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tion (4.9) of the p matrices, the helicity operator in We compute
the laboratory frame q' e "q 0 0

1 p'6
ho(P) =—

1
2

p 0

p+ p'—

0

(B1)
h-(p) =

0

0 0
(B3)

0 0 p,

(0 0 p, —pe[
io 0

Now let co—+~. Then

e "q+ qJ

where"&p+ p'+——ip' Th.en the operator which measures
helicity from a reference frame moving in the s direc-
tion with a velocity e, = —tanh(to) is"

and

( tl (, q'—+-', e (P'+P') = 2 '"e"rt

where
h„(p) = exp( —'&'p') -ho(q) exp(-', p'y'), (B2)

0 0 0

q =A(co) p"

~cosh' 0 0 sinh~

0 1 0 0

0 0 1 0

[sinhto 0 0 coshco J
' In this appendix all quantities are referred to the ordinary

coordinate system. We omit the carets.
"Cf. J. Bjorken and S. Drell, Relativistic Quantum Mechamcs

(McGraw-Hill, New York, 1964), p. 186.

v2p~/q —1 0
h-(P)~h-(P) =

2 0 0 1 v2P/&

0 0 —1 J

h„(p) tt(p, a-', ) = +-', tt(p, a-', ),

h„(p) u(p, a-,') = Tv(p, a-', ).

We can now verify that the spinors listed in (4.51) are
eigenstates of h„(p):
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Model amplitudes are discussed which can accommodate nonlinear trajectories, satisfy duality, and have
a nondegenerate spectrum of daughter resonances.

CONSIDERABLE activity has been generated
M recently by Veneziano's suggestion' of an elegant

approximate form for scattering amplitudes which
embodies many of the features thought to be possessed
by real scattering amplitudes. This expression is con-
structed from functions of real linear Regge trajectories
and correlates a rich resonance spectrum with Regge
asymptotic behavior in a crossing-symmetric manner.
On the other hand, not only is it restricted to linear
trajectories, but also it fails to accommodate Regge
behavior for real energies (except in an average sense)
or finite-width resonances. Moreover, the requirement
of factorized resonance residues demands a degeneracy
of secondary resonances at J—I (J being the spin of

the leading resonance at a particular mass value) that
increases very rapidly with e. It is, therefore, of interest
to explore alternative model amplitudes which contain
additional desirable properties not possessed by the
Veneziano formula while retaining most of its virtues.

The fundamental reason for both the requirement of
linear trajectories and the high degeneracy in the
Veneziano model is that the resonance residues are
polynomials in the trajectory functions. The degeneracy
is introduced in the transformation from the momentum
transfer variable to the cosine of the scattering angle.
We propose a model which can accommodate nonlinear
rising trajectories with right-hand cuts and even left-

* Work supported in part by the National Science Foundation.' G. Veneziano, Nuovo Cimento 57A, 190 (1968).
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hand cuts if desired. ' Each resonance residue is a func-
tion of the external masses and the energy but is
independent of the crossed-channel trajectory function.
At each mass there is a single Toiler pole or, in other
words, a nondegenerate sequence of daughter poles. 4

Any model with a single trajectory function and the
correct analyticity, but no fixed singularities, must con-
tain at least one Toiler pole if it is to describe an
arbitrary scattering process. Thus, our model with a
single Toiler pole can be considered to contain a mini-
mal set of daughters. Moreover, those features of the
Veneziano model, like the connection between exotic
resonances and exchange degeneracy which are reQec-
tions of duality and are derivable from duality diagram
considerations, are retained in our model. ' We therefore
ignore isospin complications in this paper.

We introduce the concept of compensating functions
y;; and y;, . These are functions of the two complex
variables rs; and n; with the following properties: (i)
p;; and p;; are symmetric functions of n; and n;, (ii)
when 0.;=e, a positive integer, y;;=a, and y;, =u; (iii)
for arga, NO,

I
a;

I
~~, cx, fixed but not a positive

integer, y,,—+u; and y,,~n;. Convenient representations
of y;, and y;; are

v' =L~'f(~ ) +~ f(~') j/Lf(~')+f(~ ) 3, (1)

v'~=I:~'f(~')+~~ f(~~)3/Ef(~*)+f(~~) j (2)

where f(e) = oo and sf(x)~0 as
I
x

I
~oo and arg x/0.

A possible choice of the function f(x) is L%' (—x))'I&,
where 4 (s) is the mth-order polygamma function and
m)P) 2. Using the asymptotic behavior of 4' (s), we
find that in the limit

I n, I
~oo, y;; =n; e, and p-;,=

a;+e;, where

(N; —n, )f(n;) expI i(7r/P) qL(m —1) !y~
f(-.) +f(-,) I:~.(--,) 7 ls-.-'s-

We restrict m to be even.
We first construct the invariant amplitude for xm —+

x~ scattering. As in the Veneziano model, it is given by
a sum of three terms':

A(s, f, u) =M(s, t)+M(s, u)+M(t, u), (3)

where

m„'~I""-' I'(1—a,) r (1—
exp)

Other crossing-symmetric models which are direct generaliza-
tions of the Veneziano model have been developed by M. A.
Virasoro, Phys. Rev. 177, 2309 (1969); S. Mandelstam, ibid.
183, 1374 (1969);D. D. Coon, ibid. 186, 1422 (1969);M. Suzuki,
Phys. Rev. Letters 23, 205 (1969).

4 M. Toiler, CERN Reports Nos. Th. 770 and 780, 1967
(unpublished); G. Domokos, Phys. Rev. 159, 1387 (1967);M. H.
Rubin, ibid. 162, 1551 (1967).' J. Rosner, Phys. Rev. Letters 22, 689 (1969); H. Harari,
ibid. 22,&562 (1969).

The poles come from the I' functions in the numerator,
and the properties of the compensating function ensure
the absence of double poles. When n, =J, y, t,

——n& and
the n& dependence cancels out of the poles residue.
C~„~"'(&o„) is the derivative of a Gegenbauer function'
with respect to its argument co„which is, in turn, defined
for m.~—&em to be

oi„= (2m.'—u) /2m. '.

In fact, ~„ is just one of the Toiler variables. 4 Since the
residue at a pole o.,=J is proportional to the derivative
of the Gegenbauer polynomial Csoi(&o ), we have just
a single Toiler pole. 4 The expansion~

ns '
C, & ~'( „)= g r, is(s) r,is(s)r, '(s, ) (6)

p (s) p „(s) i=o

indicates that the leading resonance of spin J is accom-
panied by a set of nondegenerate daughter resonances
with positive residues. The residue of the pole in the
su term of (3) is proportional to Cso&'(co~), which, when
added to (6), guarantees that only odd angular momen-
tum poles are present in (3) . Note that a, need not be
a linear function of t; it need not even be real. If n,
passes through J+ib, only the partial waves up to J
resonate. There are no ancestors. Parenthetically we
remark that in the Veneziano model, adding an imagin-
ary part to the trajectories in the region of their right-
hand cuts but keeping them linear below threshold
introduces finite-width resonances but no ancestors. In
both models, partial waves higher than J are propor-
tional to 9 and do not resonate.

If s~~ with 3 6xed, we have
I
n,

I

—+~, y„=a,—o„
and f„=a,,+c,. Owing to the o factors, the asymptotic
behavior is not of a pure Toiler pole unless ~ vanishes
faster than any power:

M(s, () P( —m '/so)~~'r(1 —n~)C &"'(oi )+0(o,).

The terms proportional to e, do not have the form of
Regge poles; however, using the polygamma form of
the compensating functions, we find that e, vanishes
like (o,,)' ~&. Thus, by increasing m, we can shift this
background part of the asymptotic behavior further to
the left in terms of singularities in the complex angular
momentum plane. Inasmuch as there are singularities
other than simple Regge poles in the left-hand angular
momentum plane, the presence of such terms in our
model amplitude is not disturbing. It may even make
the amplitude more realistic.

Since u~ —oo as s~~ with 3 fixed, the M(t, u) term
in (3) approaches (7) with &o replaced by cv,. When

Higher Transcendental FNnctions, edited by A. Erdelyi et at.
(McGraw-Hill, New York, 1953), Vol. 1, p. 178.

7The l~'(s) are related to the analytic continuation of the
irreducible nonunitary representations of SL(2, C): K. Bitar
and G. Tindle, Phys. Rev. 165, 1835 (1968).
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these two terms are added together, we find

2s.P, L1—exp( —i )j s
A(s, t, u) =

I'(a, ) sins a& Sp

I'$ ' ' $2—2Paii'(1 —ai)
~

— e, ln +
Uo CL8$p A g$2—exp( i—na, l e„ ln + —,(&)

N~sp 0!~

where we have inserted the asymptotic form of the
Gegenbauer function. We have explicitly displayed the
leading non-Regge term.

The requirement that the sl term vanish in this limit
places additional restrictions, on the compensating func-
tions. We have not investigated these in detail, but note
that if we use the polygamma function form with ns

even, then in the limit that the trajectory function has
only right-hand cuts o,,~Re'&, n„—+—E, R—+~,

sin)-,'y(1+m/P)+~m/2P j
y, ~iR exp iP 2)

cos(-', Pm/P I-sm/2P)

Li'(1—a,) I'(1—a )/I'(1 —y,„)j—+R

where
~= tant' —tandem(y+m)/2Pj.

Hence, the sl amplitude can be made to vanish faster
than any power for trajectories which rise faster than
logarithmically and for suitably chosen values of m
and P. Thus our model has the correct asymptotic
behavior, again without the requirement of linear, real
trajectories. Our model differs from the Veneziano
model in that we introduce an arbitrary scale factor sp

in (4). The scale factor in the Veneziano model is just
the inverse of the slope of the linear trajectory function.
For nonlinear trajectories, there does not exist such a
natural choice of scale factor. However, there is a single
sp for any given set of reactions related by crossing.

The invariant amplitude defined by (3) and (4) has
the usual dynamical branch points from the trajectory
functions. In addition, since the Gegenbauer functions
are cut from —~ &co& —1,' there is a branch point in
M(s, 1) at u=4m '. This coincides with the normal
threshold branch point. Thus, in the s-channel reson-
ance region, M(t, u) in (3) acts as a complex, non-
resonating background term. In addition, we have a
series of unphysical cuts arising from the zeros of
+ (—a, ) (m even) . Just as the resonances whose posi-
tion is given by 4' (—a;) = co lie on unphysical sheets,
so do the branch points 4' ( —a, ) =0, 4' ( —a, ) = oo.
(For m even, these branch points occur for real values
of a.) Furthermore, the first branch point lies above the
first resonance in energy. Indeed, the choice f,=
(I'( —a,)/I'(X —a,) /is enables us to place the first
branch point at an arbitrarily high energy. This series
of cuts ensures that any essential singularities arising
from the zeros of f(a ) +f(a,) occur on unphysical
sheets. In fact, these singularities are reached only by
passing through the cut in $N ( —a;) $'~s, which in turn

is located on the unphysical sheet of the full scattering
amplitude.

As a second application of our ideas, we consider the
scattering of four spinless particles of arbitrary masses.
E-m and x-m scattering are special cases of this example.
As mentioned above, we ignore isospin considerations
since they are identical in our model and the Veneziano
model. The invariant amplitude is the appropriate sum
of terms of the form

m m' * I'(1—,) I(1—a„)
M(x, y) =p — "

Cv.„&'i(to,),
Sp r(1—~,„)

(9)
where

co, = (m'+m" —s) /2mm',

and the masses m and m' are chosen so that the branch
point of the Gegenbauer function C~,„'"(to,) at —1
corresponds to the lowest threshold in the s channel.
Again P is a constant and ss an arbitrary scale factor.
Equation (9) is written with the first poles in the x and

y channels occuring at J=1.By an obvious modifica-
tion of the compensating functions, (9) could describe
a process where the first poles in the x and y channel
occur at di6erent J. M(x, y) has both poles and Regge
asymptotic behavior. Since the Gegenbauer function
C, (a&,) has an expansion similar to (6) in terms of
Legendre polynomials, there will be a sequence of non-
degenerate daughters with positive widths at each mass
value.

We have constructed a model of a crossing-symmetric
scattering amplitude which, like the Veneziano model,
satisfies duality' but which can accommodate arbitrary
rising trajectories. There are no degenerate daughter
poles. If nothing else, this model shows that resonance-
Regge pole duality as used in finite-energy sum rules is
insufficient to determine the trajectory function. ' Satel-
lite amplitudes can be constructed, as in the Veneziano
model, by changing the argument of the F functions in

(4) . However, the satellite terms are introduced at the
expense of increasing the degeneracy of the secondary
poles. This model is more complicated to analyze in
terms of angular momentum content than the Veneziano
model. Our amplitude does not satisfy the Adler self-
consistency condition for processes involving pions. "
However, as discussed by Yellin, " this aspect of the
Veneziano model may be spurious. Ultimately the
choice between various models has to be made on the
basis of comparison with experiment. The freedom in
constructing the compensating functions and choosing
the trajectory functions makes the model proposed here
inherently more dificult to test. However, its existence
implies that the Veneziano model is far more restrictive
than the general physical concepts upon which it is
supposedly based.

There seems to be no universal definition of duality, but the
observation by D. B.Lichtenberg, R. G. Newton, and E. Predazzi
[Phys. Rev. Letters 22, 1215 (1969)] does not appear to be
applicable to our model.' A. R. Swift and R. W. Tucker, Phys. Rev. 186, 1553 (1969)."C. Lovelace, Phys. Letters 28B, 265 (1968)."I.Yellin, UCRL Report No. 18637, 1968 (unpublished).


