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From Eq. (C6) we get the explicit expression~

d~+" (8) =w ' dx i'+'Q (ix) (sin8 x—cos8) " '

44Bateman Manuscript Project, Higher Transcendenta/ Func-
tions, edited by A. Erdelyi (McGraw-Hill, New York, 1953)i
Vol. I, Kqs. 3.7 (31), 3.3 (13), and 3.15 (4).

4' Reference 44, Sec. (3.15).

, r (X) I'(l+ 1) (sin8) '
2| Cg ~

tt+ cos8
I'(i+X+1) sinw(X —l)

(D11)
where C„"are the Gegenbauer functions. 4'

After the manipulations of the end of Sec. III, we can

explicitly calculate the Regge-pole eigenfunctions
f~(t, 8) of the Eth daughter /~ =)e E—1—correspond-
ing to a given Lorentz pole of eigenfunction fe(t) . The
result is, apart from inessential factors,

I'(i~+1) ixf-(")"f(') r(; ~E)r(;;E+), )

X (sin8) '~+'Crc'~+'(cos8). (D12)

Note that the odd daughters are absent because, due to
(D7) and (D10), b' is even under 8~m —8 (w~-+ —rt).
Note also that (D11) gives a result similar to the Bethe-
Salpeter calculation' when the initial particles are put
on-shell. The latter circumstance explains why only
amplitudes even in m are obtained in this simple case.
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An attempt has been made to extend the minimal current algebra of Bjorken and Brandt starting from
a gauge-field Lagrangian and including in it nonets of scalar and pseudoscalar fields and making use of
canonical communtation relations both for spin-zero and spin-one 6elds. To apply it to the problem of
weak, -interaction divergences, we identify suitably normalized fields with weak currents and scalar and
pseudoscalar densities introduced by Gell-Mann. As in the case of Bjorken and Brandt, we go to the limit
ma~0, go

—&0 such that gp/m02 =const &0, where mo and go are masses and coupling constants oi the Yang-
Mills field. In the extended minimal algebra, the nonleptonic weak processes are free of all divergences
to lowest order and of a class of leading divergences to all orders in the weak-coupling constant.

I. INTRODUCTION

F 1HE minimal algebra of Bjorken and Brandt' has
the particularly attractive feature that it makes the

electromagnetic mass di8erences of hadrons finite to
lowest order in the fine structure constant. It has been
shown in Ref. 1, that this algebra can be obtained as a
particular limit of the massive Yang-Mills theory, i.e.,
as ms~0 and go~0 such that tJzs/gp is nonzero and
finite, where mo is the mass and go is the coupling con-
stant in the theory. Of course, one uses the field-current
identity of Kroll, Lee, and Zumino. ' The purpose of the
present paper is to extend the minimal algebra to include
the scalar and pseudoscalar densities defined by Gell-
Mann. A convenient way to achieve this goal is to work
with a Yang-Mills Lagrangian with the scalar and
pseudoscalar fields as matter fields and go to the limit
prescribed above. To this end, we first construct an
SU(3) SU(3) symmetric Lagrangian out of vector,
axial-vector, scalar, and pseudoscalar fields. We then
identify the vector and axial-vector fields with currents

*Work supported in part by the V.S. Atomic Energy Com-
mission under Contract No. AT(30-1)-3668B.

~~J. Bjorken and R. Brandt, Phys. Rev. 17'7, 2331 (1969).
2N. &Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376

(1967); T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev.
Letters 18, 1029 (1967).

and scalar and pseudoscalar fields with corresponding
densities introduced by Gell-Mann, Oakes, and Renner. '
We assume canonical commutation relations for fields,
and by the limiting procedure introduced above, we
obtain a simpler set of commutation rules for currents
and densities. We then apply the resulting commutation
relations to study the problem of the leading diver-
gences in weak interaction. We show that nonleptonic
processes are finite to lowest order in the weak-coupling
constant and are free of leading divergences to all orders.
We also show that, to order G', there are no A4 and
A' lnA divergences in 65= 1 processes, where 6 is the
weakcoupling constant. It is obvious from the above
that radiative corrections to nonleptonic decays are
also free of leading divergences to order G.

II. ALGEBRA OF SCALAR AND VECTOR FIELDS

We start with the following Lagrangian in the simple
case with SU(2) symmetry:

&=&o+&a,

where Ze is SU(2) symmetric and Zs is the symrnetry-
breaking part. We work in terms of a triplet of vector

3 M. Gell-Mann, R, 0@kes, and B. Renner, Phys. Rev. 175,
2195 (1968),
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fields and a triplet of scalar fields. The vector 6elds

P„, (j4= 1.—4; i=1, 2, 3) are assumed to be the gauge
fields; the scalar fields 0; are assumed to transform as
triplet representations of the gauge group:

1 . . 1 2 . . 1, 1 2 2+0 k~ovP,ovi , 3 p Avi4vi SDoiriDviri Sm iri
&

Also, using the above commutation relations, it is easy
to see that Eqs. (10) and (6) are consistent. Note that
we have not taken any extra matter field as in the case
of Lee, Weinberg, and Zumino, and taking them does
not affect our commutation relations.

Zg = c303) (2) III. GENERALIZATION TO CASE OF SU(3)SSU(3)

where

~ov, i= [&Vqki ,
ij—viIVVi+, pgpoijk(4IVV, j4IVv, k+itVv kAO j) ].,

Dviri = L~viri+ 3g«ij 3 (4'v.jo'k+ irk'tv' j)]. (3)

where
mo'y, „—(x) =&„P„„„(x)+go J,„(.x), (8)

+v, i poijk/(~vs, jitVv„k+Qp, kpviv, j)+ (Dv&j'rk+&kDv&j))v

(9)—mppp, (x) = B„D„o,(x—)+-', gpp, jk

X(D. (*)4., ( )+4., ( )D. (*)) (1o)
Using the field equations and canonical commutation
relations, Eqs. (4)—(7), one sees that if we define

V„„=(m, '/g, )y„„. (11)

We have the following canonical commutation rela-
tions among the fields:

r~...(*),~-,,(0))..=='~..~„~ (*),
where m, e denote the space part of p, , v, etc. and i, j, k,l
are used for internal symmetry indices:

fo, (x), Dpp j(0))„=p——ib, ;P(x). (5)
Furthermore, since the fields are independent objects,
we have

Lo,'(x) o' '(0) ) ~=0 )Dpo, (x) Doo'('0) ] =p=' '0

(6)

L~-, '( ), ~. ,(0))*.=.=o (7)
The field equations for the p„,; and o; fields are the
following:

cfvii= (C303+CSOS+Cpap) C, (20)

where p„,; is the vector field, g„,,
' is the axial-vector

field, and 0-; and &; are scalar and pseudoscalar fields,
respectively.

Ppvi= ~ ,4Vivs ppv, i+ 3gp fi jk

Xgv, Av, k+qk, k 4v, j '''+@v, kgb, j+4v. j4v,k), (21)

~„„''=ij,itv ijv4O. ''+ 3
—
gO f' jk (4p, i'4 k+v4 v.k4V, 4'),

(22)
Do&i 34Lp i+ 3go fi jk (4Iv j&k+ gkpv, j)

+Sgpd'4k(4. .j'~k+~k4. ,j ) (23)

Div&i rjp&i+ 3go fijk(it44v, j3rk+prkit4o, j)
good, ,k(g, ,j ok+~—k4, , ). (24)

Thus, the canonical commutation relations and field
equations similar to the case of SU(2) can be written
down, and by using them and defining

Vp, '= (molgo)4'uA, o
''= (mp/gp)'4

U;= (c/gp) p„V,= (c3/go)pr, , (25)

To generalize to the case of chiral SU(3) 8SU(3),
we assume an octet of vector and axial-vector fields
and a nonet of scalar and pesudoscalar fields to belong
to the (3, 3*)Q (3*,3) representation of SU(3) g)
SU(3). We can write down the Lagrangian as follows:

~0 4Fpv, iFIjv, i 4Fpv, i Fpv, i

m—o'(itv„;itv„;,+P, „,,'$„) , 3D„o—;D„o;

,'D„7r,D—„—3r, mop(o;—o,+n,7r;), (.19)

and
U, = ca-;, (12)

where c is any nonzero constant, then we get the usual
field algebra of Lee, Weinberg, and Zumino, ' i.e.,

L Vp, , (x), Vp, j(0)]i—p= ip jkV0 P(kx), (13)

LV0, '(x), V~, j(0))i=o=ip, jkV,k(0)+i(mpp/gop)3, jB P(x),
(14)

PSV „.(x) —8 Vp„(x), V„,;(0)),~
i(mp4/gop) b,j—ti „P(x)+.ip,;kV„kij„P(x)

—i(go'/mo') 0 ikpjik V,kV, k &3(x).

Apart from these, we get

[U'(*), Vo, (o)].=o= "U (0)~'( ),
LU;, V, ;)=0,

LU (x), apUj(0) ) o=p=ic 8 jti (x)'
—(go'/mo') ip'ik Uk Uk &3(x).

(15) and an analog of Eq. (18) is

PU, (x), cjp U, (0)).,=p= icos, jp(x) —i(gpp/mop)

Xfiv f&ik UkUk+i(go'/mo')diikdiik VkVk, (27)

LU, (*),pjoVj(0)).,=o=0, $U, (*),U;(0))„=0,
(28)

(16)

(17)

(18) and so on.

where c is any constant, we obtain commutation rela-
tions for the currents and the densities. The above
definition allows us to identify the symmetry-breaking
2& with the one given by Gell-Mann, Oakes, and
Renner. ' To save space, we do not write down the
commutation relations. They are just the generalizations
of Eqs. (13)-(18) with axial-vector currents and with
p, jk replaced by f;,k and d;;k at suitable places; for
example, an analog of Eq. (16) would be

EU4(x), Ao, j(0))vo=o=id;jkVkP(x), (26)
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IV. LIMIT OF MASSIVE YANG-MILLS FIELD

Bardakci, Frishman, and Halpern4 took the limit

mp —&0, gp~0 such that gps/mp'= const (29)

and showed that the massive Yang-Mills theory in
this limit is equivalent to Sugawara s theory. However,
we take the limit in Ref. 1 so that

mp /gp ~pe. (3o)

As a result, in Eq. (15) we have a term of the form

lim (gp'/mp') V,s(0) V,z(0), (3&)
mo2/0o2

and in Eq. (18) we have a terin of the form

lim (gp'/mp') Us(0) Us(0) .
mo2/oo2~~

These are products of field operators at the same
space-time point, and hence are highly singular opera-
tors. However, we take all local field products as limits
of nonlocal products' and assume that the divergence is
mild enough so that

(32)

lim (gps/mps) V,s(x) V„,s(x) —+c-numbers, '(33)
mp2/gp~~ oo

and similarly for the scalar field term. ' However, to be
rigorous we should define all local products occurring in
the theory as limits of nonlocal products and compute
all commutators and in the end take all limits. It is
easy to see that the Jacobi identity is not satisfied in
this limit. After these limits, all the commutators
except those of the type LV, ;, V„,,] and LU;, U,]
remain unaffected and these cornmutators now become
the following:

Leis V, , (x) B„V —
(xp)t, V„,, , (0)]„=p=—i(mp'/gp')

&&5;,5 „P(x)+(c-number terms)+is, ,sV sB„P(x),

(34)

I U, (x), BpU, (0)j„~——ic'8, ,P(x)+c-numbers. (35)

From the Lagrangian, one can write down the stress-
energy tensor' O„„and show that Hpp which is the Harnil-
tonian density, can be written as follows:

Hpp= Hp+Ha, (36)

where Hp is SU(3) &&SU(3) symmetric, i.e., it com-
rnutes with Ap; and Vp;, and H& is the symmetry-
breaking part such that

Hp= —Z~. (37)

V. APPLICATION TO PROBLEM OF
WEAK-INTERACTION DIVERGENCES

(a) We first discuss the leading divergences in
nonleptonic weak processes. It has been shown in a

4 K. Bardakci, Y. Frishman, and M. Halpern, Phys. Rev. 170,
1353 (1968).

5R. Brandt, Ann. Phys. (N.Y.) 44, 221 (1967); K. Wilson,
Phys. Rev. 179, 1499 (1969).

number of papers' that a part of the leading diver-
gences (i.e., G"hs"-type divergences) in nonleptonic
weak processes treated in the intermediate vector-boson
model can be expressed in terms of time-ordered prod-
ucts of 0- commutators to all orders in the weak-coupling
constant. The assumption that goes into this is that the
chiral SU(3))&SU(3) is broken by terms given in
Eq. (20) and the scalar and pseudoscalar densities
belong to (3, 3*)Q3 (3*,3) representation of SU(3) Im

SU(3). Furthermore, in the present model we know
some more commutators like Eqs. (34) and (35), etc.
Thus, the present model only reproduces the results of
Refs. 6 and 7. Moreover, apart from the o commutators
described above, there is another class of leading diver-
gences proportional to [BpV;(x),

B—Vp, (x),, V„,,(0)]„=p,
where the internal indices are such that, using Eq. (34),
the above commutator becomes a c-number, and hence
they do not make any contribution to the leading diver-
gences. Also, as shown in Ref. 6, the time-ordered
products of 0's can be absorbed by a suitable counter-
term in the Lagrangian. So the very first consequence
of minimal current algebra is the absence of a new
class of leading divergences in nonleptonic processes to
all orders. Gatto eI, al.7 ' have arrived at the same con-
clusion by working with compound-field algebra, in
which the bare mass of the vector mesons is taken to
infinity.

(b) We further apply the above algebra to lowest-
order nonleptonic processes. In the intermediate vector-
boson model, with only charged weak currents, one
can show that the lowest-order nonleptonic process has
the following type of divergence. For that, we define

where
M (n~P) = g' Jd'q D„„(q)—M„„(q), (38)

R. N. Mohapatra and P. Olesen, Phys. Rev. 179, 1417 (1969);
J. Illiopoulos, Nuovo Cimento 62A, 209 (1969).

7 R. Gatto, G. Sartori, and M. Tonin, Phys. Letters 28B, 128
(1968); Nuovo Cimento Letters 1, 399 (1969).

R. Gatto, Padua report (unpublished).' In getting Eq. (40), we have defined 2; as any linear conbina-
tion of scalar and pseudoscalar densities. We recall that, if
(n I

and (P I
dier in strangeness by i, then Z, will be a full

divergence and will make the leading divergence vanish by
energy-momentum conservation. If they do not, then one removes
it by a counterterm. See Ref. 6 for further details.

M„„(q)= J exp(iq x) d'x[(n I T(J„(x)J„t(0) ~

jH.c.) I p) —(0 I T(J„(x)J,t(0)+H.c.) I 0)]. (39)

Using the %ard identity and the Bjorken technique, we
obtain'

M(n~P) = —(gpss'/m') (n I
Z I P)—g' in'

&(f (n I I i,, z~]„=o I p) d'x —g' 1nh.

X J(n I (Bpj,'(x) 8 jp, '(x),j,, (0)j o=p I P)d x

+finite terms —above terms for the vacuum. (40)

h. is the cutoff, which we take to inanity. Using Eq.
(35), we see that in' terms are absent since they are
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c-numbers, and the term proportional to A.' is absent by
the argument presented in Refs. 6 and 7. Thus, we have
shown that nonleptonic decays are finite to lowest
order. Note that the vacuum term is not there if cr and P
are different states. We have also applied the extended
field algebra to study divergences in higher-order weak
matrix elements, making use of Ward identities and
making repeated use of the multiple 8jorken technique. "
In particular, we have been able to show that to order
g4, the worst divergence is of A.' type or, in other words,
A4 and A' lnA. divergences are absent. This result makes
the E~'—Es'mass difference calculations" more reliable,
and opens up a way for study of nonleading divergences.
We do not reproduce the details of the g4-„rder calcula-
tion here since it is only a tedious application of the
well-known techniques.

VI. CONCLUSION

In conclusion, we would like to summarize our
results. We have extended the minimal current algebra

'e P. Olesen, Phys. Rev. 172, 1461 (1968)."R.N. Mohapatra, J. Subba Rao, and R. E. Marshak, Phys.
Rev. Letters 20, 1081 (1968).

of Bjorken and Brandt to include scalar and pseudo-
scalar densities in the algebra. The algebra is diRerent
from the quark (SU(3) )& SU(3)]s algebra in that in
our model scalar densities commute, whereas in quark-
type models

LU'(*), Ut(0) j*o=o=tf"~o;~'(x).

We have shown that in a certain limit, the commutators
take a simplified form. Using these simplified commu-
tators, we have shown that nonleptonic weak processes,
when treated in the intermediate vector-boson model,
are divergence free to lowest order in the weak coupling
constant G (G/v2=g'/rttsr'). We have also commented
about the applicability of our results to the study of
nonleading divergences in higher-order nonleptonic
processes.
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We investigate the possible subsidiary conditions compatible with the equations of motion of dual-
resonance models for the unrealistic choice of o, (0) =1. In the language of four-dimensional harmonic
oscillators, we find one subsidiary condition for each mode of oscillation. All time components (in the c.m,
system) can therefore be eliminated. We discuss the possibility of relaxing the condition a(0) =1.

INTRODUCTION

~~~NE of the more serious problems which appears
u in the dual-resonance models is the presence of

imaginary coupling when the residue at a particular
value of the energy is written as a sum of factorized
terms. ' This is in fact a disease characteristic of a
large class of amplitudes which satisfy superconver-
gent relations in the narrow-resonance approximation. '
Therefore it is particularly discouraging that in this
case one encounters the same situation in spite of the
infinite number of degrees of freedom. Fubini and
Veneziano already noticed a possible solution to this
problem. In analogy with quantum electrodynamics

* Supported in part by the University of Wisconsin Research
Committee with funds granted by the Wisconsin Alumni Research
Foundation, and in part by the U.S. Atomic Energy Commission
under Contract No. AT(11-1)-888, g C00-267.

~ S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969);
K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969).

2 S. Fubini, in Proceedings of the Fourth Coral Gables Conference
on Symmetry Principles at High Energies, University of 3IIiami,
1967, edited by A. Prelmutter and B. Kursunoglu (Freeman,
San Francisco, 1967) .

they found that the fourth component (in the c.m.
system of the hadron) of one of the modes of oscil-
lation of the hadron could be considered redundant.
Therefore the ghost is only apparent, and by restricting
the Hilbert space by a subsidiary condition or by
introducing a metric operator, one could handle this
mode. However, the same result was not true for the
other modes of vibration. Of the infinite number of
kinds of ghosts, only one kind could be solved in
this way.

Two ingredients are necessary in order that this
method of resolving the problem of ghosts be feasible:
(1) A linear relation should exist between the cou-
pling of the supposedly redundant state and some
other states, and (2) the cancellation must be such
that the sum of terms gives real couplings.

In this paper we wish to show that at least for one
particular value of the intercept Li.e., n(0) =1) there
exists an infinite class of relations which make the
time components of all the modes of oscillation redun-
dant. While we cannot claim to have solved the com-


