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We extend the results of a group-theoretical analysis of the {<0 multiperipheral equation to the case
t=0 for pairwise equal masses. Using variables discussed in a previous paper, we diagonalize the equation
in the Bali-Chew-Pignotti (BCP) model with respect to the O(2, 1) group and relate the solutions to the
equation so obtained with the solutions obtained after diagonalization with respect to the O(3, 1) group.
Poles in the O(3, 1) partial-wave amplitude give rise to the expected sequence of daughter poles in the
0(2, 1) partial-wave amplitude. At general momentum transfer, we establish factorization at the O(1, 1)
poles in the decomposition of the BCP amplitude, and present further simplifications to the diagonalized

equations based upon this model.

I. INTRODUCTION

HE recent group-theoretical analysis™ of the

multiperipheral equation®® with respect to the
0(3,1) and 0(2,1) groups has provided a natural
framework in which to investigate the constraints that
unitarity imposes upon the residues and trajectories of
the Regge-daughter family near =0. In this paper, we
shall examine some preliminary problems in this direc-
tion.

Since different sets of variables have been used to
write the t=0 %! and #<0 23 equations, it is important
to study first how they match in the limit £=0. More-
over, if we take the Bali-Chew-Pignotti’” (BCP) model
for the production amplitudes at ¢=0 as CD did, it is
essential to translate this model in the #<0 variables by
keeping the nonleading powers in the asymptotic
expansion.

The BCP variables, used by CD and MM! at ¢=0,
are essentially the parameters of the O(2,1) groups
which preserve the momentum transfers in the multi-
peripheral chain. The /<0 variables,??® which we shall
call “three-dimensional BCP variables,” are instead the
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parameters of the little groups of the Lorentz three-
vectors k, associated with each upper and lower momen-
tum transfer Q,,; by the formula

Qu,l= I:k, w'—‘t% ( - t) 1/2]’

valid in a Breit frame of the over-all momentum trans-
fer Q. Since the most important contribution to the
phase space comes, for { small, from spacelike k’s, we
shall often refer to the three-dimensional BCP variables
as “O(1, 1) variables” and to the poles in the respective
Fourier transforms as “O(1, 1) poles.”

In this language, the purpose of this paper is (a) to
establish the factorization at the O(1, 1) poles in the
0(1,1) decomposition of the BCP model at general
momentum transfer, and (b) to use the three-dimen-
sional BCP variables at {=0, giving a relation between
the 0(2,1) and O(3,1) decompositions of the incom-
plete absorptive part of the scattering amplitude.

The latter relation, which is model dependent, gives,
so to speak, the eigenfunctions of the Regge daughter
poles in terms of the ones of the Lorentz poles. It is
therefore similar to the off-shell relation found® for the
Bethe-Salpeter equation. As we mentioned before, that
would be the natural starting point for the dynamical
study of derivatives and residues of the daughter
sequence near {=0. However, we have not extended
our analysis further in this direction.

The O(1,1) expansion of the BCP model for the
production amplitudes has been given in MM?2 We
derive a simplified form of this expression and of the
resulting multiperipheral equation in Sec. II, and we
show that to each Regge pole in the BCP expansion
there corresponds an infinity of integrally spaced O(1, 1)
poles with factorizable residues.

In Sec. III, we take the £=0 limit of this equation for
pairwise equal masses and relate the incomplete absorp-

8D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596
(1967).
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Fi1c. 1. Connection between (<0 and #{=0 frames in the
middle of the chain. Only the lower {=0 frames are shown. The
$<0 frames are shown halfway between upper and lower momenta.
The notation’is defined in the text.

tive part in this limit with that of the =0 equation of
CD. This relationship then implies a connection between
the 0(3,1) and O(2, 1) decompositions of the respec-
tive incomplete absorptive parts, from which we can
derive the eigenfunctions of the Regge poles in the
daughter sequence from that of a given Lorentz pole.

In Appendix B we also simplify the diagonalized =0
equation of MM, using a technique similar to that
developed by CDM for the <0 equation. In Appendix
D a model of the Amati-Stanghellini-Fubini (AFS) type
is treated as an example.

II. £<0 EQUATION FOR BCP MODEL

We begin with a review of the three-dimensional and
four-dimensional BCP variables, which we have indi-
cated schematically for an internal segment of the
multiperipheral ladder in Fig. 1 and for the end of the
ladder in Fig. 2. The three-dimensional BCP variables
(cf. CDM and MM?), consisting of the « boosts ¢; and
y boosts ¢;, build up the O(2,1) transformation a;,
defined recursively,®

@i1= 04 o1, (2.1)
while the four-dimensional BCP variables, for the lower
amplitude, consisting of the z boosts ¢i; and 0(2, 1)
transformation gu=7,(u1;)b.(¢1:)7.(vis), build up the
0(3, 1) transformations ay;, defined recursively,

(2.2)

An analogous set of four-dimensional BCP variables is
defined for the upper part of the ladder, which we dis-
tinguish with the label #: gy, gu:, etc. The initial trans-
formations @y and ay are defined, respectively, in terms
of the initial z rotation ¢, and initial rotation®® 7;,,=

72(¢a)7y(B1a) :

a1,i+1= Q1iqrigi,i+1.

A= g, an="ri. (23)

9 For the sake of economy, we use the same label for a one-
parameter transformation as for the parameter itself.

10 We have set equal to unity the arbitrary initial Lorentz
transformations, mentioned in previous approaches.
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A similar set of variables defines transformations at the
other end of the ladder, and we obtain the transforma-
tions & and by defined in CD, CDM, and MM! and
MM2:

bb = dn+1qn+1¢b, blb = Q1,n+191,n+17 by ( 2 '4)

where 7=7,(8n) 72(([)1,) .

MM? have given the Lorentz transformation, which
relates the three-dimensional BCP frames (4,7), in
which

Q= Qm'_ Qli: [07 0,0, (—t) ”2])
Qli: [O) ki’ 0, wz_’%(_ t) 1I2:|7
Qui= [07 ki: 0) w’l:_}_%(—— t) 1/2]7

and Qi1 and Qi1 lie in the xzt plane, to the four-
dimensional BCP frame (/i,7) in which

Ql’i=[07 07 07 (—tli) 112]

and Qy,s11 lies in the #z plane. The transformation con-
sists in a y rotation 6;,;, which brings Q;,; in (2.5) to the
form (2.6), followed by an x boost!! %;,;, which removes
the x component of Qy,;41.12 Similarly, we can transform
from the frames (¢+1,7) to (li+1,7) by a y rotation
61,41 followed by an x boost! f; ;171 The parameters
of these Lorentz transformations may be calculated in
terms of k;, wi, ki1, Wiy, My, and £, or equivalently in
terms of #i, bui, 81,iv1, bu,iv1, M, and #. The formula for
6. is simply

(2.5)

(2.6)

Sin0u= ki/(—tu) 1/2,

cosby=[wi— 5 (—6)V2]/ (—tu) 2, (2.7)
Puu Sui
¢a do
(a,2) (a,r) & (1,2)
Po
Ugq Uga
¢, Bra
M i Y s
(20,2) Pgq (La,r) (21,2) Q
\ 7 2
g0
Mga

Fic. 2. Connection between ¢<0 and {=0 frames at the left end
of the chain.

11 Qur notation differs from MM2. Our Ay is their ;i + and
our fi; is their a; ;1*1 .

12 Note that in this way we specify the frame (), ) completely
with no arbitrary z rotation left, as in CD.
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while f1,:41 and %;,; depend upon all of these variables.”®
Analogous variables are defined for the upper half of the
ladder. The fact that the f’s and #’s adjacent to one
rung of the ladder depend only upon the Lorentz
scalars associated with the rung is crucial to the factor-
ization condition.

At the ends of the ladder, the above approach must
be modified with 6 being replaced by the z boost #;,
and % by the y rotation B, as indicated in Fig. 2. From
these two figures, one can now read off the important
identities relating the three- and four-dimensional BCP
variables':

gui=ful = put v, (2.82)
0172901, 041= h1iqui f1,541, (2.8b)
A= ula—laieuhu. (2.8C)

The Toller angle wi;=vu~pi,ip1 is fixed by formula
(2.8a) in terms of {;, {411, and four sets of %; and w;;
however, to leading order in exp| {; | and exp| {41 | the
dependence is reduced to the variables, sgn{;, sgniy,
ki, wi, and Riy1, w1 In the same approximation, it is
proper to consider the dependence upon the Toller angle
as residing in the multi-Regge vertex function, and the
reduced kinematical dependence then forms the basis
for a simple factorization of the residues as functions of
the £’s and w’s. In general, however, the Toller angles
are not convenient kinematical variables for < 0. They
have, in effect, been replaced by the extra set of
momentum-transfer variables.

The procedure for the O(2, 1) diagonalization of the
$<0 equation given by MM? and CDM begins with a
decomposition of the unitarity integrand with respect
to the O(1,1) group parameters {;. We concentrate
upon the O(1,1) decomposition of the lower BCP
amplitude and later combine lower and upper ampli-
tudes to form the unitarity integrand. We begin with
the BCP amplitude for the production of N particles:

Mmoo mysms P~ 22 Dimy1®® (7a) Gromop ™ (1)
vi,li,pi

Xpyy oD (81) Grymyps "2 (B B2) = =

b
Glzv+ 1MN+1DN+ g DPN-!- ™ (717) )

(2.9)

13We have, in terms of the lower variables, coshh;=
[]:"'Hﬁ Sifjthi]/ [(—#1,:1)M2 sinhgu:] and coshfiia = [ks sinhgs]/[(—#:)V2
sinngi; |.

4]t would appear that the first two identities, viewed as
equations relating the various boost parameters, do not always
have a solution. Indeed, when u;i#0, ¢1;=0, »;;=0, the first
equation cannot be solved. There are two reasons for these
apparent difficulties. The first has to do with the assumptions
about the sign of ;; and %,2. For £,2<0 (timelike three-momentum)
and #,; <0 we would replace {; with a z rotation ¢; and 6;; with a z
boost. Equation (2.8a) would then read fiipii=pulvii, which
spans the necessary remaining portion of the O(2, 1) group.
However, as discussed in CDM, spacelike three-momentum
transfers span the most important part of the phase space for
small £, and the whole phase space in the limit #—0 if one adheres
to the definition (2.5) in this limit. The second reason for the
apparent inadequacy of (2.8a) is that our prescription for going
from the three-dimensional to the four-dimensional BCP frames
does not leave room for an arbitrary z rotation in the four-
dimensional BCP frames. This restricts the choice of the BCP
0(2, 1) transformation.

2919
where
&mm’—l—lE Uvmlamm'_l_1 Um’_l_]';
Ud=T (IHm+1)/T(—~l+m),  (2.10)

and a is Toller’s®® O(2, 1) representation function of the
second kind. For the lower amplitude, m; is the z com-

‘ponent of the spin of particle ¢ in the frame (/i,7) for

1=1, ..., N+1, and sum,, semp describe the spins of the
initial particles. Conservation of helicity requires that

(2.11)

Glmp= Bm,l—mep-
If we use the formula
Gy (g)~ Zk Dpi*(f)awe(¢) Dw(h)  (2.12)
2

for g=f¢h, which is valid term by term in an asymptotic
expansion of both sides in exp|{|, and the O(1, 1)
decomposition of the ¢ function, given by (A51),'

G ()~ Y 8 Ve explrt (am1) War 0 (1),

n=0 1=z
(2.13)
we may write

()~ X Dpur®(f) explrs (a—mn) 10(r8) Dur i (h),

(2.14)
where 5
Dp,ma(f) = Z Dpia(f) Vi

Dm,f‘(h) = % an,k”Dkl“(h). (215)
Equation (2.14) expresses the decomposition of an
0(2, 1) contribution in terms of a series of factorized
O(1,1) contributions, and is valid as an asymptotic
relation in exp| ¢ |. If we substitute Eq. (2.14) into
(2.9), we obtain the O(1, 1) decomposition of the BCP
amplitude, a simplification of an expression already
given by MM?2:

MM~ 3 exp (— iMata) Unmaing,ri®™ (Eay Wa; k1, w1)
X exp[rifi(en—mn1) 10(rii1)
X Unyriinars™ (R, w1 ko, W) exp[rofa(on—n2) 10(refe)« «
Unyivirwsnim™ 08 (Ruqa, Wny1; Fb, ) eXP(_ ’imbd)b);
(2.16)

where we have omitted the sum over v for the sake of
clarity. We have defined

Un,-r;n"r’m: Z ﬁnr,la(h) Glmp'ﬁp',n’r’a,(fl) . (2'17)
l,p!

15 M. Toller, Nuovo Cimento 37, 631 (1965).

16 Note that, although formulas given in the text do not depend
formally on the choice of the basis for the representation functions,
the actual expression for @({) of course does. Formulas (A3),
(AS51), and (AS2) are written in Toller’s conventions. Since the G({)
is evaluated for a y boost, it differs from the expression given by
Toller by a factor sm—m',
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D(h,) =~ G ~D(f’)

F1c. 3. Index summation scheme for the expression of the
residue in Eq. (2.22).

We shall now apply the above results for the decom-
position of the production amplitude to the decomposi-
tion of the unitarity integrand. In writing the unitarity
integrand with the BCP form (2.9) for the production
amplitude, one must use care in summing over the
intermediate particle helicities #;. With the convention
adopted above, which gives a simple form (2.10) for
the conservation of helicity at the vertex, the helicity
of particle ¢ is measured with respect to different axes
for the lower and upper amplitudes (see Fig. 1). For the
lower amplitude, it is measured along the z axis in the
frame (i, 1), a rest frame of particle 7, which is related
to (%, 7) by a 2 boost v;,;. The corresponding frame for
the upper amplitude (pi, %) differs from the frame
(pi, 1) by a y rotation,” which we designate by x..
(That only a y rotation is required is most easily seen
by observing that the sequence of transformations
vy 0,7 0:hwe does not affect the y component.)
Naturally, this rotation is zero when ¢=0, since in this
limit the frames (/i, 7) and (w3, 7) are equivalent. The
rotation x; depends upon the variables k;, i, ki1, Wiy,
m:?, and £, and therefore introduces no new complica-
tions for the factorization condition. To sum over the
intermediate helicities, we must therefore insert for each
intermediate particle the function Dy,m.*(x), and sum
over m; and m,, where s is the spin of the intermediate
particle.

If we now apply the decomposition (2.16) to the
lower and upper amplitudes alike and combine the
intermediate particle helicities as prescribed above, we
obtain the O(1, 1) decomposition of the unitarity inte-
grand. To each pair of Regge trajectories a;; and au;,
there corresponds an infinite sequence of O(1,1) con-
tributions, the first of which factorizes directly, the
second of which is a sum of two factorizable terms, and
so on. The degeneracy comes from the “cross terms” in
the product of two series of the form (2.14). The
meaning of this degeneracy becomes clear when it is

- understood that the product of two @ functions may be
represented asymptotically as a sum of @ functions,

[a;..771(8) T La50—2(8) I~ 2 C' (o, @ty ¥; Juy J1, )

Xt 7(E) Claw, ay v; kuy Ry k), (2.18)

17 We are idebted to Michael Misheloff for assistance on this
point.
18 cos xs
_ [2M 28— tii—bus) + CGryip — 81— M 2) (buyin—tui— M 2) ]
NV2(M 3,2 tyi, tyia) N2 (M 2, bui, tu, i2) ’
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where ay, a; are real, and
Claw, ay, v; ku, ki, k) =015-4.C (0w, o1, v; by k1), (2.19)

and similarly for C’.® Each & function in the series
contributes in turn a single series of factorizable O(1, 1)
contributions via Eq. (2.13), beginning with the term
expl| ¢ |(@uta;—»)]. Rather than working with Eq.
(2.16) directly in the unitarity integrand, we adopt the
following strategy, which makes the connection with
the =0 formalism more transparent. We substitute
Eq. (2.12) in Eq. (2.9), expressing the upper and lower
BCP amplitude in terms of the @({)’s. Then we combine
the upper and lower amplitudes to form the unitarity
integrand. If we then apply formula (2.18) to the
product of upper and lower & functions at each link,
the result is the following unitarity integrand:

MUy 3

JayJbivi, 34,k
X 'Umahja’yl (Eay ka; w1, k1) Gy, )

K U7 (wy, kij wo, ko) Gion @ () + o

eXp ( - ima%)

[]751‘11-1.'fr&b’mfﬂj‘7 (wN+1y kN+1; Eb, kb) eXp(—imb¢b) ,
(2.20)

where we have lumped together into v the sums over
Yu, Y1, and » and have written at each link

(2.21)

Oy = Oyt 0y—v.

The vertex functions are (see Fig. 3)

’ vond BN — .
Ukj"” (w)k)w ;k ) = Z C(Otu, Olz,V,ku,kz, k)
Jul 31 e k1 mi

XL Y Dra* (M) Grumupu Do i ( fu) T Dinm® (X)

bu,pu!

X I: Z Dkz Lt (hl> Glzmzpz'Dm':iz’al’ ( fl’) ]

12524

XC,(C{u’, al,, ”’;ju,7jl,ajl>) (222)
with similar expressions for U% 71 and U~¥+1.%, We have
put #,=mi— My, and mw=mp— My, and the sum over
ja and 75 includes the usual channel spins at the ends of
the ladder.

If we apply the O(1, 1) decomposition (2.13) of the
@ function to Eq. (2.20), we obtain the form of the
unitarity integrand required by CDM for the 0(2, 1)
diagonalization of the multiperipheral equation. We
define, accordingly, the incomplete absorptive part
B, (@) and its partial-wave projections by,.."*. For
a discussion of the diagonalization of the integral equa-
tion, see CDM and MM?2. After diagonalization the

1 The coefficients C and C’ are related to the vector addition
coefficients for the representations of 0(2, 1). [See Kuo-hsiang
Wang, UCRL Report No. UCRL-19306, 1969 (unpublished) ].
For practical applications involving a few leading terms, they may
be obtained directly by comparing asymptotic expressions for

ac).
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equation reads
by e (B W) = @ Omg mrar™' (B, @)

+ Z Wfdkd’w I;mu ,nrly(k: 'ZU) Un‘r,n"r"w,(ky w3 kl, wl)

v,n,T
X A ayny rrrtay—y (¢, (2.23)

where the index 7 refers to the O(1,1) contributions
resulting from a single a,. The function d is described
in CDM. The vertex function U is defined through
Egs. (2.13) and (2.22):

Unf.n’r’77,= Z Wnr,ka‘yUkJ"’y‘y,VJ".n’1’a7’-

k,if

(2.24)

The functions by, ..” are related to the functions
Omq ur?Y appearing in the modified O(2,1) expansion
(3.8b) and (A45) by
bm.;,n‘r+h
_ I‘[H—1+7(a7——n):ll‘[l+1—r(a~,—n):]6 Iy
T'(204-2) e

(2.25)
which follows from Eq. (4.14) of CDM.

III. O(2, 1) AMPLITUDES AT {=0

We have shown in Sec. IT that the O(2, 1) and O(1, 1)
expansions of the production amplitudes are equivalent
as asymptotic series in the parameters exp|¢{ |, con-
nected with the subenergies. At {<0 we have also
defined, through the unitarity integral, the incomplete
absorptive part B, .."(a; k, w), a function of the over-
all 0(2,1) transformation @, for the nth O(1,1)
“daughter” of a given angular momentum a,=a,,+
a,1—v, resulting from the addition of the upper and
lower Regge-pole contributions. At =0, the incomplete
absorptive part can be defined either as a function of
the O(2, 1) transformation a, or in terms of the O(3, 1)
transformations @, = a;=d. They are not the same func-
tion in different variables because they are constructed
by splitting off different factors from the complete
absorptive parts, depending upon whether they are
derived from a factorized O(1, 1) or O(2, 1) expansion
of the unitarity integrand. By using the explicit form
of these expansions, we shall now derive a relation
between the two incomplete absorptive parts, which
eventually will give the relation between O(2,1) and
0(3, 1) partial-wave amplitudes.

* Since gi=gu=g at t=0, the Clebsch-Gordan combina-
tion of upper and lower amplitudes is simple. Following
CD, we assume
I Mmamb(N) I2N Z Dmamoia(ra) Rmowl(tl)

mi,Yi
X limgmy =" (1) Ry "2 (b1, B2) + « +
RMN+17N+1b(tN+1) DmN+1mbjb(7’b)7 (31)

and we define the incomplete absorptive part By, " (8, ¢)
asin CD, by removing the last factors RD in the unitar-
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D*(h)-
-~ -
D(h)-C < ® -C
~
D (h)-
F1G. 4. The property of the Clebsch-Gordan coefficients used in
the text.

ity integral. If we compare the above expansion of the
unitarity integrand with that obtained directly from
(2.9) using (2.18), we see, by matching terms in the
asymptotic expansion, that

O1pr P'77'= 2 Claw, ay, v; by, Iy )

Wl pu! 02! ym
X (Glumpu') *Gltmpx'cl(au'y al,’ V’§ Pu,, PZ’: P’) ) (3~2)

where the factor 8, follows from (2.11) and (2.19)
(helicity conservation), e is short for a,,, etc., and v
is short for {vu, vi, v}.

The O(1, 1) expansion of (3.1) can be obtained from
(2.12) and (2.13), and we get

l Mmamb S l2N Z eXP(—imaqsa) 17ma ™t (kl, wl)

Yi,ni,TE

X exp[ri¢1(ap—m1) 10 (1181)
X Un1r1,n2127wz(kl; w1, k2; 'LE)2) eXp[TZf2(a72_ n2>]0(7'2§2) cc
(3.3)

UnN+ wrwnms VP (Rygawong) €xXp (— i),

where
Un'r ,n"r’y‘yl = Z Eﬂf.pw’ (}l) Rp'y'y’ﬁpm,’_,a'y’( fl) . (3'4)
P

Equation (3.4) after substitution of (3.2) is to be
compared with the expression (2.24) after substitution
of (2.22), in the limit /=0. With the present procedure
we first combine the upper and lower a=*1( f¢4) in the
Clebsch-Gordan sequence and then factor the functions
D=(h) for asymptotic {’s, whereas in Sec. IT we per-
formed the same operations in opposite order. The
equivalence of the two procedures and the equality of
respective #=0 residue functions and absorptive parts
follow from the property of the coefficients C and C’
schematically shown in Fig. 4. Hence we conclude that
Unf,n’r’= Un'r.'u’-r’-

Looking at the expansions in Egs. (3.1) and (3.3)
with (3.4) in mind, we see that their equivalence
implies that®

(sing) Bp,w? (a08)~ 3 By s (@) Dur it (h),  (3.5)

20 Bmgm(a0h) is the same function of g=a6k as the CD in-
complete absorptive part, but satisfies a different integral equation
in which the variables ¢, 6, { replace g, &, ¢, and 5. The reason is
that in the CD integral equation the integration over i replaces
the summation over intermediate helicities, whereas here it has
been performed explicitly. The equivalence of the two equations
can be proved by noting that, owing to helicity conservation, the
equation satisfied by B(afh) in invariant under the substitution
h—hB, k' —k'B', f'—B7', where 8 and 8’ are 3 rotations, and that
an extra integration over 3 can therefore be added. This invariance
permitted an arbitrariness with respect to % rotations in the
definition of the CD frames.
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where the factor sinf;=k;/(—¢;)V? comes from the phase
space,? and use has been made of the relation [Eq.

(2.8¢)]

a=ug"'abh (3.6)

and of the fact that #,=17 at t=0 for pairwise equal
masses. Note that, if we parametrize

a=wig, F€0(3), §=B.(%), §€O(21),
a=d¢n§, ¢ER2(¢), ”EBI(W)) ‘EEBZI(E)’ (37)

Eq. (3.5) is valid as a relation between asymptotic
series in el¢l. This follows from Egs. (2.12) and (2.13),
on which (3.3) is based, which are valid in the same
asymptotic sense.

Having derived the relation between incomplete
absorptive parts, we now proceed to relate the partial-
wave expansions. Consistently with the asymptotic
meaning of (3.5) we shall perform some manipulations
on the 0(2,1) and O(3,1) decompositions in order
(a) to express the left- and right-hand sides of (3.5)
in terms of the residue functions 4, and bd.,,,* which
are the meaningful quantities in the asymptotic sense
and which can be directly deduced from the diagonalized
equations (B15) and (2.23), and (b) to extract the %
dependence of the left-hand side consistently with the
right-hand side.?

Problem (a) is solved in Appendix A, in which we
prove that, for asymptotic § and £% we have #

Bran(@~ % [ dIN] Do o (@), (3.82)
M,s Yy
Bma .n‘r(a’)N Z fd[l:l bma,n‘rrlea,an,-rl(d”])

X exp(— Eanr)0(7E),

where we have dropped the index v, we have defined
ap,=—1(a—n), and

Dﬁ]’uma.asm)‘M(d) =3 Djoma; 15,m ™M (75)
m!

(3.8b)

X Um’aam'm_a_l (g) Um—-a——h (39)

and s= =+ is the label of the two O(2, 1)’s which occur
in the reduction of the O(3, 1) group.”

21 The volume elements d¢ sinhg d*g and dk dw d§ are appropriate
for the integral equations after the factors (—#)V? and k are
removed from the respective incomplete absorptive parts that
come directly from the BCP expansion. For a given e, B and B
are therefore normalized in a different way; hence, the factor sing.

22 Since /# depends on the variables %, w, &', and w’, this is
needed in order to have a relation involving only one set of
variables, £ and w.

28 FEquations (3.8a) and (3.8b) are valid as asymptotic expres-
sions in cosh{ and elél, respectively, where §= R, (i) Bz (¥) R.(5).

2¢ The notation is as follows (see Refs. 1-3): The O(3, 1) re-
presentation functions are labeled by (A, M), which specifies the
unitary representation, by (7, #) for the O(3) basis, by (Is, m) or
(Is, ur) for the O(2, 1) basis. In the last case, / specifies the
0(2, 1) representation for each (s=d) of the two classes of
0(2, 1) cosets which occur in the O(3, 1) group, and (u=) refers
to the two classes of O(1, 1) cosets in O(2, 1), with a given
eigenvalue (—iu) of K,. d[!] and d[\] are the relevant measures
in the / and A planes.t,

25 A, Sciarrino and M. Toller, J. Math. Phys. 8, 1252 (1967).
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Problem (b) is solved by noting that with the
parametrization (3.7) in (3.6), when | £ | is asymptotic
so is

g="Jh, (3.10)
where f€0(2, 1).2 Then substituting Eqs. (2.12) and
(2.13) into Eq. (3.9), we obtain the right 4 dependence
in the form

Djamaqasm)\M(&)N Z Djama; as,nr)‘M (¢"70)

X exp(— éanr) Dpr m(B)0(78), (3.11)

where
Ejm;as,n‘r)\M(b) = Z Djm;as,m’)\M(b) Vm’.nfa
m!

=27 lim (““T)[(l‘—a’/nr)Djm;as,u+)‘M(b)];

M>anr

(3.12)

and the last equality follows from the definition of
Vm’,n-ra in Eq. (ASO) .

By making use of the group multiplication properties
and noting that 6, K,,** and { commute, we obtain

Dj‘”"“;"‘*'"*”)‘M(a’a) = Z fd[l] Djuma;ls’,ma)‘M(I)
sl,r

X Doyt (@) Dist rs a5, wi ™ (8),  (3.13)
and going to the residues at the poles u= .., we get

Eiamn;as,n'er(d’Vle) = ,Z Jad[] [Kn, (Is", a) TF

X Dy, .amrl (4’"7) Dls' V@nT; asnr 0),

where the K function is written in Toller’s® notation.
We can now substitute (3.14) into (3.11), and then
(3.11) and (3.8a), (3.8b) into (3.5) to get the final
result

bmane’ (ky w) = (sind) 30 [d[N] [Kn M (I, ja) ¥

><bas)‘M(t)Dls’,a,"+;as,nr)‘M(0) B (3'15)

where b, nr'=bun, nri’, and the (—) amplitude can be
obtained by the use of the conjugation properties of
CDM [see Eq. (A1)7]. An expression for DM (6) can be
obtained from (3.12) and (C6).

(3.14)

ImA
cee 21 2 T ot 442
X X X X X X
eroa-l a |aHl a2 e
X x x X X X
Ao Ao ReX
-_—0—
A
st ma2 -a-l| -a -atl e
x X X x X x
eee 42 4

X X x

F1c. 5. Location of the poles in the A plane for the integration
of Eq. (3.15).
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Equation (3.15) solves the problem of connecting the
solutions of the t=0 diagonalized equations with respect
to 0(2,1) [Eq. (2.23)] and to 0(3,1) [Eq. (B15)].
When b, has Lorentz poles at A= ==\, the singular-
ities of &y, ,4,* come from the pinchings of the A contour,
and it is evident from Fig. 5 that they may occur at
l=X—n—1 and at the symmetric positions /= —\p+7.
Actually, only the sequence J=Xo—#n—1 can occur in
Omg ety because this amplitude is, according to CDM,
analytic in the right-half / plane. It is possible to show
that this is true for Eq. (3.15) by the methods of
Appendix A, which are briefly summarized here, for the
convenience of the reader.

Whenever we have a summation of the form

2 Jd\] fis, M g5 M,
s,M

where fi,, M transforms contravariantly under conjuga-
tion with respect to 0(3,1) (poles at A=—I+# and
A=Il+1+n) and g; M covariantly [poles at A=Il—n
and A= — (J4+1+n) ], we can replace the s summation
above by

B g M (BN Moy MM Ao MMy MUV,
(3.17)

where o, B, and UM are defined in Appendix A
and B has zeros in A at the position of the poles of
gi1s M. It is clear, therefore, that the first term of (3.17)
has no /-dependent poles in A, while the second has
poles only at A=l—# and A= — (I+1+n).

We now apply this result to the s’ summation of
Eq. (3.15), with gMM— KM and MMM DM We note
that, in this case, f;,iy ™~ has poles at A=\, coming
from b4, and does not have the poles A=]—#n in DM/
because of the (4) character of the function Dy qy
occurring in its induction construction [see Eq. (C6)].
The first term of Eq. (3.17), which has no /-dependent
poles in A, cannot give rise to poles in / in the left-hand
side of (3.15). The singularities in the A plane of the

(3.16)

ImX\
v a1l a |jarl g+2 ...
o o (o] X X x
)‘0 ’)\o ReA
—O0— ——

a2 ol | -a
o o o x x x

- A2 14
X X . x

F16. 6. Location of the poles in the A plane of Eq. (3.15) after
substitution of Eq. (3.17). We have shown with small circles the
poles coming from d,,!, and with crosses all other poles.

26 We assume A< 0, so that the completeness relation is properly
convergent [cf. (A33)7]. Note that, because of the conventions
of Toller (Ref. 22) and MM for the X\ plane, b,4* has a pole at
A= —N\o, and is well behaved in the left-half X plane.
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second term of (3.17) are illustrated in Fig. 6. It is
clear that the only possible pinchings are between A=
— (I4-14n) and A=—N\,, and this implies the above-
stated result.

The Regge-pole eigenfunctions, which can be calcu-
lated by this method in terms of the Lorentz-pole
eigenfunction, are useful, in principle, to obtain dynam-
ical quantities such as derivatives of the Regge family
at t=0. Note finally that the relation between the total
absorptive parts which follows from (3.15) is model
independent and is, of course, the same as the one
obtained from the general group-theoretical analysis.”
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APPENDIX A: MODIFIED COMPLETENESS
RELATIONS

1. Conjugation Properties in Noncompact Basis

It has been shown by CDM that the (r=—) partial-
wave projection of By’ is a linear combination of the
(r=+) function and the function with / replaced by
—I—1, through the relation?

Bﬂ.u—lzaulBOm+l+ﬁnlBO.n+_l_1F(“Z) /P (1), (Al)

where
aul=— cosmu/coswl,

Bul=[n/T(—p—0)T (u—1) cosxl]. (A2)

Equation (A1) is a consequence of the equivalence of
the representations D! and D=1, which, in the mixed
basis, may be expressed as follows:

Dy, 1(g) = Z,: (Uml)*Dm.ur’l(g)'Yr’,url’ (A3)

where, as in Sciarrino and Toller,?

Unt=T(I4+1+4m) /T (—I4-m) (A4)

and v is a unitary matrix in the 7 basis,

<’Ylul 'Y2Ml>
Vil= . (AS)
Youb Y1t
By inspection, one finds

apt= (=vu/va)*  Bd=(1/v)*  (A6)

With g=17in (A3), the expression reads
Km.nr—lﬂ: XI: ( Un') *Km.ur’l'Yr’.url; (A7)

27 M. Toller, Nuovo Cimento 534, 671 (1968).

28 The restriction >0 in CDM can be removed by choosing
the appropriate sheet in continuing to n<0. However, (A2) and
(AS) need slight modifications for fermion representations.
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where
m m‘ = (Kpr ml)* m url(I) (AS)

Analogous relations hold for the O(3,1) group in the
noncompact O(2,1) basis, where the equivalence is
between the representations (A, M) and (—A, —M).
We shall show that this equivalence leads to a simplifi-
cation of the O(3, 1) completeness relation in this basis.
Instead of (A3) we have

Dju15m M (a) = 2 (UMY Dijn; 15 (@) T, (A9)
of

where Toller has defined

i—\
i=|M| m ’
and T is unitary in the s basis.?® Sciarrino and Toller®
have discussed the function

UM = (A10)

KM (1, 557) =[Djms1en™ (1) T* (A11)

and have obtained the identities
K MM 557) = (=) KM (1, 557),  (AlZa)
KM (1, — ;)= (=)7K~ (1, +57), (Al2b)
KM (—1—1,5;7) = Uy WUt KM (1, 537), (Al2c)

which follow directly from the integral representation
K, 37) =b st ) [ (coshps
1

X727 (6%) dacar ™7 (§) d coshg,  (A13)

where

tanift= tanhi{, cotif—= tanhif. (Al4)

In addition the K function has orthogonality prop-

erties, implied by the identification
KME(L s35)(, s, m | jm), (A15)

which follow from group multiplication properties of
the D functions. We shall make use of the property

2 KMy s KM, '3 5) T =0ur8(1, 7). (A16)
j
Combining (A9), (A11), and (A16), we obtain the
following expression for I':

80, ¥)ToiM = Z[K ML s 0) T
XE MV, s'57) UM
From (A12a) and (A12b) it then follows that
M (= )%y M
M= , (A18)
lekM (__)2eF1l)\M
where, as in Sciarrino and Toller,

(=)= (=)™

(A17)

29 That I must be independent of 7z may be verified by putting
a—ag in (A4) and using the irreducibility of D%
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Furthermore, from (A12),

Tt M= (=)2T,M  fora=1,2,
Ty, M= (=) 2T M, (A19)
Do M =Ty
If we define
M= — (T M T M) % B = (1/TyM)*, (A20)
so that
[Dsmi ™ (@) 1" = oM [ Di; 1 ™ (@) T*
+BMY[Dijusrin™> 7 (@) (UM ¥, (A21)
then from (A19) we conclude that
aP M =apM, B M= (= )2BAM,
o M= (—) 2, B M =B (A22)

In order to continue the foregoing relations to values of
I and X corresponding to nonunitary representations, we
make the replacement /—»—[—1, A——X\ in expressions
involving the complex conjugation of the functions K,
T, o, and 8. Thus

()\M* —\, M

=o_j1 ",

( )\M)* ﬂl —)\M (A23)

To conclude our summation of general properties of the
functions @ and 8 we observe that the unitarity of T
implies the following important relations®:

oy MM = — M 1— (az)‘M)2=.31‘M,3_z_1_)"M.
(A24)
We now propose to show that
1_ (al)\M)2=61)\M6—l—1_)\M=O (Azs)

whenever A==+ (l4+14#%) or A== (—I+#'), ie., at
the “kinematical” poles of the representation functions.
We show in Sec. 2 of this appendix that this property
of a produces the necessary cancellation of the kine-
matical poles in the O(3, 1) completeness relation. The
proof of (A25) makes use of the fact® that K, (1, s; 1)
has poles at A+I=#» and A—I—1=# [see (A13)] but
no other poles which move in A as a function of /.
Sciarrino and Toller have defined the residues at these
poles

lim (=N n+1)K M1, +;7) =W (A26)
l>N—n—1
from which it follows [see (A12c)] that
lim (HA—n) KM (1, +;7)
>—M\n
= — U, M1, M (A27)

From (A9), (A11), (A12b), and (A18) we obtain the

3 Explicit calculation from (A9) gives, for M =0, a}=
sinwl/sina), and BA0= —TI'( )\)I‘(>\+1)/[I‘(l—|—1+>\)1‘(>\ l)] The
properties (A23)- (A25) can be explicitly verified for these
expressions.
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relation
K74 (1, +3.) = UM TR, A+, ) Ty
+ (=) KM (1, A+, ) To ™M (A28)

If we require that Eq. (A28) be consistent with the
left-hand side having poles at —A—Il—1=#u and —\+
I=n it follows that I'y,_; ™ or Ty _; ™™ or both
must have poles at these points. Let us denote the
residues by 71, and 7, in each case. With these
definitions we write the residue of (A28) for both signs
of M at —A—Il—1=n:

Wi Mon = UPMLR ML, -, )1
+ (=)D 4, ],
W M0n= (=) 2 UPMLR (L, )1
+ (=) R+, ), (A29)

where we have used (A10) and (A19). Sciarrino and
Toller have given the identity

Wi Mom= (= ) Fmtnfy , Mo, (A30)

With this identity and the orthogonality property
(A16) [with (A12b)] we conclude that

P A M = (— Y1 (— )22,
Consequently, from the definition (A15),

lim (al)‘M)2= lim (I‘l,_l_l_)"M/I‘z,_z_l_)"M)2= 1.
I>M14n >N 140

(A31)

(A32)

By the same methods one may verify that (A32) holds
for —A\+I=mn. From (A23) and (A24) it follows that
(A31) is also valid in all cases when A——)\, which
proves (A25).

%2. Asymptotic O(3, 1) Decomposition in
Noncompact Basis

In this part we derive an expansion of the incomplete
absorptive part in terms of O(3, 1) representation func-
tions, which is asymptotic in the sense of Sec. II. From
our final formula (A41) one may also obtain a simple
expression for the leading O(3, 1) pole contribution.

Into the completeness relation for O(3,1) partial
waves,

Brunta)= ¥ [ N [ A0 B Dy (a),
0

(A33)

we substitute the following identities, derived from
Eq. (A21) and the definition of BM:

Bl—-,m)\Mz al)\MBH-,m)\M_i—ﬁl)\MBH-,m_)\ ,—M( Uja)\M) *7
Djima; e = () *Djymy; vy ™™

+ (51)‘M) *Djama; Lhm—)“_MU ja)\M' (A34)
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The integrand then reads, schematically,
{ BiMID M M (o) ]
A By MDA MG MM (G )
By MM Dy MMM (G
+ By N MD M (N * (@) *EAME L (A35)

By making use of (A22) and (A23), one may readily
verify that the terms grouped in the first set of curly
brackets are the same as those in the second after
replacing (N, M) by (—\, —M). Consequently, we
extend the limits of integration over A, and keep only
the first two terms in (A35):

Prn@=% [ dm{ [ v }

12 pnit
X Buy pM B MBI D 1 ™ (@)
UM Djmg;tp M (@) ], (A36)

We now proceed to shift the contour of integration
in 7in (A36) so as to collect the residues’at the input
poles of By »» at I=a, and /= —a,—1. If we write
a=rng, where 7€0(3), g=R.(u)B.({)R.(») €0(2, 1),
and 7 is a 2 boost, then

Djyma;1s,m™ (@) = 2 Dijgmg,tsm™ (7n) Dyn'(g), (A37)
m

and we seek an expansion of B,.,.(r1g) as an asymptotic
series in cosh{. Following Toller,’:% we first write

D! (8) = Gmrm! (8) + Ut ™71 (g) Un™ (A38)

and then substitute (A37) into (A36). By making use
of identities for the reflection /—»—I]—1, we obtain

Brn@)= % [ [ iy |

—1/2—1% I=k+

X Bry B M BMD 14 ™ (@)

+ Uju)\MDjama; o M (a) al)\M]) (A39)
where

D—jm;ls,m)\M(a) = Z Djm; ls.m’)‘M("’?)
m!

X Uit (g) U1 (A40)

The partial-wave amplitude By, has a pole on the
left-hand side at /=« in addition to A-dependent kine-
matical poles. The D function contributes additional
A-dependent poles and also contains ‘‘nonsense” poles
in / arising from the e function in (A40).% However,
when the / contour is shifted to the left, the first term
in the curly brackets in (A39) contributes a residue
only at /=ca. The kinematical poles are canceled because
of (A25), and the nonsense poles are canceled in the
usual way by the contributions of the discrete series.
The kinematical poles in the second term are not all
canceled. However, the residues of these poles are
regular in A and, since Dy »~¥B; M vanishes exponen-
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tially as ReA—— o % they give vanishing contributions
to the A integral.

The upshot of this analysis is that, asymptotically
in g, we may simply replace the integration over  and
summation over the discrete series by the pole contri-
bution at /=«, as follows:

i

Bum(a)~ fj‘ AIN] 5D a0 ™ (@)

0

4100
= % [ apTbapup
M J—iwn

X {6a)‘MDjama: et (a) +aa)‘MDia7na; I
(A41)

Equation (A41) is also suitable for obtaining, for 7
large, the asymptotic contributions coming from dy-
namical singularities in X of B/, Shifting the A contour
to the right® for the first term and to the left for the
second, we see that the a-dependent poles in A of the
first term are canceled as before, whereas the second
term has no such poles on the left and no dynamical
poles in 6,2, either. Except for an additional complica-
tion, one would replace the integral over A by a sum over
the residues at the Lorentz singularities of 8., of the
first term only. The complication is that in general it is
possible that o has extra poles in A % that are absent
in b4, It can be shown, from arguments based on the
absence of such poles in D; M and b, in (A34) that,
should such extra poles occur, they must be canceled by
contributions from similar poles in 8, in the first term
in the curly brackets. This circumstance has a precedent
in the Mandelstam-Sommerfeld-Watson transform.2—3

3. O(1, 1) Decomposition of O(2, 1)
Representation Functions

Note first that manipulations analogous to those of
Sec. 2 of this appendix can be performed in the case of
the O(2, 1) expansion of By, a-(@). If we parametrize

a=né, $=R.(9), 71=B,(n), £=B,(%),
(A42)
and substitute the conjugation relations (A1) and (A3)

31 We follow here the conventions of Sciarrino and Toller
(Ref. 25) and MM! for the sign of A in the induction construction
of the representation in the mixed basis. This implies that Dy =M
is well behaved in the left-half A plane. Note that this convention
is opposite to the usual one for the / plane.

32 The explicit expression given in Ref. 30 has such poles at
integer values of . They correspond to the half-integer values in
the / plane. At such values b, has a symmetry analogous to the
Mandelstam (Ref. 33) symmetry, and called “gemel symmetry”
by Gatto and Menotti (Ref. 34).

8 S. Mandelstam, Ann. Phys. (N.Y.) 19, 254 (1962).

% R. R. Gatto and P. Menotti [Phys. Letters 28B, 668 (1969);
29B, 592 (1969) ] have studied this symmetry in the case =0
where a®=0, and therefore the poles at the integers do not
appear in our expression. When «5<0, the absence of such poles
in b, * can be used in Eq. (A34) to prove the gemel symmetry
very easily.
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into the O(2, 1) expansion

—1/2+i00
-Bm,nr(a) = d[l]
r —1/2
+100
X / 3 (—)du Bor,ur' Do i (@), (A43)
we get

—1/2+4ic0

Bnr(a) = /1/2_. d[l] /_ (—=1)@u Bpr uy 18,71

X [BMle,u+l(¢7l) +anle.n+—l_1(¢77) Uml]e~“£~ (A44)

The first term in the integrand has the I-dependent
poles in the u plane canceled by the factor 8,8,
whereas the second term still has the poles u=
=+ (—1Il+n), but their residues are analytic and well
behaved in the right-half / plane, so they give vanishing
contribution to the integral. Therefore, the asymptotic
series of (A44) in elé is simply obtained by picking up
the contribution at the “dynamical” pole

p=—7(a—n) =ay,,

which is nonvanishing only when 7£>0. We have
finally

Bm,n'r(a)N Z f(][l] bm,n'rrle,am.rl(¢TI)

X eXP('—amg)o(TE) ) (A45)

where by n' are the residues of B, . at the poles
M= Qe

We want now to obtain the O(1,1) decomposition
of the function @mm"1({), which occurs in the produc-
tion amplitudes (2.22) and (3.1) as single Regge-pole
contribution. The main purpose is to prove factoriza-
tion at the O(1, 1) poles.

We start from the relation

+100
Dan(§)= [ (=) Kole B, (A46)
which follows from the definition (A8) of the trans-
formation functions K, After substitution of the
conjugation relation (A7) in the form (A1), the
right-hand side of Eq. (A46) can be written in the form

dmm'l+ Umldmm’_l_lUm’_l_ly (A47)
where
4700
G2 [ (i) d (8,7 K
— @ Ko U 8B, K L. (A48)

Note that the first term in the integrand has no I-
dependent poles in the u plane, as usual. The second
term has only the poles p=4(/—#») coming from
Kol By displacing the u contour either to the right
or to the left according to whether {=0, and neglecting
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the background integrals, we get
Umldmm’_l_lUm’——l_lN Z Vm n-rl

X exp[r (I—n) 0(78) Warm't, (A49)
where
Vand=2r lim (—7)[u+7(—n)IKn.uth
u>—1(l—n)
Wormr'=[— !B Ky ™ U™ e ey (AS0)

Since the asymptotic expansion (A49) contains only
the powers (exp|¢[)*™®, we can identify @’ with
Toller’s ¢!, and we finally get

G 1= U o™ U 1

= Z Vm,nrl eXp[Tg‘(l— n) :]0 (Tg-) Wnr,m'l, (ASI)

which exhibits the factorization at the O(1,1) pole
contributions.

For convenience of the reader, we quote finally the
result®

Km,nrlz[r("‘l_l_#) F(~l—y)/27rzlr(—21):|
X explin (IHm—u) /2]F (—I—rm, —I4p; —21; 24-40).
(A52)

APPENDIX B: O(3, 1) DIAGONALIZATION OF
{=0 EQUATION

We present here a simplified form for the diagonalized
t=0 equation of Mueller and Muzinich.! The simplifica-
tion parallels the method of CDM for the <0 equation.

Rather than using the Andrews-Gunson E function®
for the BCP amplitude, we prefer to use the & function
(2.10) of the text. We require the O(2, 1) decomposi-
tion of Toller’s ¢ function, which reads

—1/24-100
1) = [ AT Ko (1) D71 (g)
—1/2

+ > Ko (b k=) Dy *£(g) for Relij=—3—¢,
kE

(B1)

where the @ function and the D functions for the con-
tinuous and discrete series have been given by Toller.’s
From Andrews and Gunson’s formulas (3.3), (2.1),
and (7.12) we find that with d[1]=%(l)dl for m>m/,

T (htm'+1)
I'(h+m--1)

T (m4-l+1) (2h+1)
P(m"f‘lz‘l-l) (l2_ll) (ll+l2+ 1) ’

Ko (hy ) = [2min (b)) 1

(B2)

% Equation (AS52) is obtained from theJcomplex conjugate of
Eq. (A20) of CDM after multiplication by the phase factor
exp(44mm). The reason is that Mukunda’s convention for the
0(2) basis differs from Toller’s. We are now using Toller’s basis,
whereas we used Mukunda’s basis in Egs. (A19)-(A20) of
CDM. [See N. Mukunda, J. Math. Phys. 8, 2210 (1967).]

36 M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).
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and for m<m/,
Kmm’ (lly l2) = K—m,—m' (ll, l2) .

A property of the K function which we will find useful
may be deduced from the orthogonality relationship

between two D functions and the expression given by
Toller:

Dy (8) = G (8) + Un @™ (g) U™,
where

(B3)

Unl=T(l+m+1)/T (m—1).
That property is

lim Kmml (ll‘— €, l2) + Um—ll—lemr ( — ll— 1— €, lz) Uvm'l1
>0+

=8(l, k),

where Im/;>0 and Iml;>0, and Rel;= Relb=—13.
We have defined

—1/24-i00
[ dn3a 0 i) =1,

—1/2

(B4)

With this form for the decomposition of the ¢ func-
tion and the form (3.1) for the unitarity integrand, the
t=0 equation as diagonalized by MM! reads

bvmr ™ (8) = @brms™ () + 22 [ i+ X ]

I=k+
0
< / dt Sinbgbum (£) R (1, )

Xdl’s’ .ls,m’M”(q_l) [_ Kmm' ( —o— 1, "‘l'—‘ 1) ],
where

BlmS’M[(t) = Z bl’n'S’)‘M(t) [_ KnM(_a'— 1, —I— 1)]

(BS)

(B6)

is the amplitude of MM!, and we have suppressed the
v index for the moment. Recall that ¥

dvy ™ (g7 = /; d cosha[dyurm (a) J*

X (coshg+ sinhg coshe)*d ar,mt (@) for ¢>0,

(B7)
cosha’= (sinhg+ coshq cosha)/(coshg+ sinhg cosha),

and similarly for the other representation functions
(cf. MMY).

Because ¢ is always positive, the d function in Eq.
(B5) vanishes for s'=-4 and s=—. As with the {<0
equation, the system of equations in s reads

b= @b MABMMEL M,
b M = b MILp MK NMLp MK MM (BR)

Asin Eq. (A1), one can make use of the equivalence of -
the representations (A, M) and (—\, — M) [Eq. (A9)]

37 We keep the conventions of Sciarrino and Toller and MM!
for the sign of A (see Ref. 26).



2928 M. CIAFALONI

Ref =-1/2

| R

X X X

Qo
N e 1]0 1 2 Re £

(-]
~a-1

F1c. 7. Location of the poles in the / plane in the integration of
Eq. (B13)

to reduce the second equation to the form
b M= @by Mo ME ML (BY)

Therefore, only the first equation in (B8) is needed to
determine the locations of the Lorentz poles. We shall
henceforth restrict our attention to this equation.

We now wish to present a scheme for shifting the /
contour in Eq. (BS5) so as to collect only those residues
arising from the input Regge poles. As the equation now
stands, we are prevented from doing this by the presence
of A\-dependent “kinematical” poles in / in the function
b, which lie on"both sides of the contour. They appear
at the same locations as the poles of dyy 1y in 7,
which, from Eq. (B7), appear at

V=—=N\+n,
Ve 1=—2\tn (B10)

The two sets of poles are additive with respect to each
other, as may be seen by substituting Eq. (B3) into
Eq. (B7). This offers the possibility of writing b in
Eq. (B5) as a sum of two terms, each of which'has only
one set of singularities in I. We define

R —1/2+i%0 _
bi,,»M=[ [T amy v ]bmJMKMm(l, )
—1/2 I=k+
(B11)

for Rel=—%—e.
This function has kinematical poles at I4\=# but none
at —I—14-\=n. Moreover, because of Eq. (B4),

b = b Un b UL (B12)

Substituting Eq. (B12) into (BS5) and the result into
Eq. (B11), we obtain

bum™ (1) = 0 brm™ ()

N % [ /—1/2+='w PR Z=Zki] -/;o i dt sinhg

—1/2—7%
>< blm)\M(t) [_Kmm’ (_"Ol_ 1, —— 1) :l
X Ry (4, ) dvin™ (¢7),  (B13)

forn=0,1,....

AND C. DETAR 1

where
(211 lm,)‘M(q_l) = / d cosha a+M,m_l'_1(d) d—{-M,ml(a/)
1

X (coshg+ sinhg coshe)»1. (B14)

We have constructed b, so that it has A-dependent
polesin / at —A4-n (i.e., in the right-half / plane) only.
It also has poles and zeros contributed by aum " in
the separation (B12). These poles and zeros cancel
poles and zeros in the weight function 7(?) in the usual
way,! and the resultant /-plane singularity structure of
the integrand in Eq. (B13) is indicated in Fig. 7. If we
shift the contour to the left, we collect the residues at
the nonsense poles at I=—1, —2, ..., —N.% These
cancel the contributions of the discrete series, as usual,
and we are left with the contribution from the “dynam-
ical” pole at a. In terms of the values at the dynamical
poles boyn™, the equation reads

S A 0 V
ba'y’m’)‘M(tl) = (O)bayrml)‘M(tl) + Z / dt sinhQ'
m,y Y—0

X barn™ (8) R (8, ) dur ™ (@), (B15)

from which an m-independent equation for bu,M =
2m bayn™ can be obtained, having as the kernel

sinhg ¥ Ry’ (1, ') dayar®™ (1), (B16)

Owing to Egs. (B12) and (B6), the residue functions
bo M appearing in the modified completeness relation
(A41) are given by®

bart? =3 [Doym™+Up gy MU, ]. (B17)

APPENDIX C: REPRESENTATION FUNCTION
NEEDED IN TEXT

We derive here an integral representation for an
0(3, 1) representation function required in Egs. (3.12)
and (3.15) of the text. That function is the matrix
element of a y rotation in the noncompact O(2, 1)
basis:

Dl's’.l"r’; ls,ur)‘M(a) = <l/5,7 er/ I eXp(_io]y) I lS, ,u,7'>
55(:‘",—,#) dl’S’,ls;m"r)‘M(e)' (Cl)

The index s= 4= represents the required doubling of the
0(2, 1) basisand theindex == the analogous doubling
of the O(1, 1) basis for the representations of 0(2, 1).

The procedure for constructing matrix elements of
the Lorentz group in the O(2, 1) basis by the method

3; N5=)min( |m|,| M) for mM>0and?N =0 for mM <0 (see
Ref. 15).

¥ TIn the O(2, 1) case, we were able to remove the kinematical
poles from the incomplete absorptive part explicitly by factoring
out a B function. Since we have not been able to do the same in
the§O(3, 1) case, we do not have an expression analogous to
(2.25) relating b,* to be M. Hence in practice one must substitute
(B14) into (B17) to relate b, ™ to b, although we believe
the relationship is not fundamentally a dynamical one.
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of induced representations has been summarized nicely
by MM, who give further references. We shall merely
sketch those points which must be altered in their
treatment for these special representations.

The parametrization of the O(2, 1) elements approp-
riate to the basis required is

gs= exp(—ipJ,) exp(—ia,K,) exp(—irAK,), (C2)

where 0<¢p<4mw, — o <a;<4 o, and —o <AL+ ®©
spans the group. Note in particular that both signs of
a, are required here. The mapping on g induced by the
rotation ¢ leaves N and ¢ unchanged. The mapping on
a, is

s cos30 exp(a;) — sinif (©3)

s'exp(a’y) = — .
p@) s sin3f exp(as)+ cosio

The mapping on the elements in the Hilbert space
H=LMPL M is
UN[exp(—1i6Ty) H{d+(g4+), o-(8-)}

= {2 x4V (0, a) ds(g1), 22 XM (6, @) 6 (8-

(C4)

where g'v= exp(—i¢pJ.) exp(—id'vK,) exp(—iAK,)
for @'y as defined in (C3). We have defined

Xs's™M (6, as) = (s’ sinf sinha,+s’s cosf) !

X6(s’ siné sinha,+s's cosf). (CS5)

We use, as a basis for the Hilbert space 3C, the repre-
sentations of O(2, 1) in the mixed O(2) XO(1, 1) basis,
described in MM? and CDM:

<g+7 8- I l+’ :‘Lr): {DM'I"‘l(g+>7 0};
<g+; 8- I l_, /“'7>= {0> D—M:M'fl(g—) } .
In this basis we have, from (C4), the final result

+o0
vt o pr M (0) = / d sinha, [dear,ur? (as) T*

XXS’,S()‘) (0; a/s) dsM,m‘l(a,s') . (C6)

APPENDIX D: AFS-TYPE MODEL AS EXAMPLE

It has been shown in CDM that the unitarity model
of Fubini ef al.® (AFS-type model) can be described
easily with the three-dimensional BCP variables.
Analogous treatment holds in the #=0 case. Since spin-
less particles are exchanged, the kernel of the multi-
peripheral equation is g-independent (o= 0 throughout,
and no Clebsch-Gordan coefficients are needed) ; and it
contains the off-shell 7-r cross section? A,(coshg) =
As(coshg) as a factor replacing the & function which
appears in the single-ladder approximation.

4 D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento 26,
896 (1962).
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The =0 equation can be obtained from (B15)%
noting that, apart from the factor A5(coshg), we require

(D1)

RV o 1(g) —— (=4,
ay,ay/>0

and since dp1(g)—1 as a—0, we have
Ry (4, ¢)— (' —p?) 2
Substituting (D2) into (B15), and noting that

(D2)

Ao (g71) = / dx(coshg+x sinhg) !
1
= ¢/ sinhg, (D3)
we get the equation
0
) = b () + / tdt M) V(e 1) (=) 72, (D4)

where

= [

20(¢,t7)

sinhg d coshq A (coshq)eM
A sinhg

7

z= (4u?—1—1) /2(")1"?, (D3)
sinh§o= (s—m?—1") /2m(—1" )12,
@b (¢') =As(sinhgo) (' —p?)~2
Note that =8, because b_*=0, since ao?=0.
The O(3, 1) expansion now reads
o ie0 +700
B@= [ apspr@= [ apIen@),
0 —100
(Do)
where
P=b,} D} a)=Du;o1,0(¢) =D-a). (D7)

Since % in Eq. (3.5) is an O(2, 1) transformation and
a=0, the relation between the two incomplete absorp-
tive parts is rather trivial®:

B(at)=B(a), (D8)

and the indices m and nr are not needed. [More
precisely,® B(a)=)_. By.(a) contains both (4) and
(=) 0(1, 1) poles.] The partial-wave amplitude b'=
boy 4! is then easily obtained, either by direct applica-
tion of group theory to (D8), or from (3.15) in the
limit a=0. We have

b (k, w) =Y [d[N] (Kis,0®)*bs* (1) diers* (6), (D9)
8,8/
where the relevant functions, according to (3.17), are®

diy 20) = Diyo1:040°(0),  dy 2(0) =duy. M7 —0).
(D10)

4 The =0 equation can be obtained directly in a much simpler
way [see S. Nussinov and J. Rosner, J. Math. Phys. 7, 1670
(1966) ]. Here we want simply to show how the «=0 limit is
reached with our formalism.

42 The absence of the factor sind of Eq. (3.5) is consistent with
the form of Eq. (D4) and of Eq. (4.12) of CDM.

4 From Eq. (A50) and (A52) one can verify that Vo=
Wo,n1°=6n0~
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From Eq. (C6) we get the explicit expression*

dy MO) =71
cotd

dx 1*H1Qq(1x) (sinf x— cosf) !

T\)T(@+1) (sing)?
-1 Cr_y "1 (cosh
TOAFD) snr(ie) et (cosd),
(D11)
where C,” are the Gegenbauer functions.®®
After the manipulations of the end_of Sec. ITI, we can

4 Bateman Manuscript Project, Higher Transcendental Func-
tions, edited by A. Erdélyi (McGraw-Hill, New York, 1953),
Vol. I, Egs. 3.7 (31), 3.3 (13), and 3.15 (4).

4% Reference 44, Sec. (3.15).
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explicitly calculate the Regge-pole eigenfunctions
Sfx (8, 6) of the Kth daughter lg=No— K—1 correspond-
ing to a given Lorentz pole of eigenfunction fy(¢). The
result is, apart from inessential factors,

I'(lg+1)&
fx(t,0) «fo(£) F(%_%K)r(%—i%K-H\o)

X (sinf) ’EHCrixt(cosf). (D12)

Note that the odd daughters are absent because, due to
(D7) and (D10), b is even under §>r—0 (we>—w).
Note also that (D11) gives a result similar to the Bethe-
Salpeter calculation® when the initial particles are put
on-shell. The latter circumstance explains why only
amplitudes even in w are obtained in this simple case.
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Possible Extension of Minimal Current Algebra and Applications
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An attempt has been made to extend the minimal current algebra of Bjorken and Brandt starting from
a gauge-field Lagrangian and including in it nonets of scalar and pseudoscalar fields and making use of
canonical communtation relations both for spin-zero and spin-one fields. To apply it to the problem of
weak-interaction divergences, we identify suitably normalized fields with weak currents and scalar and
pseudoscalar densities introduced by Gell-Mann. As in the case of Bjorken and Brandt, we go to the limit
mo—0, go—0 such that go/mo®=const >0, where m, and g, are masses and coupling constants of the Yang-
Mills field. In the extended minimal algebra, the nonleptonic weak processes are free of all divergences
to lowest order and of a class of leading divergences to all orders in the weak-coupling constant.

I. INTRODUCTION

HE minimal algebra of Bjorken and Brandt! has
the particularly attractive feature that it makes the
electromagnetic mass differences of hadrons finite to
lowest order in the fine structure constant. It has been
shown in Ref. 1, that this algebra can be obtained as a
particular limit of the massive Yang-Mills theory, i.e.,
as me—0 and ge—0 such that m,/gy is nonzero and
finite, where # is the mass and g is the coupling con-
stant in the theory. Of course, one uses the field-current
identity of Kroll, Lee, and Zumino.? The purpose of the
present paper is to extend the minimal algebra to include
the scalar and pseudoscalar densities defined by Gell-
Mann. A convenient way to achieve this goal is to work
with a Yang-Mills Lagrangian with the scalar and
pseudoscalar fields as matter fields and go to the limit
prescribed above. To this end, we first construct an
SU(3)® SU(3) symmetric Lagrangian out of vector,
axial-vector, scalar, and pseudoscalar fields. We then
identify the vector and axial-vector fields with currents
* Work supported in part by the U.S. Atomic Energy Com-
mission under Contract No. AT (30-1)-3668B.
LJ. Bjorken and R. Brandt, Phys. Rev. 177, 2331 (1969).
2N.§Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376

(1967); T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev.
Letters 18, 1029 (1967).

and scalar and pseudoscalar fields with corresponding
densities introduced by Gell-Mann, Oakes, and Renner.?
We assume canonical commutation relations for fields,
and by the limiting procedure introduced above, we
obtain a simpler set of commutation rules for currents
and densities. We then apply the resulting commutation
relations to study the problem of the leading diver-
gences in weak interaction. We show that nonleptonic
processes are finite to lowest order in the weak-coupling
constant and are free of leading divergences to all orders.
We also show that, to order G? there are no A* and
A?InA divergences in AS=1 processes, where G is the
weakcoupling constant. It is obvious from the above
that radiative corrections to nonleptonic decays are
also free of leading divergences to order G.

II. ALGEBRA OF SCALAR AND VECTOR FIELDS

We start with the following Lagrangian in the simple
case with SU(2) symmetry:

£= £o+£ B, (1)

where £ is SU(2) symmetric and £p is the symmetry-

breaking part. We work in terms of a triplet of vector

3 M. Gell-Mann, R, Oakes, and B. Renner, Phys. Rev. 175,
2195 (1968).



