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An infinite-component field theory is proposed to describe the p Regge family of particles. Using the
generators of the group O(3, 2), a class of first-order wave equations is obtained. The simplest of this class
of equations is solved to yield a rising mass spectrum with a hydrogenlike accumulation point. Because
only finite-dimensional representations of the homogeneous Lorentz group appear in the theory, it is free
from many of the dif5culties, including noncausality, which have plagued other infinite-component field
theories with nontrivial mass spectra.

I. INTRODUCTION
" N recent years, several authors' 4 have investigated
. . the possibility of using infinite-component fields to
describe the spectrum of strongly interacting particles.
Unfortunately, a major result of these investigations has
been a number of theorems, ' 7 detailing the conditions
under which such theories must fall victim to various
diseases, e.g. , the breakdown of causality, ' the appear-
ance of spacelike solutions, ' and mass spectra with
totally unrealistic behavior. ' '

In this paper, we shall construct a quantum field
theory free of these pathologies and describing a Regge
family of particles with a tolerably realistic mass
spectrum. In particular, we find it useful to consider
the p trajectory and its daughters as an irreducible
infinite-dimensional representation of SO(3, 2) . This
representation decomposes into an infinite sum of
finite-dimensional representations of the homogeneous
I.orentz group 2, ; because we do not introduce infinite-
dimensional representations of , we have no trouble
with the causality of the theory.

We remark that we are here using techniques very
similar to those developed' ' in analogy with the non-
relativistic hydrogen atom'; there, the symmetry of the
Harniltonian is O(4) instead of Z, and one finds it
enlightening to consider the "spectrum-generating"
group SO(4, 1) )where we use SO(3, 2) 7, an irreducible
representation of which contains all the bound states of
the system.

* Supported in part by the U.S. Once of Naval Research.' Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppl. 3V and
38, 368 (1966).' Y. Nambu, Phys. Rev. 160, 1171 (1967).' C. Fronsdal, Phys. Rev. 156, 1653 (1967); 156, 1665 (1967).' C. Fronsdal, Phys. Rev. 171, 1811 (1968). This paper refers
to an extensive list of other relevant works. For a more recent
study, with direct application to Regge theory, see R. Casalbuoni,
R. Gatto, and G. Longhi, Nuovo Cimento Letters 2, 159 (1969);
2, 166 (1969).' E. Abers, I. T. Grodsky, and R. E. Norton, Phys. Rev. 159,
1222 (1967).'I. T. Grodsky and R. F. Streater, Phys. Rev. Letters 20,
695 (1968).

'H. D. Abarbanel and Y. Frishman, Phys. Rev. 171, 1442
{1968).

'A. O. Barut, P. Budini, and C. Fronsdal, Proc. Roy. Soc.
(London) 291, 106 (1966); Y. Dothan and Y. Ne'eman, in
Symmetry Groups irI, Nuclear and Particle Physics, edited by
F. J. Dyson (Benjamin, New York, 1966).
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In Sec. II we present some of the group-theoretical
background; in Sec. III we use the generators of
SO(3, 2) to write down a class of first-order Lorentz-
invariant wave equations. The simplest of these yields a
mass spectrum of the form

trts'=u' —P'j(k+1)-', k=1, 2, . . .

where cr and P are free parameters. This mass spectrum
is monotonically rising, and is hydrogenlike in that it
has an accumulation point. This latter feature is not
common to the whole class of equations, however; it may
well be that another member of the class will yield a
spectrum extending to infinity.

In Sec. IV we discuss the consequences and possible
generalizations of our equation. Section V is devoted to
the construction of local quantized fields satisfying the
equation, and Sec. VI presents some conclusions.

II. SOME PROPERTIES OF O(3,2)

0 (3, 2) is the group of all linear homogeneous
transformations on the 5-tuplet x= (xe, xi, xs, xs, xs),
leaving invariant the quadratic form

S(x) = xs' —xi' —xs' —xs'+ xs'.

Any member T of the proper subgroup of O(3, 2)
Lby proper subgroup (notation: SO(3, 2) ) we mean
those transformations continuously derivable from
the identity7 can be written in the form T(n) =
exp( —,'n„„M&"), where M„„=—M„„(tt, v=0, 1, 2, 3, 5)
are the ten generators of the group. Using standard
techniques, we can derive the commutation rules:

LMo Mr 7=e(Moog-+M-goo M rgb Mo g r)

(2 1)

where we take goo=gee=+1, gii=gss ——gss
———1, and

g„„=0for p, &v.
It will be convenient to define the operators

J,= —-', epM&~, i, j, k=1, 2, 3
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themselves, as described in the Introduction. Since
each tower is a representation of the form (-',k, ipk), we
must have J K=O. But from (2.2) we find

[J K, Lp7= —iJ L,

[J K, L,]= i(J—,Lp+ee7, LpKy).

So in order to have J.K=0, we must have also J L=0
and J,Lp+e,,i,Li,K;=0. But this amounts to putting
S„=O, and so the representation we want must have
8'= 0.

We label our basis states
~

kjo.), where k tells us which
tower we are in, j tells us the spin of the state, J'

~

kjo.)=
j(j+1)

~
kjo), and Jp

~
kjo)=o

~
kjo) The. matrix

elements of J and K are well known; clearly

(kj o.
~ J, K

~
kj'V ) ~ 8I,&..

FIG. 1. States to be used in the construction of an infinite-
component field theory describing the p Regge family. Although
the k=O, j=O state does not occur in this family, its use as a
field component is optional.

Then (2.1) can be written as

[J;,J;]=ie,,vA, [J,, K,]=ie;p,Ki,

[J,, L,]=ie;p,L» [J,, Lp]= 0,

[E, E ]= ie~gJ—g„

[K;,1.,]=ig,,L„
[L') Li]= ieviJ-~ (2 2)

[K;, Lp]= iL;, —

It is generally true that in going from an orthogonal group in
n dimensions to one in n+1 dimensions, one adds a set of n
generators which transform as a vector under the action of the
n-dimensional group.

[L„,Lp]=iK, .
We see that the two sets {J, K} and {J, L} separately

generate the subgroup Z. Furthermore, we notice that
the operators L„(ti=0, 1, 2, 3) transform as a 4-vector
under the action of the group generated by {J, K}.'

From (2.1) we can also verify that the two quantities

Q = —Ã„„M&"=K' —J'—L„LI" and W= S„S&, S„=
e„„q„M""M', commute with all ten generators.

We are specifically interested in the representations of
SO(3, 2) whose basis vectors occupy the lattice sites of
Fig. 1. There is an ambiguity as to whether the k=0,
j=0 site should be included. This state is not present in
the p Regge family, but it may be excluded either at this
point by choosing a representation without a k=j=0
state, or at a later stage by simply not including the
k=j=0 state among the particles from which we shall
build our fields. The latter course (which corresponds
roughly to the familiar case of describing the p meson by
a vector field p„and then excluding the j= 0 part by
imposing the condition B„p&=0) will turn out to be
mathematically more tractable; we shall compare the
two procedures in Sec. III. We choose {J, K} to be the
generators of the homogeneous Lorentz group under
which the states of each tower transform among

a»= p[(k j) (k+j—+1)]'" (2.4a)

and for the representation without the k=j=0 state,

a»=-', [(k—1) (k+2)/k(k+1)]i"

X[(k—j) (k+j+1)]'t'. (2.4b)

The value of Q for the representation without the
k=j=0 state is determined, in fact, by the condition
that this state be absent. This necessitates Q=O. In the
case where we include the k=O state, Q=2 (see Ap-
pendix A) .

IIL WAVE EQUATION

We have used the states in the p Regge family to
construct irreducible representations of O(3, 2), but
we have not yet Inade an assumption that will allow us
to calculate any of the physical parameters, such as the
masses or coupling constants of these particles. To do
this, we shall make use of the existence of the 4-vector
set of matrices I.„to write the first-order wave equation

(B„LP M) y(x) =0. — (3.1)

More explicitly, this is an infinite-dimensional matrix

' L. H. Thomas, Ann. Math. 42, 113 (1941); see also T. D.
Newton, ibid 51, 750 (195Ql. .

To evaluate the matrix elements of I.„, we use the
techniques of Thomas, ' who analyzed the unitary
representations of O(4, 1). If we define N=iK and
1Vp=iLp, then the set {J, L, E„}will generate a unitary
representation of O(4, 1). So we can apply Thomas's
results directly to our case, provided we choose L
Hermitian and I.o anti-Hermitian. Some of the details
are provided in Appendix A.

We record the matrix elements of I.o, which will play
an important role in what follows:

(kj o } Lo }
k'j'o') = [a»b~, ~ ~i—5~+1,k'A';]b, t 5, , (2.3)

where for the representation with the k=j=0 state,
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equation, with )I&)(x) a column vector:
Qt j/.

Q $8„(L )k;..k,', ™k,.k )'. )yk )'. (X) =0.
Jgf=] j/=0 01=jf

This equation will be Lorentz invariant if M satisfies

mutation rules

tH, &», H„&)')= —iHo,

LH.&», H&)) = i Ho —"&,

LH„&», Ho) =+iH, &'&

(3.12)

D(h') M.D(A) = M (3 2)

D(~)»';k) "=»',)"""""(~)~kk
we will satisfy (3.2) if

~kja', k'j 'o' ~k~kk, '~jj '~ae'

(3.3)

(3.4)

Here nz& is an arbitrary function of k.
To explore the mass spectrum allowed by (3.1), we

consider the Fourier transform

@(p) =fd4x exp(ip. oo) y(x), (3.5)

which must satisfy

(zp„L» M)y(p) —=0 (3.6)

In the rest frame, p„= (po, 0, 0, 0) and

('p.L' M) ~(-p.) =0 (3 7)

To examine under what conditions po will be real, we
assume 1Nkg0, in which case we can rewrite (3.7) as
[M '(iL) —po '1))t)=0; thus po will be real if the
matrix M '(iLo) = SHS ', where H is Hermit&an and S
is an arbitrary invertible matrix. But M '(iLo) =
M I'PM ' '(IiL )Mo"')M"'. Identifying H =M 'I'&(

(iLo) M 'I', and recalling that iLo is Hermitian, we see
that po will be real if M '&' is either Hermitian or anti-
Hermitian, that is, if nsI, is real and of definite sign.

Incidentally, since (iL) is anti-Hermitian, this same
argument shows that if we choose p)' spacelike, the
components of po will turn out to be pure imaginary—
that is, there are no spacelike solutions.

We can reduce Eq. (3.7) to its bare essentials by
noting, from (2.3) and (3.4), that both Lo and M are
diagonal in j and 0.. So for fixed j, cr, we have

(ipoLo
"&—M) kk 4k "'(po) = 0, (3.8)

where (L,&)&) kk. = (ak)6k, k +1 ak;f)k+1,k ) and—Mkk ——

We are now prepared to use the explicit form of the
a» LEq. (2.4) ) and so we must treat the two representa-
tions (Q=2 and Q=O) separately.

We begin with the case Q=2; the ak; are given by
Eq. (2.4a). We write

for every Lorentz transformation A. Since in our
representation

LPoHw "+f(Ho) ))t)= 0 (3.14)

where f is an arbitrary function.
We can solve (3.14) in one simple case: when f is a

linear function, f=nHo+P. Thus

(poH„&)&+nHo+ p)$= 0 . (3.15)

(Ho, H„, H,) transform as a vector in three-dimensional
Minkowski space, so there exists a transformation
U(n, po) with the property

U(, po) LpoH. + Ho)~ '(, po) =~Ho,

with y = (n' —poo) '". We assume here that po(n.
De6ning h&)'&(po) = U(n po))t~~'&(po) we have

(yHo+P) h=0. (3.16)

Since Ho is diagonal, the solutions to (3.16) are trivially
found. The eigenvectors Ig are

hk &'&(k) = &&kk, k=j, j+1,. . .

and the associated value of y is y(k) = —P/(k+1).
That is,

Pop(k) =n' —P'/(k+1)'. (3 17)

Making the identification of k with the trajectory
function n(poo), we can plot the Regge trajectory given
by (3.17) in Fig. 2.

Having obtained a solution in the case that al,j is
given by (2.4a), we now discuss briefly the modifica-
tions which are necessary if Q= 0, i.e., when a» is given
by (24b)

We can use the arbitrary nature of M in (3.8) to
factor out the extra k dependence in (2.4b). We let
31=A'~'BA'~' where A is the matrix

Akk) = $k (k+ 2) / (k+ 1) )Skk~)

and define

(3.18)

That is, they generate a unitary representation of
SO(2, 1), the homogeneous Lorentz group in three
dimensions.

Using (3.9), (3.8) takes the form

(p,H„&)&+M) y = 0. (3.13)

Now 3II is an arbitrary diagonal matrix, so we can write

iL,& i= -a„()
and we define two additional matrices

(3.9) gk')'=»k"Vk "'(P )

A has been chosen so that

(3.19)

(H): ) kk' ak)ok, k'+1+ak')4+1, k')

(Ho) kk = (k+1)4k'
These three Hermitian matrices satisfy

(3.10)

(3.11)

the com-

iLO~~) = —A I IIy~~'~A I (3.20)

where H„&&'& is exactly the same matrix defined in (3.9)
)that is, Lo&)& in (3.9) is still given by the ak; as defined
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to simulate the spectrum of the relativistic hydrogen
atom. He rejected this equation on the grounds that the
probability density was of alternating sign. Since we
intend to use our solutions to construct quantized fields
which can be inserted into a Dyson expansion of the 5
matrix, we foresee no diRiculties of this nature.

The fact that Pss—+ const as k—+eo can be understood
on dimensional grounds. The matrix elements of H„are
proportional to k for large k, and so we may expect the
large-k behavior of p() to be ps~f(He) /k. Since we chose
f(H, ) ec HI)~k, it is reasonable to get p()~ const.

This suggests, of course, that if we want p,'~k for
large k, as most Regge theorists would prefer, then the
leading power of II0 should be Ho'~'.

In Sec. III we did not discuss the case p()) n. By an
SO(2, 1) rotation similar to U(ps, a), we can reduce
(3.15) in this case to

L(Po' ~') "'H—.+P74 =o
Fro. 2. Mass spectrum given by Kq. (3.17). Values of n and
)3 are the same as in Table I: n (g/+=15)m, ; P= (14/+15)rn, . Since H„ is a noncompact Hermitian generator, it will

have a continuous spectrum, and thus
in (2.4a) j.Then (3.8) becomes

p 2 ~2+ps/)ts X'& 0.

&I (0) H (i)

Thus the j=0 equation takes the form

(3.22)

f(PpH„")+A (nHp+P) $y(') =0, (3.23)

or, using (3.18),

LP H "'+t:(H '—1)/Ho'l(~Ho+0) 3e"'=o (3 24)

Thus the j=0 spectrum will diGer from the j40 spectra
by virtue of the factor (H()' —1)/Hss. We have been
unable to obtain the solution in this case, and the
modification of the j=0 spectrum is therefore not known

IV. DISCUSSION OF WAVE EQUATION

Equation (3.1) is the simplest, but by no means the
only, equation we could have written down using the
generators (2.2). Furthermore, (3.1) allows us the
freedom to choose the constants ms defined in (3.4),
and we have chosen them simply in order to be able to
solve explicitly for the mass spectrum. Thus (3.17) is
the outcome of both some speculation as to the utility
of a group like SO(3, 2) in describing Regge trajectories,
and a pragmatic approach in selecting an equation that
can be easily solved.

It should be pointed out that the properties of Kq.
(3.15) were investigated several years ago by Nambu'
in his search for an infinite-component wave equation

(psH (i)+73)g(i) —0 (3.21)

and by choosing 8=nHs+P we can employ exactly the
same method of solution as in the previous case, and we
obtain the same spectrum (3.17) .

The difficulty is that, because of the absence of the
k=0 state, (3.20) does not hold for j=0. However, by
inspection of (2.4a) and (2.4b), we notice that

P'= g'Ho'r/g*H—.g, (41)

where g is the solution to the unperturbed equation.
The result is

P'(k, i) =P (k) LA(k)+J(J+1)/2P), (4 2)

TABLE I. Mass spectrum for n= (8/+15)m~, P= (14/+15)m, .

Pp (Mev)

0
780

1308
1454
1504
0 ~ ~

1612

Therefore, above a (and below —n) we have a con-
tinuous spectrum of masses. The interpretation of these
solutions is uncertain within the present work, but we
remark that possibly if we obtain a solution to (3.15) in
which the discrete part of the spectrum extends to
inhnity, the continuous part will cease to exist.

Our trajectory (3.17) has the same degeneracy as the
Veneziano model; that is, the mass does not depend on

j, but only on k. It seems, however, that this is because of
our special choice of f(Hs), and is not an intrinsic
property of (3.1). For example, we can test this by
adding a term XHs' to f(H()), and treating this as a
perturbation. Of course, for large k, )HO' will be the
dominant term; but assuming analytic behavior in X,
for small k a perturbation treatment will indicate how
the masses are shifted. Writing p=p()+Xp', we find
that to first order in X,
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where 6 is a function only of k, and P is the same as
appears in (3.17) . For details see Appendix B.

It is difficult to compare (3.17) directly with experi-
ment. The masses po(k) are supposed to represent
dipion resonances. We have two parameters a and P at
our disposal. One of these is fixed by assigning the p to
k=1. According to current practice, ""we would also
like to assign the fo to the exchange degenerate leading
trajectory. A typical fit is shown in Table I.

We point out that the indicated values of a and P
(which cannot be changed too much and still give
acceptable values for m, and m/) yield a largest mass of
1612 MeV, which is much smaller than one would
expect for a realistic resonance model. Also, the no=0
intercept is at k=4. Lovelace" has shown that the
Adler consistency condition requires n(s) = i2 for s=0.
If we try to 6t both po(2) =0 and po(1) =m, with our
formula (3.17), we find that the cutoff mass po(~) =
1.5m, 1170 MeV, which is below even the fo mass.

We pointed out in Sec. III that if we chose the repre-
sentation without the k=0 state, we could not avoid a
more complicated equation, (3.24), for the j=0 states.
The possibility exists for us to make the "inverse"
choice—that is, to choose M in (3.8) so that the j=0
equation is simple,

Then the j=0 spectrum will be (3.1/), whereas the
j/0 equation will be

1 po&w"'+L&o'/(&o' 1)](~&o+—0) )(t "'=o (4 3)

The hope would then be that (4.3) will yield a better
spectrum than (3.17), although on dimensional grounds
we still would expect the masses to tend to a 6nite
constant at infinity.

substitution into (3.7). The form of A, ,(~&) may be
determined from the desired transformation properties
of g. As will be seen below, we want the solution of
(3.6) to satisfy

y=D(Rs)yD(Rg ');
when we substitute (5.3) into (5.6), it reduces to

Hence we must take

A. .(""=F(k,j)8.„

(5.6)

(5.7)

where the F (k,j) are a set of parameters depending on
k, j.

So our solution to (3.6) is

y&. .. .(&&) (p) —D, , (&~/&. &'/&)(L (p k) )y&, (&/)P(k j )

(5.8)

X4 ."'"'(P)D. .")(R '(k) ) (5 4)

where R~(k, A, p) is the Wigner rotation L '(Ap)AL(p).
Here J.(p) is the boost which takes (m, 0, 0, 0) into
(po, p) . Equation (5.4) implies that

0(""(P)=D(J-(p) )0"" (5.5)

It is easy to verify that p(p) satsi6es (3.6) if p satis6es
(3.7) . In order to satisfy both

~(AP) =D(&(AP) )~
and

4 (Ap) '= D(/t) 4 (p) D(R~ ')

=D(A) D(L(p) )4»(R~ ')

we must have

V. CONSTRUCTION OF A FIELD THEORY with g/, (~/) defined in (5.1). &(p) also satisfies (5.4).
Here we must take P(0, 0) = 0 to ensure the absence of
the k=0 state, as we promised to do in Sec. II.

Using well-known techniques due to Weinberg, "we
can now construct the 6eld operator

~(*)=~(-)(*)+~(+)(.), (5.9)
with

(5.1)
4 "' '(*)= Z fLd'P/2Po(k) 7x' "'""(P)i"""= 5-p( e&*"')l.'

In this section we show how to make use of the
solutions that we found to (3.1) to construct an infinite-
component 6eld theory. We shall use the solutions in the
case that the k=0 state is present, since in the other
case the j=0 wave functions are not known.

For a given po(k), the eigenvector that solves (3.16)
is k/, (k) =8/, /, . This in turn leads to the solution

of Eq. (3.8), where Xu(p, k, j, a.) exp( —iP/, x) (5.10)

X5(p, k, j, o) exp(iP/, x). (5.11)
y&. .. .(& r~) —y&, (kJ)g,g, (&i ) (5 3)

Here a(p, k, j, 0) destroys particles of momentum p,
mass Po(k), spin j, and spin projection 0. b is a creation
operator for antiparticles, related to the adjoint of the

where'(~/) is an arbitrary (2j+1)X(2j+1) matrix.
That p&~&' ~ is indeed a solution may be veri6ed by direct

sinhg =po/(n' —po') '/'. (5 2)
and

For a given set (kjo) we can then construct the solution
to (3.7),

"J.Shapiro, Phys. Rev. 179, ].345 (1969)."C.Lovelat:e, Phys. Letters 28B, 264 (1968).
"S. Weinberg, Phys. Rev. 133, 81318 (1964); 181, 1893

(1969);see also Ref. 7.
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where

alld

—(—1)"+""e pL"P (*—y) 3}, (5.14)

d(k, i) =
I ~(k, i) IV.,'""x ""

X(P) = Z D'",~""'""'"'(L(P, k) )

yD I, (»'ls»'I»+(L(p k) ) (5 15)

Because the boost matrices in (5.15) belong to
finite-dimensional representations of 2, X(p) will be a
polynomial in p),".)4 Also, as shown in Appendix C,
under the transformation p"~—p&, we have

X( P) = (—1)"+"'X—(P) (5 16)

which enables us to write

C= Q d(kj) X(i())h(x y; pp(k) ). (5.17—)

Here A(x—y; pp(k)) is the usual scalar commutator
with mass pp(k) .

It can be shown'4 that X(p) is a polynomial of
degree k'+ki', and thus there is a finite upper bound to

For an explicit derivation of X(p), see S. Weinberg, Phys.
Rev. 181, 1893 (1969) Lhe uses the notation X(P) =n-(P/m, j)].

destruction operator by

f)(i, ~) =LC"' 'j-&t(i '), (512)

where C(&') is a charge-conjugation matrix satisfying

D(i)*(g) —(."(~')D(~) (g) g(g)—i

We have distinguished between )( and p, because in
order to satisfy (3.1), we see that

(t'P„Lp M) y—= 0, (—sp„L~—M) X=0.

Thus p is the function defined in (5.8) . x differs from p
only in Eq. (5.1), where we must take

g), (s') =
I exp( i&—H, (&)) g»', sinhP= Pp/(tt' —P,') 'I'.

Using the well-known Lorentz-transformation proper-
ties of a and f) and Eq. (5.4), we verify that g(x)
satisfies the desired transformation law

U(h. )P(x) U '(A) =D(h.—') y(Ax) (5 13)

To test the causality of our theory, we can compute
the commutator

L4~1- (x), 4s ~ ", (y)l—=C

and see whether it vanishes for (x—y)'(0.
Assuming the usual commutators for creation and

destruction operators, and using the fact that

I exp(+t'&H, ) js), ——( —1)s+s'/exp(&i&H, ) jib,
we obtain

C= Z d(k, i)fLd'P/2pp(k))X(p) i expL —tp~ (x—y) j

the number of derivatives acting on 6 in (5.17).
Therefore, C vanishes for (x—y)'(0, as required.

VI. COÃCLUSIONS

The results of this paper might usefully be extended
in two directions: (i) One might attempt to solve
(3.14) with a more general choice of f(Hp), thereby
obtaining a more general mass spectrum. In particular,
the natural modifications to (3.14) suggested by the
use of the Q=O rather than the Q=2 representation
LEqs. (3.24) and (4.3)) can be further explored.
(ii) The construction of causal fields can be viewed as
the first step on the road to a relativistically invariant
interaction density H(x), which can then be used in a
Dyson expansion of the S matrix. The features which
one would look for in the S-matrix elements are:
(a') resonance structure characteristic of the p Regge
family and (b) Regge behavior at high energies. The
work of Van Hove, Durand, and Blankenbecler and
Sugar"" in constructing Feynman-diagram models of
Regge amplitudes indicates that one can obtain Regge
behavior by summing diagrams in which ever increasing
spins are exchanged; it will be interesting to see if our
model will reproduce Regge asymptotic behavior in a
similar way.

Some dangers which may be inherent in our approach
are: (a) Although each individual commutator (5.14)
involves only finite-dimensional representations of 2,
the construction of H(x) will bring in infinite sums over
our Regge fields. One must therefore be wary of
divergences and nonlocalities which can be introduced
in this way. This same problem is encountered when
one sums up an infinite set of diagrams with derivative
coupling, "because the sum will contain an arbitrarily
high number of derivatives acting on the fields. (b) A
glance at (5.8) shows that there are a large number of as
yet undetermined constants F(k, i) hidden in the fields

P(x). The constants must be determined by some
principle if our theory is eventually to predict values for
scattering amplitudes.

In this paper we have pointed out how a rather
simple infinite-component field theory may be relevant
to the discussion of Regge phenomena. This work is
intended as the first step in providing a field-theoretic
description of these phenomena, which have hitherto
been understood only on the basis of an 5-matrix
approach. The crucial tests for our theory have yet to be
met.

Jt'01e added ie ma)suscript While this .manuscript was
in preparation, I received a report by H. D. I. Abar-
banel, in which an infinite-component field theory is
considered for many of the same reasons that motivated
the present article. Abarbanel derives conditions under
which a theory of this type is strictly localizable Lsee

'5L. Van Hove, Phys. Letters 24B, 183 (1967); L. Durand
III, Phys. Rev. 154, 1537 (1967).

'R. Blankenbecler and R. L. Suger, Phys. Rev. 108, 1597
(&96S).
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Sec. VI, "danger" (a) $, and shows that with a suitable
choice of constants, an in6ite-component 6eld theory
can reproduce the Veneziano amplitude. He does not
use group-theoretical techniques to discuss either a
wave equation or the mass spectrum.
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APPENDIX A

In this appendix we provide a fuller analysis of the
representation Q = 0, W = 0 and Q = 2, W= 0 of SO (3, 2) .
As noted in the text, the matrix elements of J and K are
just the usual ones associated with 2:

~2
I
kja)=a

I kja),

~+ I kja) = L( j~~) ( j~a+1)O'"
I
kja~1),

&2
I

&ga.)= ( j'—o') '/2b;&"&
I k, g

—1,o).
+[(j+1) —0~/ b/y] "&

I k)/+1, 0 )y (A1)

&+14~)=[(z~~)(j~~—1))'"f'"
I k,j—1, a~1)

w [(j+a+1) ( j&a+2) ]'/'f&+1& "&
I k, j+1,o &1),

[Al/2, —1/2y A —1/2, 1/2] 2[32 38 j.
Taking matrix elements

(-', k, ml 2k, m2
I ( ) I

—,'k', ml, —',k', m2)

(A7)

of this relation, we find that for k& k' it is automatically
satisfied for any f, while for k = k' we must have

f(pk, 2k —2)f(2k —
2 pk) —f(2» 2k+2)f(2k+2, pk)

=2(k+1). (AS)

This is a simple difference equation, with the solution

f(-', k ——,', —',k)f(-', k, -', k——,') =np —k(k+1). (A9)

As noted in Sec. II, we want to choose L to be
Hermitian and Lp to be anti-Hermitian. [This is
consistent with (2.2) and the choices already made,
viz. , J=Jt and K= —Kt.]We thus require Ai/2, —1/2 =
A 1/2, 1/2 which, when inserted into (A6), yields

respect to ~~&+~, and as the If.
" component of a spinor

operator with respect to Q& &. Applying the Wigner-
Kckart theorem twice, we can write

(-', k, ml, —',k, m2
I
A. .. I

—,'k', ml', -', k', m2')

(2k ml 2 K
I 2k, ml)(-', k m2 2 K

I
pk m2)

)&f(-', k, —,'k') . (A6)

It remains to calculate f. Notice that (A6) tells us that
L„has nonzero matrix elements only for k'= 0&1.

To calculate f, we use

where
f(-', k ——,', —',k) = —[(k+1)/Q'*(-2'k -'k —-') .

b, (k& I [(k+1)2 j2j/(4j 2 1) }1/2
we can choose the phases of our basis states so that f is

To evaluate the matrix elements of L„, we form the real, and our condition then becomes
operators

2k ml 2k m2) = p I
k, j, ml+m2)

g=p

X (j, ml+m2
I

—',k, ml, —',k, m2). (A3)

This new basis has the property

(Q&+') '
I

—;k,ml, —',k, m2) = —,'k(k+2)
I

—',k, ml, —',k, m2),

32'+'
I

—',k, ml, —,'k, m2) = ml
I

—',k, ml, -', k, m2), (A4)

gp I 2 k) ml) 2kf m2) m2
I 2k( mly 2 kg m2) ~

%e deine the combinations

Ai/2, 1/2 (Ll+2L2) )

~—i//2, i/2= L3—Lo,

Al/2, 1/2=L2+Lp,

A 1/2 1/2
——Ll 2L2. (AS)—

Then the commutation rules (2.2) tell us that A, ;,
transforms as the I~: component of a spinor operator with

3"'=l (J~2K). (A2)

are two commuting angular momenta, and

J=3'+&+3& &. We can transform bases via

f(2» pk —2) =k, f(-',k —-'„—,'k) = —(k+1). (A12)

Using (A3) we can transform back to the
I

kjo ) basis to
get (2.3) and (2.4).

To calculate Q, we express L„1P in terms of the
A„,. and use J'—K'=k(k+2). We 6nd that L„LI'=
np —2—k(k+2) so that Q=2 —np.

f(-,'k ——,', —,'k) = —[(k+1)/k)f(-,'k, —,'k ——,'). (A10)

In order completely to determine f, we must know
wllat np is in (A9) . If we wish to exclude the k=0 state
from our representation, we must have f(0, —',) =0,
which implies np=2. Equations (A9) and (A10) then
give us

f(-', k, —',k ——',) = [k(k—1) (0+2) /(0+1) J"
f(-', k —-'„-',k) = —[(k+1) (k—1) (0+2) /k J/2 (A11)

If we want to include the k=0 state, we must have
f(0, 2) NO; we demand instead that f(0, —2) =0, which
fixes up=0. The answer is
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APPENDIX B

Given the unperturbed equation

(PpH„+nHp+P) g= 0, (3.15')

H„' are -', [(k+1)'—j(j+1))5&p . Using this and re-
arranging, we arrive at

p'(k, j) =p, (k) [a(k)+j(j+1)/2p), (89)

we introduce a perturbation liHp', and let Pp~Pp+XP'
and gag+Kg'. Then the equation is

[(Pp+gP') Hp+&Hp'+nHp+P j(g+Xg') =0. (81)

where

~(k) = —[(k+1)'/2P 1( 2~'/Pp'+1) .

APPENDIX C

To first order in X, we have

(PpH„+uHp+P) g+P.[(P'H„+Hp') g

Using the fact that

exp(icx J)K exp( —icx.J) =R '(n)K, (C1)

+ (ppHo+~Hp+p) g'3= 0 (82) we can write

p'= g*Ho'g/—g*H.g.

From Sec. III we recall that

(83)

The term of order zero vanishes by virtue of (3.15').
Furthermore, we can multiply (82) on the left by g*,
and note that g*(ppH„+nHp+p) =0 since H„and Hp

are Hermitian. Thus we demand g*(p'II„+H,') g =0, or

(i 'o'
I exp(i~pe K)

I
jo)=D."-"'(R.)

X (j'o..' I
exp(itt&E, ) I

jo.)D...~~& (R„-'), (C2'j

where R„ is a rotation satisfying R„z=p. Using (C2),
X(p) can be written

D ..&&'& (R„)[g (j 'o.'
I

exp(i0&E, )
I
jo.)&"'&

gp (k) =Upi ',

where U was defined to have the property

(84)
X (go.

I
exp(io&Ep)

I
ji'o, )~""&jD, &&'"&(R„'). (C3)

U(ppHp+nHp) U '=yHp,

with y= (a' —pp') '~'. Equation (85) implies that

The quantity in square brackets can be expanded as
85

}(j'o.'
I

—,'k', a, -,'k', b)
o, ab, a~b~, cd, cId~

U 'HpU= cosh&Hp+ sinh&H„, (86)

where cosh&= n/y, sinhg= pp/p.
Because Ho generates rotations in the xy plane, the

operator P= exp(ivrHp) has the properties

X (ab
I

exp(itt&Ep)
I
a'b')(-', k', a', —,'k', O'

I jo )

X (j o
I

-', ki', c, -', ki', d)(cd I exp(i&kE3) I

c'd' )

X (pk\ c', —,'ki', d'
I
ji'o, )}. (C4)

HoP '=Ho, PH, P '= —H„ PH„P '= —H„.

(87)

In the "ab" basis, iEp
I
ab)= (a b)

I
ab).—Therefore,

(C4) becomes

In particular, since U can be taken to be exp( —i', ),
PUP '=U ' and PU 'P '= U. (88)

Thus the numerator of (83) can be written

(PU 'P'Hp'PUP ')»-
=(PU 'Hp'UP ')»
= [P(cosh& H,+ sinhp H ) 'P 'j»
= (cosh/ Hp sinhg H„)»'. —

In the denominator, we first use H„g= p, '(aHp+ p)g;—
the denominator is then

Pp '(n cosh& Hp usinhg H„+P)». —
Now terms linear in H„have no diagonal elements. The
diagonal elements of Hp are (k+1)hip, and those of

}(i'o' I
pk', a, pk', b)L(po+p)lmj '

r, a,b, c,d

X (pk', a, ~pk', b
Ij o )(j oI —,ki', c, pki', d).

X[(pp+p)/~j (pki c pki d
I jl o )} (CS)

where we have used e'&= [pp(k) +p j/mp and p=
I p I.

To examine the behavior of X(p) under p"~—p", we
must let pp~ —p, ; for the spatial part, we may either
let p—&—p or let p~ —p. We choose the latter course.
Then the only part of (C3) which changes is the part
contained in (CS), and, as it is easy to see, (CS) picks
up a factor (—1)' + ". But the Clebsch-Gordan
coeKcients tell us that a+b =c+d and therefore
a—d=c b. So the factor i—s ( —1)'&' e&; but (—1)'~=
(—1)"', and (—1) '"= (—1)"".Therefore the factor is

(—1) i'+P", and we have shown that X(—Pi) =
( 1) i +pi X(

gpss)


