
POSSIBLE EXTENSION OF MINIMAL CURRENT ALGEBRA

c-numbers, and the term proportional to A.' is absent by
the argument presented in Refs. 6 and 7. Thus, we have
shown that nonleptonic decays are finite to lowest
order. Note that the vacuum term is not there if cr and P
are different states. We have also applied the extended
field algebra to study divergences in higher-order weak
matrix elements, making use of Ward identities and
making repeated use of the multiple 8jorken technique. "
In particular, we have been able to show that to order
g4, the worst divergence is of A.' type or, in other words,
A4 and A' lnA. divergences are absent. This result makes
the E~'—Es'mass difference calculations" more reliable,
and opens up a way for study of nonleading divergences.
We do not reproduce the details of the g4-„rder calcula-
tion here since it is only a tedious application of the
well-known techniques.

VI. CONCLUSION

In conclusion, we would like to summarize our
results. We have extended the minimal current algebra

'e P. Olesen, Phys. Rev. 172, 1461 (1968)."R.N. Mohapatra, J. Subba Rao, and R. E. Marshak, Phys.
Rev. Letters 20, 1081 (1968).

of Bjorken and Brandt to include scalar and pseudo-
scalar densities in the algebra. The algebra is diRerent
from the quark (SU(3) )& SU(3)]s algebra in that in
our model scalar densities commute, whereas in quark-
type models

LU'(*), Ut(0) j*o=o=tf"~o;~'(x).

We have shown that in a certain limit, the commutators
take a simplified form. Using these simplified commu-
tators, we have shown that nonleptonic weak processes,
when treated in the intermediate vector-boson model,
are divergence free to lowest order in the weak coupling
constant G (G/v2=g'/rttsr'). We have also commented
about the applicability of our results to the study of
nonleading divergences in higher-order nonleptonic
processes.
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We investigate the possible subsidiary conditions compatible with the equations of motion of dual-
resonance models for the unrealistic choice of o, (0) =1. In the language of four-dimensional harmonic
oscillators, we find one subsidiary condition for each mode of oscillation. All time components (in the c.m,
system) can therefore be eliminated. We discuss the possibility of relaxing the condition a(0) =1.

INTRODUCTION

~~~NE of the more serious problems which appears
u in the dual-resonance models is the presence of

imaginary coupling when the residue at a particular
value of the energy is written as a sum of factorized
terms. ' This is in fact a disease characteristic of a
large class of amplitudes which satisfy superconver-
gent relations in the narrow-resonance approximation. '
Therefore it is particularly discouraging that in this
case one encounters the same situation in spite of the
infinite number of degrees of freedom. Fubini and
Veneziano already noticed a possible solution to this
problem. In analogy with quantum electrodynamics
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under Contract No. AT(11-1)-888, g C00-267.

~ S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969);
K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969).

2 S. Fubini, in Proceedings of the Fourth Coral Gables Conference
on Symmetry Principles at High Energies, University of 3IIiami,
1967, edited by A. Prelmutter and B. Kursunoglu (Freeman,
San Francisco, 1967) .

they found that the fourth component (in the c.m.
system of the hadron) of one of the modes of oscil-
lation of the hadron could be considered redundant.
Therefore the ghost is only apparent, and by restricting
the Hilbert space by a subsidiary condition or by
introducing a metric operator, one could handle this
mode. However, the same result was not true for the
other modes of vibration. Of the infinite number of
kinds of ghosts, only one kind could be solved in
this way.

Two ingredients are necessary in order that this
method of resolving the problem of ghosts be feasible:
(1) A linear relation should exist between the cou-
pling of the supposedly redundant state and some
other states, and (2) the cancellation must be such
that the sum of terms gives real couplings.

In this paper we wish to show that at least for one
particular value of the intercept Li.e., n(0) =1) there
exists an infinite class of relations which make the
time components of all the modes of oscillation redun-
dant. While we cannot claim to have solved the com-
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We now make a change of variables which leaves @
invariant:

yoyl" yi= & —yo'" y.+1-i', &o=~o' =yo=yo' = &,

/ /~0~1' ' '+$ i +p ' ' '~r+1-l y ~r+1 +r+1 Y8+1 pa+1

Therefore Eq. (1) becomes

1 oo

A„+2,,+2 —— dy'dx' du y,~2(x') p) pl+2(y') g) u "—'
0 0

00 ( u}n
XIIexp Z Z 2 (yo'" y'}"V

n=l O&i&r+1 0&q'&8+1

Fxo. 1. Dual diagram for the (r+s+4)-point function showing
the Koba-Nielsen choice of variables.

We de6ne

X("'~ ~ '')-p'. —; (2)

piete problem of ghosts l because of the unrealistic
choice of a(0) j, it is our belief that these linear rela-
tions, perhaps with some additional complications, will
also exist in more realistic models, and therefore the
solution of the problem of ghosts can be achieved in
this way.

In Sec. I we derive the general expression for the
Ward identities of the first mode. These results have
been obtained independently by other authors. ' In
Sec. II we show how to derive relations for the second
mode and by a generalization obtain these relations
for the eth mode. In the last section we discuss the
problems arising when the condition n(0) = 1 is
relaxed.

I. REDUNDANT COMPONENTS OF FIRST MODE

We begin by considering the Koba-Nielsen4 choice
of variables for the n-point dual amplitude' (see
Fig. 1). Following Bardakci and Ruegg, ' we write
the amplitude will all the exponents added in such
a way that only numerators appear:

1

A,+&,,+&= dydudx p,+2(x, p}p,+2(y, q}u- '-'
0

X II g [1+u(1—y ~ ~ .y, -)
1&i&r 1&j(a

X(1—x) ~ x }g '&". (1)

In this formula the variable u=s(1 —s) ' is inte-
grated from 0 to ~, while the remaining variables
are integrated from 0 to 1, and pp+2(x, p) and p.+9(y, q)
are the integrands of the (r+2)- and (s+2)-point
functions.

Q(m) —Q (y i. ..y!)m( v2

8(")= 2 (xo'" x''}"p.+)-.~2, (3)

and finally obtain

A„+g„+g=
1

dy'dx' p,+2(x', p) p,+2(y', g)

g= Qua„tu„.
n=l

For our purposes we are interested in the equivalence
between Eq. (4) and the usual expression, '

1 1

A„i2„+2—— dy'dh' ds p„+2(x', p) p,+2(y', q) r

( u)m
X exp g P(")Q( ). (4)

m=1

We note that both vectors P(m) and Q(") correspond
to a clockwise rotation. Equation (4) gives imme-
diately the twisted propagator~ which is diagonal in
the usual modes but has a different off-mass-shell
behavior to the untwisted propagator. The result of
Gallardo, Galli, and Susskind' for the twisted vertex
function is obtained if one disregards the integral
from 1 to ~, arguing that it only changes the be-
havior o6 the Inass shell, and then uses as the propa-
gator

—(1)Zll:~(&) +Zj
where

3 C. Chiu, S. Matsuda, and C. Rebbi, Phys. Rev. Letters 23,
1526 (1969); F. Gliozzi, University of Torino report (unpub-
l.'shed); D. Amati, M. LeBellac, and D. Olive, CERN Report No.
Th. 1102 (unpublished); C. B. Thorn, Phys. Rev. D 1, 1693
(1970).' Z. Koba and H. B.Nielsen, Nucl. Phys. B10, 633 (1969).

5 C. Goebel and B. Sakita, Phys. Rev. Letters 22, 257 (1969);
C. Hong-Mo and T. S. Tsou, Phys. Letters 28B, 485 (1968).' K. Bardakci and H. Ruegg, Phys. Rev. 181, 1884 (1969).

00

X exp g p(n)Q(n) (6)
n=l 6

' K. Kikkawa, S. Klein, B. Sakita, and M. A. Virasoro, Phys.
Rev. D {to be published).

8 J. C. Gallardo, E. J. Galli, and L. Susskind, Phys. Rev. D
1, 1189 (1970).
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From the result, '

P(») Q ( 1)kP(k)+P(0)

where pe=pa+pi+ ~ ~ ~ +p„+i V2P——, , we obtain
a» ( I»

P(t&)g(»)
n=1 S

formalism of Ref. 9:
( a g(»)

(7) (0 [ exp( gi " {g[n'"a t—(n+1)»'a itjn'I'an"'

o» [a.tj&&i

+-,'P(o&'+iP('& a t j g, .„ i 0)=0. (12)
; ) X;li"'

Thus the operator
I" n! - (—I)"-

(—» "P"'Q'"'+~ P"'g'"'
O = g [—(n+1)»2a t Pn»2a tja n»2

„,k n n —I!, !k! n n=l

(e) p(») I »;

=Z Z P"'Q'"', (8)
1+NQ n „n

where the product [NQ(1+NQ) 'j("& is to be under-
stood symbolically as an expression for the in6nite
series

" (—n&
i
I»+kg(t&+k)

k=o k & i

We take the functional derivative of both Eqs. (4)
and (6) with respect to the tensor

[p(o1»(4)
II

and obtain

'.*..-- —~. n((. '& "')~ ~

0 i=1

NZ»&X»& a(8) i d—l g
—

{[Q(1+.Ng)
—1$(i) j)&o&a)

0 i=I

&o ( n)»x exp Z P&'&Q& "&.) (9)
S

The equality must be satis6ed for all values of s
[we put I=s/(1 —s) in order that both integrals have
the same end points]. We choose s infinitesimal, with
the result that

gZ Cg(~) jy(4) )= (Iy Cg(o)p(4)
i=a i=1

+s[Z.~.--(.)+1-P(&g(»jn[g(&j ('&

—s Z CQ'"j"'LQ"'j"'"Cg'"»""-')(-Cg'"»"""".)
n 1

(10)
and therefore

(CZ ~.--()+1-P Q»n[g'»"

+P, ' ip, —.aitv2 (13)

has the property of transforming any state into a re-
dundant state, that is, a state which is not coupled
to scalars.

II. CONSTRAINTS FOR nth MODE

In order to generalize the constraint relationships
to the eth mode, we summarize the results of Sec. I
in a more systematic way. All the dynamics of the
uncrossed tree diagrams are included in the equation
of motion'

8"Bl&+ Q na a +1

+S:4(Z (2/ ) "'( .+ .')+*):

jest'(

.', )
n=l

=HQ(a, t x) =0, (14)

where P is the external scalar neutral field and &P the
master wave function defined by Nambu. The oper-
ator 0(~~t, Hermitian conjugate of 00~, has the fol-
lowing property:

[Hg —1j[0(i)t+1$$=0(i)tpIrj&p=0. (15)

Therefore the subsidiary condition (O(»t+1)/=0 is
compatible with the equation of motion and can be
chosen as a constraint. This condition shows explicitly
that the scalar component of the 6rst mode is re-
dundant. We now show how to derive the correspond-
ing relation for the eth mode. By analogy we write

O(2&t+2= g a„tn»'[ —(n+2) 'I'a„~2+n'~'a„j
n=j

8„8"+1—428„v2a—2"+2 (ai ai) . (16)

The additional term —', (ai ai) corresponds to the
scalar component (the tract) of a tensor of rank 2.
It is trivial to verify that

n=1
(&r—2) (O(2) "+2)O'=O(k)'Ifw =0 (17)

{ g Cg(') jv(4) [Q( )]»o& -i)[Q( )gv(k +»)(„j)=0
n=1 i=I,i/n

This tensor relationship can be written in the operator

S. Fubini, D. Gordon, and G. Veneziano, Phys. Letters 29Bs
679 (1969}; Y. Nambu, in Proceedings of the International
Conference on Symmetries and Quark Models, Wayne Univer-
sity, 1969 (unpublished}. We follow Nambu's notation: g1'"-=

{1,—1, —1, —1) and Pa„("» u„«&'g=-»„,g„„.
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In general, for the mth mode we write

0(„)'+m= g a„'e"'[—(e+ m) "a„+ +e"'a„] —8„8&

tories are equal but the intercept is not 6xed. We
consider the e-point amplitude written in the opera-
tion formalism

(0
i

VBVB ~ BV,
where

+1—a„I"(2m) '~'8„+ Q a( a„h(, [l(m —t) ]"'
l=1

and attempt to determine X~, so that

(Hr m) (0—(~)t+m) =0(„)tHr.

By construction it is true that for any X&,

( —8„8&—m+1+ Qua„ta„) (0( )t+m)

(18)

(19)

V = exp [ik g (2/r) '~'a„t]
r=1

)& exp [ik g (2/r) '~'a„] =g.'Q(k):,
r=1

B=B(s+p' pea„—ta„, —p')

=0~ &t( —8„8"+1+g ea„ta„). (20)

Therefore we must prove that

:4(Z (2/r) '"(a+a.')+g): (0(-)'+m) =0(-)' 4:
(21)

With the expression

:p: = I expi [g (2/r) '~'a„" 8] expi [g (2/r) a„B]I Q(g) ~

is the usual Beta function, and p,'=k' is the mass of
the external scalar particle.

We consider a state 0&„&
~ P) and calculate the cou-

pling of that state to the vacuum. Equations (20) and
(21) are modified in the following manner:

VO( ) = (0(„)—mp') V,

B( s+p' Q—ea„'a—„, —p,') (0( )
—m@2)

=0(„)B( Hg„,+m, ——p') + &, (2&)

using the fact that'

a~I exp [g (2/e) '"a„t k]I
n

= I exp [g (2/z) ~&2a t ~ P]I [a&—P(2/i) ~&2] (23)

we obtain

:P:(0(„)t+m) —0(„)t.'Q: =iv2 Q e'~'a
n=l

where F' can be written as

m~1

(1+@')[P B( Hg„.+r p') ——m]—
r=o

m 1
= (1++ ) g ~ree (1—g) ~ ( g g"—m) dg. (26)

r=o

Therefore, if we label by x; the integration parameters
corresponding to the diA'erent propagators, we find
the coupling of a particular state to the vacuum is
equal to

m-1 m—11 m-1
&&(1+~ . +~ . —):~4':+I (1 m) 2 2~~ ]:4': (1+p,') Cgy(gP) [g g"—m+g "(Pg"—m)

(24)

r=o r=o

Thus we find that the appropriate choice is X~

If we now restrict ourselves to the subspace of the
solutions of the wave equation which satisfies all the
constraints, we eliminate all scalar excitations. We can
also understand these relations at the level of the tree
diagrams. In general, any state which can be written
as 0~ & ~ P) can be shown to be decoupled from the
vacuum, i.e., scalar external particles.

CONCLUSIONS

To solve the complete problem of ghosts, one must
consider a more realistic modeljin which the masses
of the scalar external particles are positive. Unfortu-
nately, while the constraint for mode (1) can be easily
generalized, this is not the case for the other modes.
In particular, we discuss the case in which all trajec-

+g erg I( Q g t'
m) +...][Q(1)]n [QP)]i2. . . (27)

r=o

These correspond to scalar excitations which do not
exist in the model. Therefore no cancellation is pos-
sible. However, it is now plausible, as conjectured by
Fubini and Veneziano, that in a more complicated
model (i.e., one that includes those excitations from
the beginning) generalized subsidiary conditions can
be found such that all time components will become
redundant.
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