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The Reggeization scheme of Carlitz and Kislinger is extended to daughter trajectories.

ECENTI.Y, Carlitz and Kislinger' showed that
parity doubling of fermion trajectories can be
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avoided if there are cuts in the complex angular mo-

mentum plane. Their results were given for the leading
trajectory. In this note we extend their solution to
general daughter trajectories.

In CK, the solution without parity doubling was

presented in the context of the Van Hove model. The
solution, however, is independent of any model. The
main justification for investigating Regge parametriza-
tions without parity doubling is not because of a model
but because —experimentally —the baryons seem to lie
on linear nondoubled trajectories A Regge expansion
without paritv doubling which satisfies the analyticity
and unitarity constraints may be successful in explain-

ing experimental data.
Our results are based on the most general form for

Regge-pole expansions compatible with analyticity and
factorization. A general helicity amplitude can be
written as'

2 xg4, xga(up 0) =
2~i

v~+(L, W) v~ (L W)
X Q + %r—kg, ka—) 4 (0) ~

analyticity at 8"=0=0 and pseudothresholds is given
in an earlier paper" and will not be needed here. The
superscript (&) labels the parity of the trajectory.

The factor gt, +(L, W) provides the poles and cuts
in the L plane which mill be picked up by the contour
integral. The Regge expansion with parity doubling'4
requires

where

ga+(L, W) =L ny+(L, W—), (2)

k+nI, +(L, W) =fr,L(L, u) &W(L+-,')f2,y(L, u) (3)

f, ,t,(L, u)
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The functions a, ,z(L+k, u) are analytic at u=0 and
must be given by dynamics.

The model of Carlitz and Kislinger is obtained by
using a different form for gI,+(L, W):

g+(L W) =(L+k—n)"' fr t, (L u)—
~W(L+2)f4 ~(L, u) (4)

In addition to the moving poles at

I.=nI,~ = —k+n.
The function ~ &, (8) is the appropriate analytic con-

tinuation of the rotation matrix dq, q
s (0), and yq+(L, W)

is the Regge residue Lincluding the factor
+I f..(-", )~W(-"+l)f,.(-", )j', (5)

the contour integral also picks up a fixed cut whose
end point is n, —k. The proof that (1) and (4) do not
violate the analyticity constraints is essentially the
same as the proof given previously. '

The parametrization we have presented in (4) gives
a single parent pole and single daughter poles. How-

ever, Carlitz and Kislinger have pointed out that tzvo

parent poles (which intersect at u=0) are needed to

I 1~ exp(in(L+-,') )I/sinrr(L+-', ) $.

The most general form of the residue which guarantees

' R. Carlitz and M. Kislinger, Phys. Rev. Letters 24, 186
(1970}.We refer to this paper as CK.

The D15(1680) and F15(1688) nucleon resonances are often
cited as examples of parity doublets. However, their branching
ratios indicate that these two resonances have quite different
F/D SU(3) coefficients. In addition, quark models do not predict
doubling of parent trajectories.

' S. A. Klein, Phys. Rev. D 1, 609 (1970).
4L. Durand, III, P. M. Fishbane, S. A. Klein, and L. M.

Simmons, Jr., Phys. Rev. Letters 23, 201 (1969).
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fit the backwards peak in sr+p scattering. ' The second

trajectory, which can have either parity, should be
fairly Qat in order to avoid low-lying resonances.

Multiple poles can be accommodated in our general
formalism by letting the index k in (1) label the multiple
parent trajectories as well as the daughters. If parent
trajectories of the same parity are degenerate at I=0,
then their residues are able to be singular at this point.

We have chosen the cut to have an end point n, (tt),
which is fixed so that the term fL+k —cs, (tt) jit' does
not contribute unwanted singularities in N. However,

' Reference 13 of CK mentions the need for a double pole; it
also shows how a single pole can arise.

a cut which arises from dynamics can have a moving
end point. The most general expression for the end
point of a moving cut must be of the same form as that
given in (3) for the location of a pole.

If the cut has a dynamic origin we wouM expect it
to be due to the exchange of the pole trajectory plus the
Porneranchuk trajectory. The location of the parent
branch point at I=0 would then be

no =cso(0) =cso+cst'

where nI is the intercept of the Pomeranchuk trajec-
tory. Since n& is very close to unity, we have

0&~0—0.,&&1
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Brans-Dicke Theory under Transformation of Units and Its
Relation to the Jordan Theories*
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The relation between the original form of the Brans-Dicke (BD) theory and a particular form of the
Jordan theory has been pointed out by Dicke. Here we establish the relation between the various unit-
transformed BD theories and other Jordan theories. Although this formal identification is possible, the
two theories are not equivalent, because of the different interpretations given to the matter Lagrangian
and conservation laws in the various forms of the two theories.

1HE Brans-Dicke (BD) and the Jordan theories' ' of..gravitation both involve a scalar as well as a tensor
field to describe the gravitational interaction. In the BD
theory, the scalar field is introduced in a manner

strongly motivated by the ideas of Mach. On the other
hand, a scalar field appears quite naturally in the formal
development of Jordan's unified field theory.

In the BD theory the introduction of the scalar is
ad hoc, while its interpretation is evident from the
manner in which it is introduced. On the other hand, the
presence of a scalar field is manifest in the five-dimen-

sional formulation of Jordan's theory, but its identifi-

cation with 6 ' is ad hoc.
Furthermore, within the framework of unifying gravi-

tation and electromagnetism, the introduction of a
phenomenological matter Lagrangian into the Jordan
theory represents a new formal element, while the BD
theory naturally includes matter in its initial formula-
tion.

It has already been observed' that the BD theory

* Research supported by the National Science Foundation under
Grant No. GP-8174.

f Present address: Lunar Science Institute, Houston, Tex.
77058.' C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).

C. Brans, Phys. Rev. 125, 2194 (1962).
',P. Jordan, Schmerkraft and Delta/l (Braunschweig, Berlin,

1955).

is equivalent to the Jordan theory with the parameters
st= —1, b=0, and the identification i =co, tc=p ' G.
The additional fact that the Jordan theory is formally
invariant under a Pauli conformal transformation4 lends
weight to the idea that the unit-transformed BD
theories' ' may also be identified with other choices of
the Jordan parameters rt and b. In this paper we shall
establish the connection between the various, BD and
Jordan formalisms.

The variational principle for the original BD theory
is'

0=8f d'x (—g) 't')goXR+ (16sr/c') I,„cogX
—'g )i 'j—

where L nn is the matter Lagrangian and g=goX. If
we perform a unit transformation (UT) by scaling
lengths, times, and reciprocal masses by the space-time
dependent factor X&' &" (n arbitrary), we have

Thus, upon transforming the appropriate quantities

4 Reference 3, Chap. IV, $28.' R. H. Dicke, Phys. Rev. 125, 2163 (1962).' R. E. Morganstern (unpublished).


