theory such as the
Xp' theory. Let us use Figs. 1(b) and 1(c) as examples
to illustrate the essential arguments in the proof for
Xqs theory. In Fig. 1(b), the propagators which contain

q
' as a factor are

(q
' q'+ ,'k'+—i )'$e-(1 Wp') (rl

'—+-,'k'+m' W')—

According to Weinb erg's infinite-momentum rules, '
1—8'+' must always be positive. ' This implies that
both poles of q

' are on the same side of the real axis,
and consequently the amplitude vanishes after q

' inte-
gration. ' The result given here can be readily general-
ized to 1V-photon processes. In Fig. 1(c), however, the
q

' integral does not vanish because of the additional
contribution from the semicircle as we enclose the con-
tour of integration.

For a renormalizable theory, care has to be taken
to ensure the convergence of the intermediate steps.
There are two possible difhculties in verifying our re-
sult in quantum electrodynamics. First, the procedure
of renormalization may invalidate our conclusion. Sec-
ond, the possible existence of q

' factors in the numer-
ators may affect the convergence of the q

' integrals.
However, it is easy to see that the second difficulty
never arises because only the plus components enter
into our expression. " As an example of carrying out
the renormalization, let us consider all possible two-
photon processes as given in Fig. 2. In these diagrams,
a mass counter term bm is included to cancel the di-
vergent part in the proper self-energy diagram. As it
is well known, the divergent part in the vertex and in
the wave-function renormalization should cancel each
other, and the remaining divergence can be disposed
of by a corresponding wave-function renormalization
on the external particles. To be more specilc, we
introduce a regulator with mass M to the photon,
and modify the photon propagator. from r'(p' —X'+is)
to i(p' —X'+is) '—r'(p' —M'+is) ' in all the loop inte-
grals. "Now the regulator mass M serves as a cutoff in
these processes. With the presence of the regulator (s),
all integrals converge. The proper self-energy and other
would-be divergent parts can be canceled by a proper
choice of bm. The regularized amplitude is well defined
and has a well-defined limit at M= ~. We now look
into this regglarised amplitude and carry out the q

'

integrals. It is easy to see that Figs. 2(d), 2(e), and
2(f) do not contribute, for the same reasons as in )ip'
theory. Figures 2(a), 2(b), and 2(c), on the other
hand, can be viewed as an insertion of a two-photon
vertex into various parts of the electron line. For X-

8 In general, Weinberg's rules cannot be applied to quantum
electrodynamics because of the extra p dependence in the numera-
tor. However, for the "good components" (here the plus com-
ponents), Weinberg's rules usually apply. This can be readily
verified after 8'" integration. See discussions in Chang and Ma' s
paper in Ref. 2; S. Drell, D. Levy, and T. M. Van, Phys. Rev.
Letters 22, 744 (1969); Phys. Rev. 187, 2159 (1969). However,
for the regularized amplitudes introduced in this paper, Wein-
berg's rules do apply.

'The author wishes to thank W. Pardee for his assistance in
clarifying this point.

"This is due to the presence of the y+ factors at the vertices.
These y+ factors annihilate the possible q

' terms through y+2=0
such that one can always enclose the q

' integration contours.
without picking up extra contributions from

~ q
'

~

= ~.
"W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949).

One has to regularize the photon propagator in a/1 the loop
integrals, whether the original integrals diverge or not, to preserve
the gauge invariance of the intermediate steps.
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FIG. 2. Diagrams describing the lowest-order r adiative correction on an electron line with two photons attached.

photon processes, the only modification is to replace a
2-photon vertex in Figs. 2(a) —2(c) by an X-photon
vertex. A y+ factor always appears at this X-photon
vertex. ' +le take the limit M-+~ after performing the

q
' integrals. The E-photon vertex is renormalized

exactly as though it were a single photon vertex. There-
fore, the resultant X-photon amplitude is identical, to
within a simple kinematical factor, to the correspond-
ing reeormulised one-photon amplitude.

The advantage of the above result is enormous. We
can now take the S-photon vertex as a single unit and
insert it into various places on the electron line in the

p+ part of the diagram. The summing of X-photon
processes with photon vertices permuted in all possible
ways is now well known, '5 and leads precisely to the
eikonal form E'(k) mentioned earlier. The summing
of all possible insertions in the electron lines, with
proper counter terms included, is precisely the total
electromagnetic vertex due to the particular class of
radiative corrections described here. Combining these
results and after including a kinematic factor —',i'',
we obtain Eq. (4).

The important question of the legitimacy of perform-
ing the q

' loop integral before taking the limit 3E—+~
is not settled. However, the fact that our final result is
finite and does not require additional subtractions indi-

cates the correctness of our procedure. In addition,
this result agrees with the rigorous work of Yao in the
spin-non6ip case of O(e') .

Physically, our result is very reasonable. Im the case
of radiatiee corrections considered in this paper, it corre-
sponds to the picture of a bare electron interacting with
a cloud of photons. There is only one interacting charged
constituent in each electron. Hence, there is only one
eikonal form in the final amplitude. The form factors
simply reQect the probability distribution of the inter-
acting electron in the cloud. For processes involving
Fig. 1(d), where virtual pairs are present, the charge
structure becomes much richer. There are three charged
constituents in the p+ part of this diagram. Simple
calculation indicates that we need at least three eikonal
forms to describe the corresponding scattering ampli-
tude. Similar situations have arisen in the Compton
and yy scattering amplitudes as given in Ref. 1.

The author wishes to thank Professor Y. P. Yao for
sending him a copy of his work before publication. He
is indebted to Dr. Paul Fishbane for many stimulating
discussions and for his critical reading of the manu-
script.

Pote added in rnanlscript After the co.rnpletion of
this paper, we were informed by Dr. Y. P. Yao that
he has obtained similar results by a different method.


