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We propose a model of the weak interactions for leptons, including scalar intermediate bosons C* with
a negative metric in addition to the usual weak vector bosons B*. With this modification, problems of
divergence and high-energy behavior are greatly reduced. If the logarithmic weak and electromagnetic
self-mass divergences are assumed to cancel each other, the coupling constant g and the mass mp (=mc¢)
of the weak boson are predicted to be g?=3¢? and mp=137.Tm, (=~2m,/a) (where m, is the proton mass),
respectively. The finite self-masses are 8mi=~(3¢%/167%) my In(mp/mi)? (=~0.044m, for an electron). It is
shown that the renormalization of both the electromagnetic and weak interactions can be consistently
accomplished in spite of the existence of the parity-violating interaction. The contributions of the weak
interaction to the anomalous magnetic moments of leptons are calculated to be %(g;—2) = —Gm,;2/12V2x?
(==—T7.7X107% for u). Various weak reactions of leptons are discussed. For example, ¢ (v,+e—u-+ve)
approaches a constant value G*mg?/m~2.8 1073 cm? at high energies.

I. INTRODUCTION

T has been known for a long time that the usual
weak interaction, in which four fermion fields are
locally coupled, has much worse properties from the
field-theoretical point of view than the electromagnetic
interaction. It behaves worse at high energies so that
it may not be renormalizable. On the other hand, the
divergence problem of lepton self-masses has been too
difficult to be solved. In attempting to solve this
problem, we think it useful to remember that leptons
have two different types of interactions, electromag-
netic and weak, and have no other interaction. We
must, above all; do our best to find a possible solution
of the problem, making use of only the above-men-
tioned fact.

In a previous Letter,! we proposed a model of the
finite self-masses of leptons. The point of the model is
as follows: We first consider a model of the weak
interaction with scalar intermediate bosons C* with a
negative metric in addition to the usual weak vector
bosons B*. With this modification, the effective Fermi
interaction becomes better behaved at high energies,
since the interaction Lagrangian has the form

Legr=g [ IF(x) Mu(a—a") Ju(a'),  (L1)
where
My(v—a') =[1/(2m)*][d*k exp[ik(x—2') ]
X [one/ (R24mp?) . (1.2)

Thus, the weak self-masses of the leptons come to have
only logarithmic divergences. Second, we assume that
these divergences should cancel those of electromag-
netic self-masses of leptons. The purpose of this paper
is to give details and other effects of the model.

* Present address: Laboratory of Nuclear Studies, Cornell
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1 H. Terazawa, Phys. Rev. Letters 22, 254 (1969); 22, 442(E)
(1969).
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Three different formalisms to give the same effective
interaction (1.1) are presented in the Sec. II.'In Sec.
III, we obtain a prediction of the coupling constant g
and the mass of the weak boson mp from the second
assumption. The method of renormalization in the
model is shown in Sec. IV. In Secs. V and VI, we con-
sider the effects on anomalous magnetic moments and
various weak reactions of leptons, respectively. We use
Sec. VII for discussion of the results, higher-order cor-
rections, and generalizations of the model.

II. SCALAR BOSONS WITH NEGATIVE METRIC

We present three different formalisms to give the
same effective weak interaction (1.1) but somewhat
different electromagnetic interactions. All of them have
an indefinite metric, n (Hermitian), of the Hilbert space.
Hereafter, an asterisk denotes a Hermitian conjugate,
while a dagger denotes an adjoint.

1. C* with a negative metric. We introduce scalar
intermediate bosons C* with a negative metric in
addition to the usual weak vector bosons B%. The free
Lagrangian density of these boson fields is given by

Lo=—3 (G“B,,T—- avBuT) (0,B,—9,B,) — mBzB#TBM

+9,C10,C+mp?CiC, (2.1)
where
BMT= (Bk*y —B4*) y CT:"I—IC*n’
[n, B.]=0, {5, C}=0. (2.2)

For simplicity, we have taken the mass of C, mc, to be
equal to that of B, msp, although a variation of the C
mass keeps most of the following results unchanged
(Sec. VII). A fundamental Lagrangian density for
the weak interaction is :

L= g [Ba+ (i/mp) HhCT+ adjoint,  (2.3)

where Jy is the weak current [e.g., Wevs(1+vs) ¥+
Wya(14-v5) ¢, for leptons] and g is a coupling con-
stant. It is easy to see that the Lagrangian (2.3) implies
an effective Fermi coupling of the form (1.1).
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2. Haller-Landovitz-Goldberg  (HLG)  formalism.
Haller, Landovitz, and Goldberg? have proposed a
model of the weak interaction in which the boson field
is described as an admixture of spin-1 and spin-0 com-
ponents. The spin-0 component has a negative metric.
The free Lagrangian density in their model is

Lo=—0,B,'9,B,—mz*B, B, (2.4)
where
B,'=(B*, —n'Bi*n),  [n, Bk]=0,  {n, Bi}=0,
(2.5)
while the weak interaction is expressed by
Lyi=g/\TB\+ adjoint. (2.6)

3. £=1 formalism. Lee and Yang® have proposed the
£limiting formalism in which they have introduced the
artifice of a negative metric which makes the param-
eter £ take on the role of a regulator. If, for simplicity,
we consider the case of £=1 corresponding to the case of
mp=mc in Sec. IT 1, we obtain the £= 1 formalism which
leads to the same effective Fermi interaction (1.1) as
the two other formalisms 1 and 2. The free and inter-
action Lagrangian densities in this model are, respec-
tively,

Lo= —%(G“B,,T~6,,B‘,T) (aqu—avBu) - (G“B#) T(OVB,,)

—mp?B, B, (2.7)
where
By'=(B*, —n™'Bi*n), [, Be]=0, {0, Bs}=0,
(2.8)
and
Lyr=g/hTBy+ adjoint. (2.9)

Although at present it seems impossible to overcome
the field-theoretical difficulties of the negative metric,
which appears in every state containing a scalar boson
or the scalar part of a vector boson, we must at least
show that the breakdown of probability conservation
can never be seen in any process. Recently Lee and
Wick* have shown that unstable negative-metric states
are consistent with unitarity of the S matrix provided
that the Hamiltonian H is self-adjoint, i.e., Hf=H.
We will follow their interpretation of the negative-
metric state.

III. FINITE SELF-MASSES

Our first assumption is that the weak interaction of
leptons should be described by one of the three for-
malisms presented in Sec. II. From this assumption, the

2 K. Haller, L. F. Landovitz, and I. Goldberg, Nuovo Cimento
48, 303 (1967).

$T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962).

4See Ref. 2 and T. D. Lee and G. C. Wick, Nucl. Phys. B9,
209 (1969). o
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weak self-masses of leptons have only logarithmic
divergences and are calculated to the lowest order to be
dmvE= — (g2/8m2) my In(A2/mp?) 4« - - forl=eorpu
(3.1)

and
dm, =0

for the neutrinos, (3.2)

where A is a cutoff energy. Moreover, we assume® that
these weak divergences should cancel those of the
electromagnetic self-masses of the leptons:
ompm= (3¢2/16m2) my In(A2/m2)+--+, (3.3)
so that
5m1=6m1"‘“+5m1"“k (34)

is finite. Then, the coupling constant g can be predicted
to be

g=3e. (3.5)
From this relation and the familiar relation
g/mg=G/V2 (3.6)

between g and the Fermi coupling constant G (Gm,’=
1.026X107%), the mass of the weak boson can also be
determined:

mp= (3V2e2/2G)2~137.Tm, (~my,/c).

(3.7

This mass is so large that a direct test of this model
p+p—Bt4 B~ etc., willnot be possible until a colliding-
beam machine with beam energies greater than 100 GeV
becomes available. From Eqs. (3.1), (3.3)-(3.5), and
(3.7), the finite self-masses of the electron and muon
become

dmy= (3€2/16m%) my In (mp?/m2) (=~0.044m, for e) ,

(3.8)

which shows that the mass of the weak boson plays the
role of an effective cutoff energy in quantum electro-
dynamics.

We note that this model suggests the following
possibility: The weak interaction is not weak but is
strong enough to compete with the electromagnetic
interaction; that is, the weak interaction behaves like a
weak interaction only because the masses of the inter-
mediate bosons are much heavier than those of known
particles. We also note that the masses of ‘“weak
particles” (leptons and intermediate bosons) and
hadrons keep their balance, e.g., mpm,~mm,.

5 A similar idea was proposed about thirty years ago. See
E. C. G. Stueckelberg, Nature 144, 118 (1939); S. Sakata and
O. Hara, Progr. Theoret. Phys. {(Kyoto) 2, 30 (1947).
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Iv. RENORMALIZATION

Since the divergences associated with the weak inter-
action of leptons proposed in Sec. IT are only logarith-
mic, the theory is renormalizable. In the usual way we
introduce the electromagnetic interactions of leptons
and weak bosons according to the minimality principle.
Charge conservation and gauge invariance hold, as
does the Ward identity. All that we need to do is to
show that the renormalization of both the electro-
magnetic and weak interactions of leptons can be con-
sistently accomplished in spite of the existence of the
parity-violating interaction.

First, we consider the renormalization of the masses,
the wave functions, and the weak coupling constant g
for leptons due to the weak interaction. We follow
Toffe’s method® of renormalization. Let the unre-
normalized mass and Green’s function of the lepton be
mo and Go(#vp) , respectively. Then, the equation for the
Green’s function has the form

Ciyp+-mo-+ M (i) 1Golivp) =1, (4.1)

where yp=+v,p* and where M (iyp) is the mass operator
for which the general expression should have, because
of 7" invariance, the form

M (ivp) =ivpMi(p?) +ivpysMa(p?) +Ms(p?).  (4.2)

It is seen from Eq. (4.1) that for p>——m? (where m is
the physical mass), the equation for the Green’s
function becomes

Zl_l[iV?(l“")\VS) +m/]G0(’i7P) ‘ivpx—m: 1 (4.3)
where
Zit=14+M1(—m?), (4.4)
m' =7 moy+Ms(—m?) ], (4.5)
and
A=ZMy(—m?). (4.6)

We now make a combination of the transformation and
the numerical renormalization of the wave function y:

Yo=2Z1"2S¢z, (4.7)
where
S=A+Bys,  A=3(14N)4 (1=N)712],  (4.8)
and
B=3[ (14N 72— (1=N)""]. (4.9)

Then, Eq. (4.1) can be transformed into the equation
for the renormalized Green’s function Gr defined by

Go=Z1SGrS, (4.10)
where

S=v.S5%y,. (4.11)

¢ B. L. Toffe, Zh. Eksperim. i Teor. Fiz. 38, 1263 (1960) [Soviet
Phys. JETP 11, 911 (1960) ].
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The equation for GR'is

{ivpt+mtivp (1—Nys) ZILM:(p*) — My (—m?) I/ (1=N?)
Fovp (vs—N) ZiILMo(p*) — Ma(—m?) I/ (1)

+Z[ Ms(p*) —Ms(—m?) I/ (1=N) "} Gr(ivp) =1,

(4.12)
while the physical mass m is given by

m=m'/(1—N\)2,

For p*——m? the renormalized Green’s function is
Gr—(7yp+m)~, ie., it has the form of the Green’s
function of a free particle with mass m. Next, for the
purpose of the vertex renormalization, we consider the
following expression for the weak-interaction energy,
neglecting the other finite terms, e.g., ou,q,By:

igols (") vula(p?, p, k) +0(p% p'% k) vs Wa(p?) Bu(k?).
(4.14)

(4.13)

Then, in accordance with the definition of the physical
coupling constant g, we should have

igo»(0) vuLa(—ms, 0, —mz?)
+b(—m127 0} _mBQ) 75]‘#1( _ml2)15;4< *mBQ,)
=1g0vr(0) Yu(at-Bvs) Yir(—mi?) Bru(—mz?)

and

(4.15)

=2,

where ¢,r, Yir, and Bg, are the renormalized wave
functions of the neutrino, the lepton, and the weak
boson, which are related to the unrenormalized ones in
Eq. (4.7) and in the following relation:

B,=Z""Bp,.

(4.16)

(4.17)

It is worth noticing that there are two different types
of solutions for which the ratio of the renormalized
parity-conserving interaction to the renormalized
parity-nonconserving interaction is equal to the ratio of
the corresponding unrenormalized interactions, i.e.,

a(—mp 0, —mp?) :0(—m?, 0, —mp?) =a:f.
The solutions are
a(—mg, 0, —mp?) =+b(—mp, 0, —mz®) (4.18)
or
A,Bi+B,4,=0. (4.19)

In our case of the two-component theory, it can easily
be proved® that

a=b (4.20)

and

M= M,, (4.21)
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so that Eq. (4.18) holds and
A\=1—2Z. (4.22)

From Egs. (4.7)-(4.9), (4.16), and (4.20)-(4.22),
we rewrite Eq. (4.15) as follows:

a=p=1 (4.23)
and
g= gOZwk—IZVIﬂle/zZBlm(2“‘Zy)—1/2(Z—Zl) —1/2’
(4.24)

where the renormalization constant of the weak vertex
Zwi 1s defined by

Zyl=a=0. (4.25)

The renormalization that we have carried out will be
valid only in the case in which the quantity A is less
than unity in absolute value, ie., |N] <1. We can
easily show, in the same manner as that of Ioffe,® that
this is actually the case.

Second, we consider the renormalization of the
electromagnetic coupling constant e of leptons due to
the weak interaction. We repeat the previous procedure.
From the expression for the electromagnetic interaction
energy (neglecting the other finite terms, e.g., 0uq,4,)

deali(p™) vule (92 0% B2 +d (1% p'% B2 vs Wu(9?) Au(R?),
(4.26)

we should have, as a condition for consistently re-
normalizing our model,

degi(—me?) vuLc(—mi, —mi, 0)
+d(—me, —m?, 0)vs W1(—mi?) A,(0)
=iefir(—m?)vubir(—mi?) Ary(0),

where Ag, is the renormalized wave function of the
~photon defined by

(4.27)

Ay=Z4" Ap,. (4.28)

Using Egs. (4.7)-(4.9) and (4.28), we can transform
the condition (4.27) into the relations
d/c=\ (4.29)

and
e=eLom 2124172, (4.30)

where the renormalization constant of the electro-
magnetic vertex Zey, is defined by

Zem™1=c. (4.31)
Now the Ward identity
P#(PZ) P2, 0) = _"(a/apu) G (Pz)

[where T,(p? p™, k%) is the electromagnetic vertex]

(4.32)
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" Fi1c. 1. Diagram for contribu-
~ tions of the weak boson to the

anomalous magnetic moments
\ of leptons.

£ v 2

still’holds, and, from Egs. (4.1), (4.2), and (4.26), it
leads to

c(p* 9%, 0) =14+-M:($?)

and

(i.e., Zon=21) (4.33)

d(P2: PZ, 0) =M2(P2) . (434)
Therefore, in view of Egs. (4.4) and (4.6), the condi-
tion (4.29) is certainly satisfied. Thus, we have ac-
complished the purpose of this section.

V. ANOMALOUS MAGNETIC MOMENTS
OF LEPTONS

One of several difficulties in the usual weak-boson
theory is that physical quantities such as the contribu-
tion to the anomalous magnetic moment of leptons are
found to be logarithmically divergent. In our model,
however, it is finite and is calculated to the lowest
order (Fig. 1) to be

A(gi—2) /2= —Gm#/12V2rP~—T7.7X 10720 (for w).

(5.1)

Here, for simplicity, we have assumed only the minimal
electromagnetic interaction introduced in the HLG
formalism stated in Sec. II. This result is one order of
magnitude smaller than those previously given by other
authors.”

VI. WEAK REACTIONS

. The simplest weak reaction is a decay of the weak
boson. The decay widths for two-lepton modes are
easily calculated to be

Ts(B—ly) =Gmg?/6V2a~1.0 GeV.  (6.1)

Since the mass mp (==2140m,) is so large, the weak
boson has so many decay modes, especially hadronic ones
whose widths cannot be estimated easily, that the total
decay width of the boson may be much larger than
T(B—ly), ie.,

Iptt>>1 GeV. (6.2)

We therefore expect that this newcomer to particle
physics would be an absurdly unstable particle.

7N. Byers and F. Zachariasen, Nuovo Cimento 18, 1289
(1960) ; R. D. Amado and L. Holloway, ibid. 30, 1083 (1963);
30, 1572 (1963) ; G. Segré, Phys. Letters 7, 357 (1963) ; H. Pietech-
mann, Z. Physik 170, 409 (1964); R. A. Shaffer, Phys. Rev. 135,
B1877)(1964); S. J. Brodsky and J. D. Sullivan, ibid. 156, 1644
(1967).
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Next, we consider lepton-lepton scattering. It has
been known for a long time® that the usual local Fermi
interaction leads to lepton-lepton cross sections which
increase quadratically and violate the unitarity limit
at an energy of about 300 GeV in the center-of-mass
system. In our model, however, the interaction being
effectively nonlocal, the scattering cross sections are
better behaved at high energies. There are two different
types of lepton-lepton scattering. One is mediated by
the weak boson in the ¢ channel, and the other is med-
iated by it in the s channel. An example of the former
kind is the reaction

(6.3)

Since it consists of all the partial-wave scatterings
caused by the propagation of spin-1 or spin-0 particles
in the ¢ channel, its cross section asymptotically be-
comes constant at high energies as follows:

o (e ve) 2 (Gomg?/ ) (1+ms/W2)
s (GPmg?/7) (~2.8X10% cm?),

—> 00

v te—u+v..

(6.4)
(6.5)

where W is the total energy in the center-of-mass
system.

*'Another example of f-channel exchange, e +ut—
ve+7,, has a similar cross section:

o (e ur—vt7,) ~ G2/ 27) (14+mz2/ W)™, (6.6)

while an example of s-channel exchange, 7.+e~—7,+u",
has a different high-energy behavior:

o (Fete—m+u)

~(Gmz?/37) (mg?/W?) | 1— (mp2/W2) [ (6.7)
—0. (6.8)
W0

8 For example, T. D. Lee and C. S. Wu, Ann. Rev. Nucl. Sci.
15, 381 (1965).
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One of the best tests of this model would be to examine
the high-energy behavior of these reactions.

VII. RESULTS_AND DISCUSSION

In Sec. III, we have predicted the coupling constant
g and the mass mp to be g?=35¢* and mp=137.Tm,,
respectively. A remaining question would be whether
these predicted values would be changed by generaliza-
tions of the model or by higher-order corrections to the
self-masses of leptons. As far as the former problem is
concerned, Fukuda®!® has generalized our model for an
arbitrary value of £ and obtained the following result:
In order to cancel the logarithmic divergences of the
self-masses of leptons from electromagnetic and weak
interactions, the physical mass of the usual weak boson
mp is arbitrary, but the additional scalar boson with a
negative metric has the universal mass proposed by
us, i.e., me=137.7m, independently of the value & The
latter problem of higher-order corrections is very com-
plex and difficult and has not been solved. It is ex-
pected that the relation to determine g? will be a quad-
ratic equation for the fourth-order self-masses of
leptons. Whether the equation has a proper solution
is an important question.
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