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We extend the results of a group-theoretical analysis of the t&0 multiperipheral equation to the case
t =0 for pairwise equal masses. Using variables discussed in a previous paper, we diagonalize the equation
in the Bali-Chew-Pignotti (BCP) model with respect to the O(2, 1) group and relate the solutions to the
equation so obtained with the solutions obtained after diagonalization with respect to the O(3, 1) group.
Poles in the O(3, 1) partial-wave amplitude give rise to the expected sequence of daughter poles in the
O(2, 1) partial-wave amplitude. At general momentum transfer, we establish factorization at the O(1, 1)
poles in the decomposition of the BCP amplitude, and present further simplifications to the diagonalized
equations based upon this model.

I. INTRODUCTION parameters of the little groups of the Lorentz three-
vectors k, associated with each upper and lower momen-
tum transfer Q„,t by the formula

1HE recent group-theoretical analysis' ' of the..multiperipheral equation' ' with respect to the
0(3, 1) and 0(2, 1) groups has provided a natural
framework in which to investigate the constraints that
unitarity imposes upon the residues and trajectories of
the Regge-daughter family near t=0. In this paper, we
shall examine some preliminary problems in this direc-
tion.

Since diferent sets of variables have been used to
write the t= 0 ' ' and t(0 ' ' equations, it is important
to study first how they match in the limit 1=0. More-
over, if we take the Bali-Chew-Pignottir (BCP) model
for the production amplitudes at t=0 as CD did, it is
essential to translate this model in the t(0 variables by
keeping the nonleading powers in the asymptotic
expansion.

The BCP variables, used by CD and MM' at /=0,
are essentially the parameters of the 0(2, 1) groups
which preserve the momentum transfers in the multi-
peripheral chain. The t(0 variables, ' ' which we shall
call "three-dimensional BCP variables, "are instead the

Q„,t = [k, tva-'( —t) '"]
valid in a Breit frame of the over-all momentum trans-
fer Q. Since the most important contribution to the
phase space comes, for t small, from spacelike k's, ' we
shall often refer to the three-dimensional BCP variables
as "0(1,1) variables" and to the poles in the respective
Fourier transforms as "0(1,1) poles. "

In this language, the purpose of this paper is (a) to
establish the factorization at the 0(1, 1) poles in the
0(1, 1) decomposition of the BCP model at general
momentum transfer, and (b) to use the three-dimen-
sional BCP variables at t=0, giving a relation between
the 0(2, 1) and 0(3, 1) decompositions of the incom-
plete absorptive part of the scattering amplitude.

The latter relation, which is model dependent, gives,
so to speak, the eigenfunctions of the Regge daughter
poles in terms of the ones of the Lorentz poles. It is
therefore similar to the off-shell relation found' for the
Bethe-Salpeter equation. As we mentioned before, that
would be the natural starting point for the dynamical
study of derivatives and residues of the daughter
sequence near t=0. However, we have not extended
our analysis further in this direction.

The 0(1, 1) expansion of the BCP model for the
production amplitudes has been given in MM'. We
derive a simplified form of this expression and of the
resulting multiperipheral equation in Sec. II, and we
show that to each Regge pole in the BCP expansion
there corresponds an infinity of integrally spaced 0 (1, 1)
poles with factorizable residues.

In Sec. III, we take the t =0 limit of this equation for
pairwise equal masses and relate the incomplete absorp-
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IL t(0 EQUATION FOR BCP MODEL

tive part in this limit with that of the t= 0 equation of
CD. This relationship then implies a connection between
the 0(3, 1) and 0(2, 1) decompositions of the respec-
tive incomplete absorptive parts, from which we can
derive the eigenfunctions of the Regge poles in the
daughter sequence from that of a given Lorentz pole.

In Appendix B we also simplify the diagonalized 3=0
equation of MM', using a technique similar to that
developed by CDM for the 3&0 equation. In Appendix
D a model of the Amati-Stanghellini-Fubini (AFS) type
is treated as an example.

A similar set of variables dednes transformations at the
other end of the ladder, and we obtain the transforma-
tions bb and bib dined in CD, CDM, and MM' and
MM'

4= an+i(i~+Ha bib= ~l, +Zgl, ~/lb, (2 4)

where rv, =r„(Pv,) r, (gb).
MM' have given the Lorentz transformation, which

relates the three-dimensional BCP frames (i, r), in
which

Q=e-;-e.=c0, o, o, (-t)"'],
Q(, =LO, k;, 0, w, ——', (—t)"']

Q, =t 0, k;, 0, w, +-', (—t)"'],
(2.5)

and Q~, ,+i and Q„,;+i lie in the xst plane, to the four-
dimensional BCP frame (li, r) in which

Q&&=E» ~ ( t&') (2.6)

and Q~, ,+i lies in the ts plane. The transformation con-
sists in a y rotation gi, ;, which brings Qi, , in (2.5) to the
form (2.6), followed by an x boost" h&, ;, which removes
the x component of Q&, ;+&."Similarly, we can transform
from the frames (i+1, t) to (ti+1, t) by a y rotation
8&,;+& followed by an x boost" f&;+&

' The par. ameters
of these Lorentz transformations may be calculated in
terms of k;, m;, k;+~, m;+i, M;, and t, or equivalently in
terms of th, t„;, tl, ;+i, t„,;+i, M;, and t. The formula for
0l, is simply

ai+i = aig~t ~+i& (2.1)

while the four-dimensional BCP variables, for the lower
amplitude, consisting of the s boosts qh and 0(2, 1)
transformation gh ——r, (p h)b, ( f~,)r, (v h), build up the
0(3, 1) transformations a&;, defined recursively,

We begin with a review of the three-dimensional and
four-dimensional BCP variables, which we have indi-
cated schematically for an internal segment of the
multiperipheral ladder in I'ig. 1 and for the end of the
ladder in I'ig. 2. The three-dimensional BCP variables
(cf. CDM and MM'), consisting of the x boosts q; and

y boosts f, , build up the 0(2, 1) transformation a;,
defined recursively, '

P„, Qui

qp

(a,2) (a r) )i (&&)

Pp

singh = k,/( —t~, ) '~',

cos8~; = Pw; ——,
'

(—t) "']/( —th) "' (2 &)

~l, i+1—~lip ligl, ~+1 (2.2)

ao= 4., ~lO= ~la (2.3)

' For the sake of economy, we use the same label for a one-
parameter transformation as for the parameter itself.

"We have set equal to unity the arbitrary initial Lorentz
transformations, mentioned in previous approaches.

An analogous set of four-dimensional BCP variables is
defined for the upper part of the ladder, which we dis-
tinguish with the label I:q„;, g;, etc. The initial trans-
formations ao and a«are defined, respectively, in terms
of the initial s rotation p, and initial rotation rh ——

r.(y.)r„(P,.):

{ga,X) Px a (Xa, r ) (gi, S)
Q Xi

qgo

Fxo. 2. Connection between t&0 and t=0 frames at the left end
of the chain.

~'Our notation differs from MM2. Our hl; is their I;;+I'+ and
our fi; is their I;;+I'+'+.

"Note that in this way we specify the frame (Li, r) completely
with no arbitrary s rotation left, as in CD.
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~li =Nla Civlik4li
—1 .D, l (2.8c)

The Toiler angle oth=t h+ttt, ;+i is fixed by formula
(2.8a) in terms of f, , [,+i, and four sets of k; and w;;
however, to leading order in exp~ (, ~

and exp~ f,+i ~

the
dependence is reduced to the variables, sgnt;, sgnt, +i,
k;, m;, and k;+1, m;+1.' In the same approximation, it is
proper to consider the dependence upon the Toiler angle
as residing in the multi-Regge vertex function, and the
reduced kinematical dependence then forms the basis
for a simple factorization of the residues as functions of
the k's and zv's. In general, however, the Toiler angles
are not convenient kinematical variables for t(0. They
have, in effect, been replaced by the extra set of
momentum-transfer variables.

The procedure for the O(2, 1) diagonalization of the
1&0 equation given by MM' and CDM begins with a
decomposition of the unitarity integrand with respect
to the O(1, 1) group parameters [; We con.centrate
upon the 0(1, 1) decomposition of the lower BCP
amplitude and later combine lower and upper ampli-
tudes to form the unitarity integrand. We begin with
the BCP amplitude for the production of X particles:

+mamp" mtt+tmt Q Dmatp (ra) Glpmpttt (ti)
Qs t ls tgs

Xtt t apt(tt) i(g )Gt pnp(ti tp)

Gttt+lmtt+ttttt+p ntt+Rmt ("~) t ( 9)
"We have, in terms of the lower variables, coshhl; ——

[ki+t si nhq; ]/[( tt„+t)t p sin—hgh] and coshft, ;+i [k; sinhq;]/[( —tt;)tip-—
sinhtttig."It would appear that the first two identities, viewed as
equations relating the various boost parameters, do not always
have a solution. Indeed, when pli&0, gl;=0, vl;=0, the first
equation cannot be solved. There are two reasons for these
apparent difhculties. The first has to do with the assumptions
about tQe sign of t'ai and k;2. For k &0 (timelike three-momentum)
and tii&0 we would replace fi with a s rotation p; and t)]li with a s
boost. Equation (2.8a) would then read fly';hl;=Ijt, l,fiivh, which
spans the necessary remaining portion of the 0(2, 1) group.
However, as discussed in CDM, spacelike three-momentum
transfers span the most important part of the phase space for
small t, and the whole phase space in the limit t~0 if one adheres
to the definition (2.5) in this limit. The second reason for the
apparent inadequacy of (2.8a) is that our prescription for going
from the three-dimensional to the four-dimensional BCP frames
does not leave room for an arbitrary s rotation in the four-
dimensional BCP frames. This restricts the choice of the BCP
0(2, 1) transformation.

while 1't, ,+i and ki, ; depend upon all of these variables. "
Analogous variables are de6ned for the upper half of the
ladder. The fact that the f's and k's adjacent to one
rung of the ladder depend only upon the Lorentz
scalars associated with the rung is crucial to the factor-
ization condition.

At the ends of the ladder, the above approach must
be modified with 8 being replaced by the s boost ul,
and k by the y rotation Pt„as indicated in Fig. 2. From
these two figures, one can now read off the important
identities relating the three- and four-dimensional BCP
variables'4

gh=ft, [;kh=ttt;[t;t t;, (2.8a)

eli iIieli+I , khtlli fi,i+it (2.8b)

where
—l—1—TT l —l—1TT —l—1+mm' = ~m ~mm' ~m'

U.i=r(i+m+1)/r( I+—m), (2.1O)

and tt is Toiler's" O(2, 1) representation function of the
second kind. For the lower amplitude, m; is the s com-
ponent of the spin of particle i in the frame (li, r) for
i = 1, . . . , X+1, and s,m„ssmp describe the spins of the
initial particles. Conservation of helicity requires that

Gl, ——b, l „G „.
If we use the formula

(2.11)

~.t " '(g)- Z D.t"(f)os " '(t)Dst (k) (212)

for g= ffh, which is valid term by term in an asymptotic
expansion of both sides in exp~ f ~, and the O(1, 1)
decomposition of the a function, given by (A51),"

(2.15)

Equation (2.14) expresses the decomposition of an
O(2, 1) contribution in terms of a series of factorized
O(1, 1) contributions, and is valid as an asymptotic
relation in exp~ t ~. If we substitute Eq. (2.14) into
(2.9), we obtain the O(1, 1) decomposition of the BCP
amplitude, a simplification of an expression already
given by MM':

Mt~' Q exp( —im. ttt. ) U„.,„,„, mp(E. , w„ki, wi)
ni Ti

expLrl[ 1(cpl sl) 78(rli 1)

X U,„,;,„,"'(ki, wi, kp, ws) expPrst's(ns —Np)

78(spies)

~ ~ ~

Unttt. t, ttt+t;mt ' (ktt+lt wtt+1j +st wp) exp( smp4'p) t

(2.16)

where we have omitted the sum over y for the sake of
clarity. We have de6ned

U„„,.„,"= P D„„t"(h)Gt „.D„.,„.; '(f'). (2.17)

'5 M. Toiler, Nuovo Cimento 37', 631 (1965}.' Note that, although formulas given in the text do not depend
formally on the choice of the basis for the representation functions,
the actual expression for ~™(g) of course does. Formulas (A3),
(A51), and (A52) are written in Toiler's conventions. Since the g(f)
is evaluated for a y boost, it difters from the expression given by
Toiler by a factor im m'.

a,s '(t) P P V;,„, exp(ri'(n —tt)7W „,7, 0(rt),
nM T=k

(2.13)
we may write

tt t
" '(g)- 2 Dy.-"(f) expLrt'(~ —tt)70(r[)D-, t (k)

nr

(2.14)
where
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FIG. 3. Index summation scheme for the expression of the
residue in Eq. (2.22).

Xap '+ ' "' t(f') C(a. , at, ~' k, kt, k), (2.18)

We shall now apply the above results for the decom-
position of the production amplitude to the decomposi-
tion of the unitarity integrand. In writing the unitarity
integrand with the BCP form (2.9) for the production
amplitude, one must use care in summing over the
intermediate particle helicities m;. With the convention
adopted above, which gives a simple form (2.10) for
the conservation of helicity at the vertex, the helicity
of particle i is measured with respect to different axes
for the lower and upper amplitudes (see Fig. 1) . For the
lower amplitude, it is measured along the s axis in the
frame (pi, l), a rest frame of particle i, which is related
to (li, r) by a z boost v&, ;. The corresponding frame for
the upper amplitude (pt', n) differs from the frame
(pi, l) by a y rotation, 'r which we designate by x,.
(That only a y rotation is required is most easily seen
by observing that the sequence of transformations
v„'h~ '8„ tetktvt does not afTect the y component. )
Naturally, this rotation is zero when t =0, since in this
limit the frames (li, r) and (ui, r) are equivalent. The
rotation y; depends upon the variables k;, zv;, k;+i, ve;+i,

m, and t,"and therefore introduces no new complica-
tions for the factorization condition. To sum over the
intermediate helicities, we must therefore insert for each
intermediate particle the function D,„„'(x),and sum
over m~ and m„, where s is the spin of the intermediate
particle.

If we now apply the decomposition (2.16) to the
lower and upper amplitudes alike and combine the
intermediate particle helicities as prescribed above, we
obtain the 0(1, 1) decomposition of the unitarity inte-
grand. To each pair of Regge trajectories o.~; and u„;,
there corresponds an infinite sequence of 0(1, 1) con-
tributions, the erst of which factorizes directly, the
second of which is a sum of two factorizable terms, and
so on. The degeneracy comes from the "cross terms" in
the product of two series of the form (2.14). The
meaning of this degeneracy becomes clear when it is
understood that the product of two c functions may be
represented asymptotically as a sum of e functions,

[a;„,„-"-'(f)j*[a;„,—.-'(f))-E C'(n. , n„.;j„,j„j)

~l(N)~u(N) @ exp (—im, g,)

X'V, ,' &'(E„k„.wi, ki)a;,s, ~,
' t(f)

X4„p"'(», kt; ws, ks) &;,s, ~~'(fs) ~ ~

Us„„,,„,~ +"'(wv+t, k~+t, Es, ks) exp( ims4—s),

(2.20)

where we have lumped together into y the sums over
y„, y~, and v and have written at each link

cty= rry~+rl'yt p.

The vertex functions are (see Fig. 3)

(2.21)

Us;»'(w, k;w', k') = C(n„, nt, v, k, kt, k)

X[&»«"'(kt)Gt«~ D~ ~ ""(ft')3

X C'(ct„', tr&', u';j „',j t',j '), (2.22)

with similar expressions for U&' » and U»+' &'. We have
put m, = m~, —m„, and m~= mm, —ns~, .and the sum over

j and j& includes the usual channel spins at the ends of
the ladder.

If we apply the 0(1, 1) decomposition (2.13) of the
n function to Eq. (2.20), we obtain the form of the
unitarity integrand required by CDM for the 0(2, 1)
diagonalization of the multiperipheral equation. We
de6ne, accordingly, the incomplete absorptive part
8 .,„,&(a) and its partial-wave projections b .„,'&. For
a discussion of the diagonalization of the integral equa-
tion, see CDM and MM'. After diagonalization the

where n„, ng are real, and

C(tr~) Crt) pi k~) kt) k) = 8jg,s( s„C(tr~) trt) pi k~) kt) q (2.19)

and similarly for O'." Each 6 function in the series
contributes in turn a single series of factorizable 0(1, 1)
contributions via Eq. (2.13), beginning with the term
exp[~ f ~(n„+nt —v)]. Rather than working with Eq.
(2.16) directly in the unitarity integrand, we adopt the
following strategy, which makes the connection with
the 3=0 formalism more transparent. We substitute
Eq. (2.12) in Eq. (2.9), expressing the upper and lower
BCP amplitude in terms of the a, (f') 's. Then we combine
the upper and lower amplitudes to form the unitarity
integrand. If we then apply formula (2.18) to the
product of upper and lower c functions at each link,
the result is the following unitarity integrand:

"We are idebted to Michael MisheloQ for assistance on this
point.

18 COS X

L2Ms2 (t—tf, —t~;) + (tI„+I—tI;—Ms2) (t~„+I—t~;—Ms2) g
P,l/2(~s 2 tI& tI &+I)Xl/2(~, 2 t, t~ &+1)

'9 The coefficients C and C' are related to the vector addition
coefficients for the representations of 0(2, 1). (See Kuo-hsiang
Wang, UCRL Report No. UCRL-19306, 1969 (unpublished) g.
For practical applications involving a few leading terms, they may
be obtained directly by comparing asymptotic expressions for
~(l).
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equation reads

6„.,„,'&'(k', w') = (pib„. ,„&'(k', w')

+ Q irJdkdw b .. .'&(k, w) U„„;»'(k,w; k', w')

A

X d'(-7-),- (-7 = ) (r') (2 23)

where the index is refers to the 0(1, 1) contributions
resulting from a single 0.~. The function d is described
in CDM. The vertex function U is defined through
Eqs. (2.13) and (2.22):

U „,»'= Q W„„s ~Us;»'V, ',„;~'. (2.24)
I,P

The functions b .,„,'& are related to the functions
b .„,+'7 , appearing in the modified 0(2, 1) expansion
(3.8b) and (A45) by

Ly6-.. .+
I'[i+1+x(n~ is) jI'[—l+1 r(n, —rs) j.—

r(21+ 2)

(2.25)
which follows from Eq. (4.14) of CDM.

III. O(2i I) AMPLITUDES AT f=o

We have shown in Sec. II that the 0(2, 1) and 0 (1, 1)
expansions of the production amplitudes are equivalent
as asymptotic series in the parameters exp~ t ~, con-
nected with the subenergies. At t(0 we have also
defined, through the unitarity integral, the incomplete
absorptive part B,,„,&(a; k, w), a function of the over-
all 0(2, 1) transformation a, for the tsth 0(1, 1)
"daughter" of a given angular momentum n~=n~ +
+7~—v, resulting from the addition of the upper and
lower Regge-pole contributions. At t =0, the incomplete
absorptive part can be defined either as a function of
the 0(2, 1) transformation a, or in terms of the 0(3, 1)
transforrnations u„= a&—=a. They are not the same func-
tion in different variables because they are constructed
by splitting oG different factors from the complete
absorptive parts, depending upon whether they are
derived from a factorized 0(1, 1) or 0(2, 1) expansion
of the unitarity integrand. By using the explicit form
of these expansions, we shall now derive a relation
between the two incomplete absorptive parts, which
eventually will give the relation between 0(2, 1) and
0(3, 1) partial-wave amplitudes.

Since g~= g =—g at /=0, the Clebsch-Gordan combina-
tion of upper and lower amplitudes is simple. Following
CD, we assume

( ~-.-.'"' I'- 2 D-.-p' (&.)R-p"'(fi)
m$ )PAL

Xtt„, „-"' '(g )R P'&'(fi, fs) ~ ~ ~

R „,»+"(4+,) D „„,~'(rp), (3.1)

and we define the incomplete absorptive part B . &(a, &)

as in CD, by removing the last factors ED in the unitar-

D (t)-
-D(h) —C

D (h)-
»G. 4. The property of the Clebsch-Gordan coefEcients used jn

the text.

ity integral. If we compare the above expansion of the
unitarity integrand with that obtained directly from
(2.9) using (2.18), we see, by matching terms in the
asymptotic expansion, that

"oi~.R„.»'= Q C(n„, ni, i; l, li, l)
4,~t,re~, ms~, ~

X (Gi„„„„)*Gi,„,C'(n„', ni', v', p ', pi', p'), (3.2)

where the factor 8i~ follows from (2.11) and (2.19)
(helicity conservation), n„ is short for nv„, etc. , and y
is short for Iy„, yi, i I.

The 0(1, 1) expansion of (3.1) can be obtained from
(2.12) and (2.13), and we get

~
M„. ,&~& ~s p exp( itn, y—,) U .,„„„p'(ki,wi)

ps i +i 1+2

X «pal|1(n i isi) $0(~111)

X Untri, nsrs (ki, wi, ks ws) exp[&2t 2(np'2 iss)fe(res)

U»+«„+, ,~,""+"(4+iwx+i) exp( ims4s), —(3.3)

where

U„„„,»'= QD„„„"(h)R„""D, ; '(f'). (3.4)

Equation (3.4) after substitution of (3.2) is to be
compared with the expression (2.24) after substitution
of (2.22), in the limit f= 0. With the present procedure
we first combine the upper and lower a " '( fl h) in the
Clebsch-Gordan sequence and then factor the functions
D (h) for asymptotic f's, whereas in Sec. II we per-
formed the same operations in opposite order. The
equivalence of the two procedures and the equality of
respective 3=0 residue functions and absorptive parts
follow from the property of the coefficients C and C'
schematically shown in Fig. 4. Hence we conclude that
U„,,„,= V„„„,.

Looking at the expansions in Eqs. (3.1) and (3.3)
with (3.4) in mind, we see that their equivalence
implies that"

(sin8)B . ~(aeh) ~ Q B~.,~,~(+)D~„~ i'(h), (3.5)

"fi, (ash) is the same function of a=aeh as the CD in-
complete absorptive part, but satisfies a different integral equation
in which the variables q, 8, f replace j, p, , ™f,and I. The reason is
that in the CD integral equation the integration over p replaces
the summation over intermediate helicities, whereas here it has
been performed explicitly. The equivalence of the two equations
can be proved by noting that, owing to helicity conservation, the
equation satisfied by P(ash) in invariant under the substitution
h—+hp, h' —+h'p', f'~p 'f', where p and p' are s rotations, and that
an extra integration over p can therefore be added. This invariance
permitted an arbitrariness with respect to s rotations in the
definition of the CD frames.
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dL)t] b„," D, ,..." (a), (3.8a)II„.„(a)
M, s P

a„.,„,(a)- P fdD] b....,„'D....„„'(y~)

X exp( —(a„,)8(r&), (3.8b)

where we have dropped the index y, we have defined
rr„,=—r(n——m), and

Dj , smsa(s@m) = Z Dssm„ ls, m' (r8)

X p, ,aa 1(g) p——a i (3—9—)

and s= ~ is the label of the two 0(2, 1) 's which occur
in the reduction of the O(3, 1) group. "
"The volume elements dt sinhq d'g and dk dm df are appropriate

for the integral equations after the factors ( —t)"' and k are
removed from the respective incomplete absorptive parts that
come directly from the BCP expansion. For a given a, 8 and P
are therefore normalized in a different way; hence, the factor sing.

"Since h depends on the variables k, zo, k', and m', this is
needed in order to have a relation involving only one set of
variables, k and ze.

"Equations (3.8a) and (3.8b) are valid as asymptotic expres-
sions in cosh& and e~ ~, respectively, where g™=R, (p) 8 (g) R, (p) .

'4The notation is as follows (see Refs. 1-3):The O(3, 1) re-
presentation functions are labeled by (X, 3II), which specifies the
unitary representation, by (j, m) for the O(3) basis, by (ls, m) or
(ls, pr) for the O(2, 1) basis, In the last case, l specifies the
O(2, 1) representation for each (s=&) of the two classes of
O(2, 1) cosets which occur in the O(3, 1) group, and (is&) refers
to the two classes of O(1, 1) cosets in O(2, 1), with a given
eigenvalue (-Sis) of E„.dpi/ and dphil are the relevant measures
in the l and X planes. &

~'A, Sciarrino and M. Toiler, J. Math. Phys. 8, 1252 (1967).

where the factor sin8;= k;/( —t~)'~' comes from the phase
space, " and use has been made of the relation LEq.
(2.8c)]

(3 6)

and of the fact that u =I at t=0 for pairwise equal
masses. Note that, if we parametrize

a=r7rg, r&O(3), r)—=B,(i)), g&O(2, 1),
S—=~.(e), ~—=&.(~), (=—&.((), (3.7)

Eq. (3.5) is valid as a relation between asymptotic
series in e~&~. This follows from Eqs. (2.12) and (2.13),
on which (3.3) is based, which are valid in the same
asymptotic sense.

Having derived the relation between incomplete
absorptive parts, we now proceed to relate the partial-
wave expansions. Consistently with the asymptotic
meaning of (3.5) we shall perform some manipulations
on the O(2, 1) and O(3, 1) decompositions in order
(a) to express the left- and right-hand sides of (3.5)
in terms of the residue functions b ™and b,„,' which
are the meaningful quantities in the asymptotic sense
and which can be directly deduced from the diagonalized
equations (815) and (2.23), and (b) to extract the h

dependence of the left-hand side consistently with the
right-hand side."

Problem (a) is solved in Appendix A, in which we

prove that, for asymptotic g and P' we have '4

,
ImX

~" 2-1 e g+& g+2
)(

X X X

a-1 a a+1 a+&
X X X X

)0 ReX

~" -a-2 -a-1 -a -a+1
X X

-~ +2 +i
X X

FzG. 5. Location of the poles in the ) plane for the integration
of Eq. (3.15).

Problem (b) is solved by noting that with the
parametrization (3.7) in (3.6), when

~ P ~

is asymptotic
so 1s

g= f)h, (3.10)

where f& 0(2, 1) ."Then substituting Eqs. (2.12) and
(2.13) into Eq. (3.9), we obtain the right h dependence
in the form

D;...,--" (o)-2 D;.-.,-.-" (~~8)
ll sT

X exp( —&cr„,)D„,, (h) 8(r&), (3.11)
where

Djm; as, ns" (b) —= g Djm; as, m'" (b) &m', ns
m/

=2~ »m ( r)L—( ~-)Ds-;-,I+" (b)],
A~0'nr

(3.12)

and the last equality follows from the definition of
V„,„," in Eq. (A50).

By making use of the group multiplication properties
and noting that 8, E„,s4 and f commute, we obtain

D, , ~"~(a8) = Q fd/l] D,„., i. . .™(I)
8~,r

XD- ..'(~)Dt",";-,~' (8), (3»)
and going to the residues at the poles p, =a„„we get

D;...:....," (~«) = 2 fdD]L&-. (l",j.)7*
sf, r

XD ...„„'(yg)Dt. ..„,, ....,"~(8), (3.14)

where the E function is written in Toiler's" notation.
We can now substitute (3.14) into (3.11), and then
(3.11) and (3.8a), (3.8b) into (3.5) to get the final
result

b„.„,'(k, tt) = (sin8) Q fdic.]$E„."~(ls',j )]e
m, 8,8l'

Xb,~sr(t) D;, „, , „„,~sr(8), (3.15)

where b .,„,'=—b .,„,+', and the (—) amplitude can be
obtained by the use of the conjugation properties of
CDM /see Eq. (A1)].An expression for D"~(8) can be
obtained from (3.12) and (C6).
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Equation (3.15) solves the problem of connecting the
solutions of the t= 0 diagonalized equations with respect
to O(2, 1) CEq. (2.23)$ and to 0(3, 1) PEq. (815)).
When b,~~ has Lorentz poles at) = ~A,O,

"the singular-
ities of b .,„,' come from the pinchings of the A contour,
and it is evident from I'ig. 5 that they may occur at
I= Xs—I—1 and at the synunetric positions l= —)is+a.
Actually, only the sequence 3=~0—I—1 can occur in
b~. . .', because this amplitude is, according to CDM,
analytic in the right-half / plane. It is possible to show
that this is true for Eq. (3.15) by the methods of
Appendix A, which are briefly summarized here, for the
convenience of the reader.

Whenever we have a summation of the form

second term of (3.17) are illustrated in Fig. 6. It is
clear that the only possible pinchings are between X=
—((+1+v) and )t= —)t,, and this implies the above-
stated result.

The Regge-pole eigenfunctions, which can be calcu-
lated by this method in terms of the Lorentz-pole
eigenfunction, are useful, in principle, to obtain dynam-
ical quantities such as derivatives of the Regge family
at 3=0. Note finally that the relation between the total
absorptive parts which follows from (3.15) is model
independent and is, of course, the same as the one
obtained from the general group-theoretical analysis. '7
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APPENDIX A: MODIFIED COMPLETENESS
RELATIONS

IdDtf f King
. xi%. (3.16)

a,M

where f&, ,P~ transforms contravariantly under conjuga-
tion with respect to O(3, 1) (poles at )t= —I+a and
)t=l+1+I) and g, ,&P~ covariantly Lpoles at X=t ri-
and )t= —(I+1+is)), we can replace the s summation
above by

p xM XM(p —x, Aff, XM—+~ —xMf,—
,
—x,—vU.—x,—3i)

(3.17)

where ni~~, Pi"~, and U, ~~ are defined in Appendix A
and Pi"~ has zeros in )t at the position of the poles of

g;, if~. It is clear, therefore, that the first term of (3.17)
has no l-dependent poles in X, while the second has
poles only at )i= 3 rand —)t= —(I+1+is) .

We now apply this result to the s' summation of
Eq. (3.15), with g"~-+E"~ and f"~-+b~~D"iii. We note
that, in this case, f, , i+

" ~ has poles at)t= &)to coming
from b,™,and does not have the poles X= l—e in D"~
because of the (+) character of the function D~, +'
occurring in its induction construction Lsee Eq. (C6)j.
The first term of Eq. (3.17), which has no I-dependent
poles in X, cannot give rise to poles in l in the left-hand
side of (3.15). The singularities in the X plane of the

a-1 a a+1 a+p
0 O' X

Rek

1. Conjugation Properties in Noncompact Basis

It has been shown by CDM that the (r = —) partial-
wave projection of Bo,„ is a linear combination of the
(r=+) function and the function with I replaced by—l—1, through the relation"

„'8o,„'+P„'8o,„' 'I'( —l) /I'(1+1), (A1)

where

cry = —cos7I p/cos7rl)

P„'=Pm./I'( —p —l) I" (p,—I) cossl). (A2)

Equation (A1) is a consequence of the equivalence of
the representations D' and D ' ', which, in the mixed
basis, may be expressed as follows:

D-," ' '(g) = 2 (U-')*D-,"'(g)v. ,"', (A3)

where, as in Sciarrino and Toiler, "
U„'= r (I+1+m) /r (—t+~)

and p is a unitary matrix in the r basis,

('ylg |2p

v, '=I
Y&I /

e ~ ~ a P a f a
0 x

~ 0 ~ mg wP +f
x x

-a+1, ~ a-

x x
By inspection, one finds

rrl'= ( 74'/vsl ) ~ Pl = (1/»!') (A6)

With g=I in (A3), the expression reads
Fxo. 6. Location of the poles in the X plane of Eq. (3.15) after

substitution of Eq. (3.17). We have shown with small circles the
poles coming from b, ', and with crosses all other poles.

+m, pr Z .(Um ) +m, II@' vr'pr &,
gI

(A7)

"We assume) 0(0, so that the completeness relation is properly
convergent t cf. lA33) g. Note that, because of the conventions
of Toiler (Ref. 22) and MM for the ) plane, b +"~ has a pole at
P = —) 0, and is well behaved in the left-half X plane.

"M. Toiler, Nuovo Cimento 53A, 671 (1968).
~ The restriction p&0 in CDM can be removed by choosing

the appropriate sheet in continuing to g(0. However, (A2) and
(A5) need slight modifications for fermion representations.
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where
Em, sr (Epr, m) Dm, pr (I) ~

Furthermore, from (A12),
X, 3f —

( ) 2rp XM fol 8= 1) 2)
Analogous relations hold for the 0(3, 1) group in the
noncompact 0(2, 1) basis, where the equivalence is
between the representations ()l, , M) and (—X, 3E)—.
We shall show that this equivalence leads to a simplitj. -
cation of the 0(3, 1) completeness relation in this basis.
Instead of (A3) we have

»-;- ™()= &(U' )"'D- .-" ( )I' ~
' (A9) th t

P XM ( ) 2sp XilI

'A3f p X3f

(A19)

(P )M/P xM) m P xM (1/P xM) @ (A20)

(A11)

and have obtained the identities

E " (f, s j)=(—) "K ™(l,s;j), (A12a)

E ~M(l —' j) = (—)f E ™(l+;j), (A12b)

Em™(—1—1, s; j) = Um ' 'U, M'Em"M(l, s;j ), (A12c)

which follow directly from the integral representation

xM(1 ~.j)—& (2s +1)1/2 (cosh')" '

where Toiler has defined

i —A
U3M (A10)

f=[Mi 2+)l,

and I' is unitary in the s basis. "Sciarrino and Toiler '
have discussed the function

!». XM(g) $4 —fr~AMP) ~X3f (g) j@

+P AMP). —3,—M(g) j4(U',xM) @ (A21)

then from (A19) we conclude that

pl M ( )2plM

&M —( )2e~ XM P XM p ZM

In order to continue the foregoing relations to values of
l and ) corresponding to nonunitary representations, we
make the replacement l—+—l—1, A—+—X in expressions
involving the complex conjugation of the functions E,
I', n, and P. Thus

(~ XM) 4 —~ —X,M (P X3f) 2 P
—g,M (A23)

To conclude our summation of general properties of the
functions n and P we observe that the unitarity of I'

implies the following important relations":

where
&&rM &'(8+)8+M, ' '(f')d cosh/, (A13)

tan28+= tanhst, cot28 = tanhsl. (A14)

A l 1-X = —cll (~ XM) 2 p XMp —X,M

(A24)
We now propose to show that

In addition the E function has orthogonality prop-
erties, implied by the identification

E "M (1, s;j )f-'r(l, s, 222! jffs), (A15)

which follow from group multiplication properties of
the D functions. We shall make use of the property

2 E-™(1,s; j)LE-'M(f', s'; j)3"=8-8(f 1') (A16)

Combining (A9), (A11), and (A16), we obtain the
following expression for 1":

b(f, 1')I', , = Q LE ~ (1, s;j) j*

1 —(fsll'M)2=P21MP 1 ~
—&M=() (A25)

whenever X=&(l+1+n) or X=~(—1+22'), i.e., at
the kinematical" poles of the representation functions.
We show in Sec. 2 of this appendix that this property
of o. produces the necessary cancellation of the kine-
matical poles in the 0(3, 1) completeness relation. ' The
proof of (A25) makes use of the fact" that E "M(l, s; j)
has poles at )l.+i=f2 and X / 1=22 (see (—A1—3)j but
no other poles which move in X as a function of /.
Sciarrino and Toiler have dined the residues at these
poles

)('E xM(P sr. j)P &3f (A17)

From (A12a) and (A12b) it then follows that

(p ~X3f ( )2ap XM)

p XM —
!

P XM 2c12 X3/I

lim (f+X n.)K„™(&,+—;j)
(A18) = —U "+&UM& & 1I/(' 1M~ (A27)— ——

lim (1—X+I+1)E ™(1+ j)—=p" 3M~, (A26)
l~)-n-I

from which it follows Lsee (A12c) g that

where, as in Sciarrino and Toiler,

2e 2M

"That I'"~must be independent of m. may be verified by putting
a—+ag in (A4) and using the irreducibility of D'.

From (A9), (A11), (A12b), and (A18) we obtain the

' Explicit calculation from (A9) gives, for M =0, ngp =
sins 1/sins', and PP = —1'(X)1 (X+1)/I 1'(1+1+X)1'(X—l) g. The
properties (A23) —(A25) can be explicitly verified for these
expressions.



O(2, 1) DECOMPOSITION OF THE EQUAL-MASS ~ ~ ~ 2925

relation
—i,—M(f +.j) U XMILIf XM(i + j) I». . .—X,M

+. ( )j—mls ), M(—i + ~') I —X,M7 (A28)

If we require that Eq. (A28) be consistent with the
left-hand side having poles at —li —I—1=22 and —X+
3=m it follows that I'1, l 1

~ or I'2, l 1 or both
must have poles at these points. Let us denote the
residues by r1„—"M and r&„—™in each case. With these
definitions we write the residue of (A28) for both signs
of M at —

A,
—3—j.=e:

gr. —i,—M, n U,XM} It XM($ + ~) r —'A, M

+ (—)
'

If 1, M(i, y, y') r,„
i,M, n ——

( )2»U
AMER+

i,—M(i + J)r 11IE—,

+ (—) j~E' I M(l, +,J ) r,„ 1 Mj, (A29)

where we have used (A10) and (A19). Sciarrino and
Toiler have given the identity

gt, X,—M, n —( )j m+ngl. X—Mn (A30)

With this identity and the orthogonality property
(A16) /with (A12b) $ we conclude that

—i,M/r —'», M —( ) n( ) 2» (A31)

Consequently, from the definition (A15),

lim (ni~ )'= lim (I'i, i i ™/I'2,i i "M)'=1.
l-A+1+n l~X+1+n

(A32)

By the same methods one may verify that (A32) holds
for X+i=n —From (A2.3) and (A24) it follows that
(A31) is also valid in all cases when li~ —li, which
proves (A25).

-2. Asymptotic O(3, I) Decomposition in
Noncompact Basis

In this part we derive an expansion of the incomplete
absorptive part in terms of 0(3, 1) representation func-
tions, which is asymptotic in the sense of Sec. II. From
our final formula (A41) one may also obtain a simple
expression for the leading 0(3, 1) pole contribution.

Into the completeness relation for 0(3, 1) partial
waves,

LOO

B (a)= Q d{kj dD)Bi„" D, " (a)
M, s 0

(A33)

we substitute the following identities, derived from
Eq. (A21) and the definition of B"M:

XM ~ XMB XM+p 4MB —X,—M(U X3E)

Dj m»;1 ,m (Ii'$ ) Dj»m, ; i+,m-
+ (P 1 M) mD —X,—M U . xM (A34)

where

—1/2—ioo

Mp )M{ p XMD QM(a)

+U, iMDj ~ —i,—M(a) ~ )Mj (A39)

Djm;l», m (a) Q Djm;4, m' (r'g)

XU 'a ~
' '(g) U„' '. (A40)

The partial-wave amplitude Bl+, ™has a pole on the
left-hand side at t= n in addition to X-dependent kine-
matical poles. The D function contributes additional
X-dependent poles and also contains "nonsense" poles
in / arising from the a function in (A40)." However,
when the 1 contour is shifted to the left, the erst term
in the curly brackets in (A39) contributes a residue
only at l= n. The kinematical poles are canceled because
of (A25), and the nonsense poles are canceled in the
usual way by the contributions of the discrete series.
The kinematical poles in the second term are not all
canceled. However, the residues of these poles are
regular in A, and, since Dl+ ~ Bl+ vanishes exponen-

The integrand then reads, schematically,

{B IIMD xMP1y~ '»M(~ xM) nj

XMD —i,—M UiM ~AM (P iM) 8
}

+ {B —i,—MD —),—Mp XM (p XM) m

—i,—MD XM ( UXM) 2C (~ XM) 4p XM
I (A35)

By making use of (A22) and (A23), one may readily
verify that the terms grouped in the first set of curly
brackets are the same as those in the second after
replacing (li, M) by (—X, —M') . Consequently, we
extend the limits of integration over P, and keep only
the first two terms in (A35):

+ioo

B„.„(a)= P dP, $
M —i re

XB AMP '», MP XMD— XM(a,)

+U. XMD. ~ —k,—M(a) f2ikM$ (A36)

We now proceed to shift the contour of integration
in i in (A36) so as to collect the residues at the input
poles of Bl+, ~M at 3=0.~ and l= —a~—1. If we write
a=rrjg, where r&0(3), g=E, (ji)B,(f')R, (i) CO(2, 1),
and q is a s boost, then

D, i, , "M(a) = Q D;. ..i,„."M(rrj) D„'(g), (A37)
mI

and we seek an expansion of B„. (r2jg) as an asymptotic
series in cosh''. Following Toiler, ""we first write

D- -'(g) =a--'(g)+U-'a-=' '(g) U=' ' (A38)

and then substitute (A37) into (A36). By making use
of identities for the reflection /~ —l—1, we obtain

+&00



2926 M. CIA F AI, ONI AND C. D E TAR

tially as ReX—+—~,"they give vanishing contributions
to the X integral.

The upshot of this analysis is that, asymptotically
in g, we may simply replace the integration over / and
summation over the discrete series by the pole contri-
bution at l=n, as follows:

into the 0(2, 1) expansion

—1/2+i co

B-,-(g) = Z dDj
r —1/2

+200

—/co
(—i) dji B„„„,'D„„„'(g), (A43)

3f,s 0

+20Q

i MD, Xsj(g)

dL) ) f, AMP —iM

we get

B„,„,(g) =
—I/2+igo

—1/2—icC
dDj ( i)—d& B„,„+'

X IPa Dj~mo; a+m(,g) +nu Dj~m~; ay, m
' }~

(A41)

Equation (A41) is also suitable for obtaining, for t)

large, the asymptotic contributions coming from dy-
namical singularities in X of 8"~.Shifting the A. contour
to the right" for the 6rst term and to the left for the
second, we see that the O.-dependent poles in A. of the
first term are canceled as before, whereas the second
term has no such poles on the left and no dynamical
poles in b+~~, either. Except for an additional complica-
tion, one would replace the integral over A, by a sum over
the residues at the Lorentz singularities of b +~~ of the
first term only. The complication is that in general it is
possible that n"~ has extra poles in A.

32 that are absent
in b,"~.It can be shown, from arguments based on the
absence of such poles in D~"~ and b "~ in (A34) that,
should such extra poles occur, they must be canceled by
contributions from similar poles in P "~in the first term
in the curly brackets. This circumstance has a precedent
in the Mandelstam-Sommerfeld-Watson transform. ""

3. 0(1, 1) Decomposition of O(2, 1)
Representation Functions

Note first that manipulations analogous to those of
Sec. 2 of this appendix can be performed in the case of
the 0(2, 1) expansion of B,„,(g). If we parametrize

k=B (5)

(A42)

and substitute the conjugation relations (A1) and (A3)

"We follow here the conventions of Sciarrino and Toiler
(Ref. 25) and MM' for the sign of ) in the induction construction
of the representation in the mixed basis. This implies that D~+ "
j.s well behaved in the left-half X plane. Note that this convention
is opposite to the usual one for the l plane.

"The explicit expression given in Ref. 30 has such poles at
integer values of X. They correspond to the half-integer values in
the l plane. At such values b +~ has a symmetry analogous to the
Mandelstam (Ref. 33) symmetry, and called "gemel symmetry"
by Gatto and Menotti (Ref. 34)."S.Mandelstam, Ann. Phys. (N.Y.) 19, 254 (1962).

'4 R. R. Gatto and P. Menotti /Phys. Letters 288, 668 (1969);
298, 592 (1969)g have studied this symmetry in the case n=O
where o.o" ——0, and therefore the poles at the integers do not
appear in our expression. When a~0, the absence of such poles
in b "can be used in Kq. (A34) to prove the gemel symmetry
very easily.

ji= —r(n —js) —=n„„

which is nonvanishing only when r&)0. We have
finally

X exp( —n„,&) 0(r&), (A45)

where b,„,„' are the residues of 8„„„„'at the poles
p = n&.

We want now to obtain the 0(1, 1) decomposition
of the function g„'(l ), which occurs in the produc-
tion amplitudes (2.22) and (3.1) as single Regge-pole
contribution. The main purpose is to prove factoriza-
tion at the 0(1, 1) poles.

We start from the relation

r —ico

which follows from the definition (A8) of the trans-
formation functions E~,„„'. After substitution of the
conjugation relation (A7) in the form (A1), the
right-hand side of Eq. (A46) can be written in the form

where
g, ~+ p &g,—&

—iU', —i—i (A47)

+20Q

(—i)dpi (P„' 'E

Note that the first term in the integrand has no l-
dependent poles in the p, plane, as usual. The second
term has only the poles ji=&(l—js) coming from
E,„+'. By displacing the p contour either to the right
or to the left according to whether $~~0, and neglecting

XI &.'D .»+'(4m)+ns'D, ~ ' '(4m) U 'js "'. (A44)

The first term in the integrand has the l-dependent
poles in the p plane canceled by the factor P 'P
whereas the second term still has the poles p =
&(—i+js), but their residues are analytic and well
behaved in the right-half l plane, so they give vanishing
contribution to the integral. Therefore, the asymptotic
series of (A44) in e'&~ is simply obtained by picking up
the contribution at the "dynamical" pole
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the background integrals, we get

Um grimm' Um' E Vm, nr

where
X expLrt (t—ri) ]8(ri ) W„,, ', (A49)

V„,„,'—= 2m lim (—r) [ti+r (1—m) ]E„,„+',
t.~~(l—n)

,—l—17T,—l—11
Vt n2. ,~~ =L

—o-'tt gt ~~tt+, m' Um' Jtt=—r(l—n) ~ (A50)

Since the asymptotic expansion (A49) contains only
the powers (expI g I)

' ", we can identify a' with
Toiler's a', and we finally get

and for m&m',

(ti, 12) =E, , (1,, 12) .
A property of the E function which we will find useful
may be deduced from the orthogonality relationship
between two D functions and the expression given by
Toiler:

D-'(g) =~-'(g)+U-'~- ' '(g) U- ' ', (B3)
where

U '= I'(1+m+1)/I'(m —1).
That property is

lim E~~.(ti—e, 12)+U " 'E (—li —1—e, 12) U

= Q V„,„,' exp/rf'(t N)]—8(rg) W„„', (A51)
nT

which exhibits the factorization at the O(1, 1) pole
contributions.

For convenience of the reader, we quote finally the
result"

E„,„„~=
I r( —t+&) r( —1 —&)/2~2ir( —2t)]

X exp)i7r(t+m ti)/2]—F( 1 nn—, —1+ted; —2—1; 2+i0).
(A52)

=8(li, 12), (B4)
where Iml~) 0 and Im/2) 0, and Rel~ ——Rel2= ——,'.

We have defined
—1/2+soo

dpi] 8(ti, 12)f(li) =f(12).—1/2

With this form for the decomposition of the a func-
tion and the form (3.1) for the unitarity integrand, the
1=0 equation as diagonalized by MM' reads

bi-"" (t')=(o)bi-"" (t')+ 2 dLt]+ E
APPENDIX 8: O(3, I) DIAGONALIZATION OF

t=o EQUATION
X dt sinhqbi„P~(t) E„.(t, t')

We present here a simplified form for the diagonalized
I,=O equation of Mueller and Muzinich. The simplifica-
tion parallels the method of CDM for the t(0 equation.

Rather than using the Andrews-Gunson E function"
for the BCP amplitude, we prefer to use the a, function
(2.10) of the text. We require the O(2, 1) decomposi-
tion of Toiler's u function, which reads

—1/2+sea

(li 12)D ' ' '(g)

Xdi",i..-' (q ')L—E- (—~—1, —1—1)], (B5)
where

5-" (t)= Zb -"" (t)I:—E-(——1, —1—1)]

a„.-' -'(g) = dD2] E„~
-S/2

+ g E.„.(t„t~)D, "+(g) fol Reli= —
g
—e, d, xjr(q—1)— d coshaLd+sr, „"(a) ]*

is the amplitude of MM', and we have suppressed the
y index for the moment. Recall that '~

(B1)
1

X (coshq+ sinhq coshu) ~ 'd+iLf, '(a') for q&0,
where the a function and the D functions for the con-
tinuous and discrete series have been given by Toiler. '5

From Andrews and Gunson's formulas (3.3), (2.1),
and (7.12) we find that with dLt]=—rt(t) dl for m&m',

, I'(ti+m'+1)E,, (l„ 1,) =L2.;,(1,)]- 'I' li m 1

X
I'(m+12+1) (2li+1)

B2
I'(es'+12+1) (tg —li) (1,+12+1)

"Equation (A52) is obtained from the~complex conjugate of
Eq. (A20) of CDM after multiplication by the phase factor
exp(-,'i'-m). The reason is that Mukunda's convention for the
O(2) basis difters from Toiler's. We are now using Toiler's basis,
whereas we used Mukunda's basis in Eqs. (A19)—(A20) of
CDM. t See N. Mukuuda, J. Math. Phys. 8, 2210 (1967).j"M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).

coshu'=— (sinhq+ coshq cosha)/(coshq+ sinhq cosha),

and similarly for the other representation functions
(cf. MM').

Because q is always positive, the d function in Eq.
(B5) vanishes for s'=+ and s= —.As with the t(0
equation, the system of equations in s reads

xM b 3f+ib %ME xM

xM b xMyb xivE xM+b MME xM (B8)

As in Eq. (A1), one can make use of the equivalence of
the representations (7i, M) and (—X, 3f) LEq. (A9))—

"We keep the conventions of Sciarrino and Toiler and MM'
for the sign of X (see Ref. 26).
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Ref =-I/2

X -X+& ~ ~ ~

X X X

where

,l,xsr(~—i) d cosha a~sr,„"'(—a)—d+iri, ~'(a')

ao

-N ~ ~ ~ -i 0 1 2 ~ ~ ~ Rel

0-a-j,

Pro. 7. Location of the poles in the l plane in the integration of
Eq. (313).

t'= —)t+n,

—/' —1= —)t+0 for e=D, 1, . . . . (81D)

The two sets of poles are additive with respect to each
other, as may be seen by substituting Eq. (83) into
Eq. (87). This offers the possibility of writing b in
Eq. (85) as a sum of two terms, each of which'has only
one set of singularities in /. We define

—1/2+ ioo

dfl]+ Q bi ~"~Itsy„(l, t)
l=k+—1/2

for Rel = —ts—e. (811)

This function has kinematical poles at l+)t= it but none
at —l—1+)t=m. Moreover, because of Eq. (84),

xsr —b 'ksr+ P —i—ib AMP i (812)

Substituting Eq. (812) into (85) and the result into
Eq. (811),we obtain

bi-" (t')=(oibi-" (t')

+2 dDj+ Z
m, —1/2—i' l=k+„—oo

Xbr.'~(t)L—&, (——1, —t—1)j
XA"(t, t')di i "~(q—'), (813)

dh sinhq

to reduce the second equation to the form

-x,—M b
—x,—sr+ b x, &It —)„——M— (89)

Therefore, only the first equation in (88) is needed to
determine the locations of the I orentz poles. We shall
henceforth restrict our attention to this equation.

We now wish to present a scheme for shifting the l
contour in Eq. (85) so as to collect only those residues
arising from the input Regge poles. As the equation now
stands, we are prevented from doing this by the presence
of A,-dependent "kinematical" poles in / in the function
5, which lie on both sides of the contour. They appear
at the same locations as the poles of dE+, ~+,

~~ in /',

which, from Eq. (87), appear at

&((cosh'+ sinhg cosha)" ' (814)

We have constructed b~
"~ so that it has X-dependent

poles in / at —)t+e (i.e., in the right-half / plane) only.
It also has poles and zeros contributed by a~ ' ' in
the separation (812). These poles and zeros cancel
poles and zeros in the weight function ri(t) in the usual
way, "and the resultant l-plane singularity structure of
the integrand in Eq. (813) is indicated in Fig. 7. If we
shift the contour to the left, we collect the residues at
the nonsense poles at l= —1, —2, . . . , —Ã.38 These
cancel the contributions of the discrete series, as usual,
and we are left with the contribution from the "dynam-
ical" pole at n. In terms of the values at the dynamical
poles b ~ "~, the equation reads

(t') = (,)b ~ ." (t')+ Q dt sinhy
m, y —oc

&& b., (t)8„,»'(t, t') d..,.,„. (q- ), (815)
from which an m-independent equation for 6 ~™=

b r„"~can be obtained, having as the kernel

sinhg P R»"(t, t') d..., "~(q ') . (816)

Owing to Eqs. (812) and (86), the residue functions
b,~~ appearing in the modihed completeness relation
(A41) are given by"

xM —Q I b Mr+ U' —ar lb AM@ arj (817)

APPENDIX C: REPRESENTATION FUNCTION
NEEDED IN TEXT

We derive here an integral representation for an
0(3, 1) representation function required in Eqs. (3.12)
and (3.15) of the text. That function is the matrix
element of a y rotation in the noncompact 0(2, 1)
basis:

D, ,„„,, „„"~(8)—= (t's', tt'r'
~
exp( —sej„)

~
ts, ter)

=b(p' —p)dp, , i, , „„," (8). (C1)

The index s= ~ represents the required doubling of the
0(2, 1) basis and the index r =& the analogous doubling
of the 0(1, 1) basis for the representations of 0(2, 1) .

The procedure for constructing matrix elements of
the Lorentz group in the 0(2, 1) basis by the method

as &=rninl
~

m ~, ~

M'
~ ) for mM)0;and&X=O for mM'&0 (see

Ref. 15).' In the O(2, 1) case, we were able to remove the kinematical
poles from the incomplete absorptive part explicitly by factoring
out a J3 function. Since we have not been able to do the same in
thefol3, t) case, we do not have an expression analogous to
(2.25) relating b ™to b +"~.Hence in practice one must substitute
(814) into (817) to relate b +"~ to b "~, although we believe
the relationship is not fundamentally a dynamical one.
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of induced representations has been summarized nicely
by MM', who give further references. We shall merely
sketch those points which must be altered in their
treatment for these special representations.

The pararnetrization of the O(2, 1) elements approp-
riate to the basis required is

g, = exp( —i&J,) exp( —iu, K,) exp( —i)tK„), (C2)

where 0(g(4', —~ (a,(+~, and —~ ()t(+~
spans the group. Note in particular that both signs of
a, are required here. The mapping on g induced by the
rotation 8 leaves )t and g unchanged. The mapping on
Ga is

s cos-', 8 exp(a, ) —sin-', 8
s exp @~i

s sin-', 8 exp(a, )+ cos-', 8
'

M(q
—1)— dx(coshq+x sinhq)" '

we get the equation
0

= e"'/)t sinhq, (D3)

tdh b" (&) V"(&, I') (&'—~')-' (D4)

The 1=0 equation can be obtained from (815)4t
noting that, apart from the factor As(coshq), we require

Rs»'ass " ' '(g') .- (f' p,—') ', -(D1)
ep, apl'~0

and since ass '(g) ~1 as cr-+0, we have

R»'(I t')-+(1'—li') ' (D2)

Substituting (D2) into (315), and noting that

The mapping on the elements in the Hilbert space
X=@,~gZ;~ is

~i" lL p( —8~.) jib+(g+), @-(g-) I

= IE x+,."'(8, ')e.(g+'), 2 x-..iM(8, ')e.(g-') I,

Vi(f, ~') —=
sinhg d cosh/ Js(cosh') e"'

zo(t, t~) ) sinhg

s,—= (4l '—1—&') /2(u') 'i', (D5)

We use, as a basis for the Hilbert space K, the repre-
sentations of O(2, 1) in the mixed O(2) XO(1, 1) basis,
described in MM' and CDM:

(g+, g- I f+, ~r) = ID,"'(g+), oI,

(g+ g- I
1—,~r&= I0, D-~,"'(g-) I

In this basis we have, from (C4), the Anal result

dl's'. Ls; sr'r (8) d sinha, Ld, sr,„„."(a,) j*

XX. „'"'(8,u, ) d,sr, „„'(a',). (C6)

APPENDIX D: AFS-TYPE MODEL AS EXAMPLE

It has been shown in CDM that the unitarity model
of Fubini et al.~ (AFS-type model) can be described
easily with the three-dimensional 8CP variables.
Analogous treatment holds in the 3=0 case. Since spin-
less particles are exchanged, the kernel of the multi-
peripheral equation is g-independent (nv= 0 throughout,
and no Clebsch-Gordan coeKcients are needed); and it
contains the off-shell s-m cross section' As(cosh/) =
As(cosh') as a factor replacing the 8 function which
appears in the single-ladder approximation.

40 D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cjmcnto 26,
896 (1962).

(C4)

where g', = exp( —i&J,) exp( iu', —K ) exp( —i)tK„)
for a', as defined in (C3). We have defined

I, ,'"'(8, a,) = (s' sin8 sinha, +s's cos8)" '

X8(s' sin8 sinha, +s's cos8). (C5)

sinhgs ——(s m' —f') /—2m( —t') 'I',

(s&b" (/) —=As (sinhgs) (t' —p,')-'.
Note that b~=b", because 6 ~"=0, since ~'=0.

The O(3, 1) expansion now reads
'5 00 +S00

dI )tj b"D~"(ti),
$00

(D6)

b =b+, D+~(a) —=D„.,~,, (a) =D: (a). (D7)

Since l's in Eq. (3.5) is an 0(2, 1) transformation and
+=0, the relation between the two incomplete absorp-
tive parts is rather trivial4':

B(a8) =B(a), (D8)

and the indices m and er are not needed. LMore
precisely, " B(a)=—P, Bs,(a) contains both (+) and

(—) 0(1, 1) poles. ) The partial-wave amplitude b'=
b0+,+ is then easily obtained, either by direct applica-
tion of group theory to (D8), or from (3.15) in the
limit n= 0. We have

b'(» ) = 2 JdL) j (K".o"')*b."(f)d "."(8), (D~)
a,sI

where the relevant functions, according to (3.17), are4'

di++"(8) =De.at-;s+.o"'(8)i di+-"(8) =di++" (~—8).
(D10)

4' The (=0 equation can be obtained directly in a much simpler
way tsee S. Nussinov and J. Rosner, J. Math. Phys. 7, 1670
(1966)g. Here we want simply to show how the a=0 limit is
reached with our formalism.

4'The absence of the factor sing of Eq. (3.5) is consistent with
the form of Eq. (D4) and of Eq. (4.12) of CDM.

"From Eq. (A50) and (A52) one can verify that. V0,„„0——

~'o,n,'= &no.
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From Eq. (C6) we get the explicit expression~

d~+" (8) =w ' dx i'+'Q (ix) (sin8 x—cos8) " '

44Bateman Manuscript Project, Higher Transcendenta/ Func-
tions, edited by A. Erdelyi (McGraw-Hill, New York, 1953)i
Vol. I, Kqs. 3.7 (31), 3.3 (13), and 3.15 (4).

4' Reference 44, Sec. (3.15).

, r (X) I'(l+ 1) (sin8) '
2| Cg ~

tt+ cos8
I'(i+X+1) sinw(X —l)

(D11)
where C„"are the Gegenbauer functions. 4'

After the manipulations of the end of Sec. III, we can

explicitly calculate the Regge-pole eigenfunctions
f~(t, 8) of the Eth daughter /~ =)e E—1—correspond-
ing to a given Lorentz pole of eigenfunction fe(t) . The
result is, apart from inessential factors,

I'(i~+1) ixf-(")"f(') r(; ~E)r(;;E+), )

X (sin8) '~+'Crc'~+'(cos8). (D12)

Note that the odd daughters are absent because, due to
(D7) and (D10), b' is even under 8~m —8 (w~-+ —rt).
Note also that (D11) gives a result similar to the Bethe-
Salpeter calculation' when the initial particles are put
on-shell. The latter circumstance explains why only
amplitudes even in m are obtained in this simple case.
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Possible Extension of Minimal Current Algebra and Applications
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An attempt has been made to extend the minimal current algebra of Bjorken and Brandt starting from
a gauge-field Lagrangian and including in it nonets of scalar and pseudoscalar fields and making use of
canonical communtation relations both for spin-zero and spin-one 6elds. To apply it to the problem of
weak, -interaction divergences, we identify suitably normalized fields with weak currents and scalar and
pseudoscalar densities introduced by Gell-Mann. As in the case of Bjorken and Brandt, we go to the limit
ma~0, go

—&0 such that gp/m02 =const &0, where mo and go are masses and coupling constants oi the Yang-
Mills field. In the extended minimal algebra, the nonleptonic weak processes are free of all divergences
to lowest order and of a class of leading divergences to all orders in the weak-coupling constant.

I. INTRODUCTION

F 1HE minimal algebra of Bjorken and Brandt' has
the particularly attractive feature that it makes the

electromagnetic mass di8erences of hadrons finite to
lowest order in the fine structure constant. It has been
shown in Ref. 1, that this algebra can be obtained as a
particular limit of the massive Yang-Mills theory, i.e.,
as ms~0 and go~0 such that tJzs/gp is nonzero and
finite, where mo is the mass and go is the coupling con-
stant in the theory. Of course, one uses the field-current
identity of Kroll, Lee, and Zumino. ' The purpose of the
present paper is to extend the minimal algebra to include
the scalar and pseudoscalar densities defined by Gell-
Mann. A convenient way to achieve this goal is to work
with a Yang-Mills Lagrangian with the scalar and
pseudoscalar fields as matter fields and go to the limit
prescribed above. To this end, we first construct an
SU(3) SU(3) symmetric Lagrangian out of vector,
axial-vector, scalar, and pseudoscalar fields. We then
identify the vector and axial-vector fields with currents

*Work supported in part by the V.S. Atomic Energy Com-
mission under Contract No. AT(30-1)-3668B.

~~J. Bjorken and R. Brandt, Phys. Rev. 17'7, 2331 (1969).
2N. &Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376

(1967); T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev.
Letters 18, 1029 (1967).

and scalar and pseudoscalar fields with corresponding
densities introduced by Gell-Mann, Oakes, and Renner. '
We assume canonical commutation relations for fields,
and by the limiting procedure introduced above, we
obtain a simpler set of commutation rules for currents
and densities. We then apply the resulting commutation
relations to study the problem of the leading diver-
gences in weak interaction. We show that nonleptonic
processes are finite to lowest order in the weak-coupling
constant and are free of leading divergences to all orders.
We also show that, to order G', there are no A4 and
A' lnA divergences in 65= 1 processes, where 6 is the
weakcoupling constant. It is obvious from the above
that radiative corrections to nonleptonic decays are
also free of leading divergences to order G.

II. ALGEBRA OF SCALAR AND VECTOR FIELDS

We start with the following Lagrangian in the simple
case with SU(2) symmetry:

&=&o+&a,

where Ze is SU(2) symmetric and Zs is the symrnetry-
breaking part. We work in terms of a triplet of vector

3 M. Gell-Mann, R, 0@kes, and B. Renner, Phys. Rev. 175,
2195 (1968),


