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We examine the formal foundations of quantum electrodynamics in the infinite-momentum frame.
We interpret the infinite-momentum limit as the change of variables r=2 "'(t+s), X=2 "'(t—s), thus
avoiding limiting procedures. Starting from the Feynman rules, we derive a r-ordered perturbation expansion
for the S matrix. We then show how this expansion arises from a canonical formulation of the field theory
in the infinite-momentum frame. We feel that this approach should lead to convenient approximation
schemes for electrodynamics at high energy.

I. INTRODUCTION

t 1HE infinite-momentum frame first appeared in
connection with current algebra' as the limit of

a reference frame moving with almost the speed of
light. Weinberg' asked whether this limit might be
more generally useful. He considered the in6nite-
momentum limit of the old-fashioned perturbation di-
agrams for scalar meson theories and showed that the
vacuum structure of these theories simplified in the
limit. Later, Susskind' 4 showed that the inanities which
occur among the generators of the Poincare group when

they are boosted to a fast-moving reference frame can
be scaled or subtracted out consistently. The result is
essentially a change of variables. Susskind used the
new variables to draw attention to the (two-dirnen-
sional) Galilean subgroup of the Poincare group. He
pointed out that the simplified vacuum structure and
the nonrelativistic kinematics of theories at infinite
momentum might offer potential-theoretic intuition in
relativistic quantum mechanics.

Bardakci and Halpern' further analyzed the struc-
ture of theories at infinite momentum. They viewed
the infinite-momentum limit as a change of variables
from the laboratory time and s coordinates to a new
"time" r=2 "'(t+s) and a new "space" coordinate
Z =2 't'(t —s) . Chang and Ma' considered the Feynman
diagrams for a qP theory and quantum electrodynamics
from this point of view and were able to demonstrate
the advantages of their approach in several illustrative
calculations.

In this paper, we examine the formal foundations of
quantum electrodynamics in the infinite-momentum
frame. We interpret the infinite-momentum limit as
the change of variables r=2 't'(t+s), X=2 "'(t—s)
thus avoiding limiting procedures. We derive a ~-
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ordered perturbation series and show how such a series
arises from a canonical formulation of the field theory.
We feel that this approach should lead to convenient
approximation schemes for electrodynamics at high en-

ergy. In particular, we hope to discuss, in a future

paper, the recent extensive results of Cheng and Wu~

on high-energy processes in electrodynamics.
We divide this paper into several sections. In Sec. II

we introduce the change of variables which defines the
infinite-momentum frame and review briefly the struc-
ture of the Poincare group in the new variables. In
Sec. III we deduce, beginning with the Feynman rules,
the rules for the construction of scattering amplitudes
from 7-ordered diagrams. The results are similar to
Weinberg's results concerning the infinite-momentum
limit of scalar-meson theories, but the appearance of

spin results in new terms in the infinite-momentum
Hamiltonian. ' In Sec. IV we look at the held-theoretic
basis for the infinite-momentum scattering theory rules.
We begin with the usual Lagrangian and develop the
theory along the lines of the canonical formalism usu-

ally used in an ordinary reference frame. In the in6nite-
momentum frame, several new features arise. This is
because the planes "r"=const play a preferred role in
the canonical formalism, and in the infinite-momentum
frame these planes are lightlike rather than spacelike
surfaces. We find, however, that it is possible to postu-
late equal-"time" commutation relations which give a
formally consistent theory, reproduce the free-field the-
ories if the interaction is turned off, and give a formal
S-matrix expansion which agrees with the rules found
in Sec. III.

II. CHOICE OF VARIABLES

We will regard the "infinite-momentum frame" as
the reference frame obtained by choosing new space-
time coordinates (r, g, y, Z) related to the usual co-

H. Cheng and T. Wu, Phys. Rev. 182, 1852 (1969);182, 1868
(1969); 182, 1873 (1969); 182, 1899 (1969); 183, 1324 (1969);
184, 1868 (1969); 186, 1611 (1969); Phys. Rev. Letters 23, 670
(1969);23, 1311 (1969);24, 759 (1970); and to be published.

These results extend and systematize the results of Chang and
Ma, Ref. 6. See also, L. Susskind, Ref. 4; and D. Flory, Phys.
Rev. 186, 1701 (1969);and Phys. Rev. D 1, 2795 (1970).
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ordinates (3, x, y, s) by

Fro. 1. Coordinate axes of the
infinite-momentum frame.

Let us consider the generators of the Poincare group
in the new notation. Our conventions for the Poincare
algebra in the ordinary notation are

[P, P"]=0, [M„„,P,]=i(g„,P„g„—„P„),
A, P

Mu ]=i(gu M u+g uMu. kuuM g-Muu)

(2.6)

The generators of rotations and boosts are, respectively,
M;, = e;,vA and M;p K;. Us——ing the matrix C"„ to trans-
form from the usual notation to the new notation, we
obtain

where

x&=C~„x" (2 2)

r= (f+s)/V2, 2'= (i s)/K—2. (2.1)

Thus the r and Z axes of the new frame lie on the light
cone, as shown in Fig. 1.The infinite-momentum frame
is not a Lorentz reference frame, but is, in a certain
sense, the limit of a Lorentz reference frame moving
in the —s direction with nearly the speed of light.

It will be convenient to use the usual covariant tensor
notation for quantities in the new coordinate system.
Let xu= (xP, x', xs, x') = (1, x, y, s) be the coordinates
of a space-time point in the ordinary coordinate sys-
tem, and xu= (x', x', x', x') = (r, x, y, Z) be the new
coordinates of the same point. Then

and

where

Pu= (P', P', P', P') = (q, P', P', a) (2.7)

( o —s, —s, Kp)

Si 0

S2 —J3
(2 g)

[—Ks Bi Bs —0, —

ri= (P'+P')/v2, a= (p' —p') /K2,

8,= (K,+Js)/C2, Bs (K,—J,)/v2, ——(2.9)

Si——(K, Js) /V2) —Ss——(Ks+J,) /V2.
'2 1/2 0 0

0 1 0 0

0 0 1 0

2—1/z 0 0 2-i./2

(2.3)

The commutation relations among these generators
are, of course, given by (2.6) without the carets. The
commutation relations among the operators LI, I", I",
p, J3, Bj, and 8& are particularly interesting. They are
the same as the commutation relations among the sym-
metry operators of nonrelativistic quantum mechanics
in two dimensions with

g"= (C ') .g-s(C ')''
We take for the ordinary metric tensor gpp= 1 g]J = gp2

——

g33= —1. Then
fo o o

In general, we use careted symbols for vectors and
tensors in the ordinary coordinate system, uncareted
symbols for vectors and tensors in the new coordinate
system. In particular, we use g„, for the metric tensor
in the new coordinate system:

H—+Hamiltonian, P~~momentum,

g—+mass, Js~angular momentum,

Bi and Bs~generators of (Galilean) boosts in the x and

y directions, respectively.

Indeed, we have

[a, x,]=[a,&]=[&„&]=[J„a]
=[Js, n]=[B,n]=0,

0 —1 0 0
(2.5)

[Js, P"]=ieI,(P',

[BI„a]= —iP',
[Js, B"]=i ( et'B

[B&) P 7

(2.10)

0 0 —1 0

0 0 0,

We use g„„to lower indices, so that ap ——a', a3= u'; this
may seem confusing, but it has important consequences.
For instance, the wave operator 8„81'=28p83 —BiBi—B~B~

is only of first order in Bp=B/Bi..

where ei2= —
&2' = 1, ~U = e22 ——0. The commutation rela-

tions (2.10) are the result of an isomorphism between
the subgroup of the Poincare group generated by I'",
Je, and B and the Galilean symmetry group of non-
relativistic quantum mechanics in two dimensions. This
isomorphism results in a nonrelativistic structure for
quantum mechanics in the infinite-momentum frame. "

' Cf. Refs. 3 and 4. "Cf. Refs. 3-5.
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As one example of this isomorphism, we note that the
mass-shell condition, m'=PI"P„=2qH —p~', for a free
particle implies that the free-particle Hamiltonian takes
the nonrelativistic form

A. Proyagators

If we wanted to derive t-ordered diagrams from the
Feynman diagrams, we would begin by writing the
Feynman electron propagator in the form

H =pr'/2g+ Vo, (2.11) S (x) =0(/) S&+&(x)+0(—3) S&—&(x). (3.1)
where Vo ——m/2g is a constant potential.

It is easy to verify that the subgroup of the Poincare
group generated by P', P', p, J3, 8&, and 82 leaves the
planes a=const invariant. Thus these operators might
be called "kinematical" symmetry operators.

Consider now the operators S~ and S2 in connection
with our nonrelativistic analogy. We find that S& and
S2 comrriute with each other and with the Hamiltonian
H. Thus they play the role of the "dynamical" symme-
try operators sometimes encountered in nonrelativistic
quantum mechanics. " The operators S~, S2 form a
vector S under rotations:

l J3, SI,7 ieI,=~S~ Th.e com-
mutation relations of S with g, Py, and B are

l sp, g7= —i7", fSI„P(7=—iby(H, (2.12)

l SI„Bg7=—ieaig3+i8~(E3.

Finally, we find from the commutation relations that
the operator E3 serves merely to rescale the operators
we have considered so far:

exp(icuE3) q exp( —i&uE3) = e"g,

exp(~E, ) Pr exp( —ia&E3) = Pr,

exp(i~E3) H exp( —i&vE3) = e "H,

exp(icoE3) J3 exp( —i~E3) =J3, (2.13)

exp(ia&Eq) B exp( —i~E8) = e"B,

exp(neE3) S exp( —ia&E3) = e "S.
The fact that the operators PI' and 3E„„in the infinite-
momentum frame transform under s boosts according to
simple scaling laws suggests that the infinite-momentum
frame may be particularly adapted for high-energy
approximations.

III. SCATTERING THEORY

1 Cf. L. I. Schi6, QNgetum 3IIgchanics, 3rd Ed. (Mcoraw-Hill,
New York, 1968), p. 234ff.

In this section, we regard the theory of quantum
electrodynamics as being defined by the usual perturba-
tion expansion of the S matrix in Feynman diagrams.
We rewrite the theory in the infinite-momentum frame
by systematically decomposing each covariant Feyn-
man diagram into a sum of noncovariant v-order dia-
grams. We consider the Feynman expansion as a formal
expansion; thus we shall not be concerned in this paper
with the convergence of the perturbation series, or
convergence and regularization of the integrals.

We will try to do the same thing using 0(r) instead
of O(i).

We start by considering the Klein-Gordon propa-
gator:

hp(x) —= (2x)—'fd'p exp( ip—„x&)(p "p, m—'+i e)

(3.2)

=(2 ) fd'p fdic expl —i(nZ —p x )7
X fdH exp( iH—r) (2qH pr' —m—'+ie) '. (3.3)

We can evaluate the H integral by contour integration,
closing the contour in the lower (upper) half-plane if
r) 0 (r(0). Thus we have the required decomposition
for hp(x) ":

—Z
Ap (x)=, d'pr

2(2~)'

Xl O(r) exp( ip„x"—)+0~(—r) exp(+ip„x&)7, (3.4)
where

+
2 2, ~(r)v' d'Pr

(3.7)
"Here and elsewhere, we encounter a singularity at g=0. In

this paper it will not be necessary to specify the precise nature of
these singularities.

po=H(~, p )=(p"+ ')/2n

is the free-particle Hamiltonian. Notice that

d'prdg/g =d'p/p'

is the invariant differential surface element on the
mass shell.

We can use the decomposition (3.4) of hp(x) to
derive a decomposition for the electron propagator,

Sp(x) —= (i8„7&+m)Ap(x). (3.6)

LIn keeping with our convention, the y" are the 7 ma-
trices in the new notation. We use y& for the y matrices
in the ordinary notation; thus p =2 '~'(& +$'), etc.
Table I in Sec. IV contains some useful identities for
the new y matrices. ) When we differentiate Ap(x) in
(3.4), we get a term proportional to 0'(r), a term pro-
portional to 0'( —r), and a third term proportional to
8(r) =800~(r). As we will see, this third term results
in an extra term in the in6nite-momentum-frame Ham-
iltonian. Doing the diGerentiation, we get

—i ~dg
Sp(x)=, d'pr

2(2m) '

Xl 0(r) (p+m) exp( —ip, x~)

+0(—r) ( p+m) e—xp(+ip„x&) 7
" dg—expt i (gz pr—xr) 7— .

QQ
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propagator takes the form

D~""(x)=, d'Pr —LZ ei(p) "e~(p) "]
2 (2zr) '

X LO(r) exp( —ip„x")+0(—r) exp(+ip„xo) ]
1 ~ dg+,8(r) bs&bs" O'Pr —,exp) —i(liZ —pr xz) ],

(2zr) ' lP

(3.12)
where

po= H= pr'/2' (3.13)

Fin. 2. (al Typical Feynman diagram in coordinate space, and
(b) in momentum space after 7 ordering.

We will also need a decomposition for the photon
propagator. We start with

D (x) o"= (2~)-4 d'p

The 8(r) term in D~&"(x) will result in an extra term
in the Hamiltonian which is analogous to the Coulomb
force term which appears in quantum electrodynamics
in the Coulomb gauge.

B. Diagrams

We start with the usual Feynman rules in coordi-
nate space. For definiteness, let us consider a particular
diagram, say the one shown in Fig. 2(a). We fix our
conventions by writing out the contribution of this
diagram to the 5 matrix:

M = (—ie) 'fd'xid'xsd'xsI lpi(xr). y„lps(xt).]
(

. „,~ „„/, „., ~ /
)

X LlP4(xs) yyzS$ (xs—xs) yglps(xs) ]zDp(xs —xi) "e(xs)*.

As we will see, a great simplification in the theory will

result if we choose the gauge A'=0, which might be
called the infinite-momentum gauge. To write the pro-
pagator in this gauge, we define the polarization vectors

e (P)"—=n '(o n o P') e (P)"—=~ '(o o» P').

(3.9)

These polarization vectors satisfy the orthogonality
conditions eq&e» 8q„eq(p) "p——„=—0. By direct calcula-
tion, we 6nd

+ (1/rp) (2qH pr') Jose "s. (3.—10)

Let us make the replacement (3.10) in our integral for
Dr (x)&". We note that the gauge terms li '6"sP" and

q 'p&8 "4 will not contribute to any physical process be-
cause of current conservation. Thus we may drop these
terms without changing the theory. This leaves us with

Dp(x) ""=(2zr) ' d'p exp( —ip„x")
Pgel, (p) &e&, (p) "

pop +ze

+ (2zr) 48&s8 "4 d4p exp( —ip„x") —, (3.11)Pop

lP P„P"+ic
We can do the H integration in the first term by

contour integration, just as we did for As (x). In the
second term, p„p&/(p„p&+i ) +41 as e~0—+ so that the
H integral gives a factor 5(r) . In sum, then, our photon

The electron wave functions used here are
(3.14)

lP(x), = I 2 (2zr)'] "' exp(+iP„x")u(P, s)„(3.16)

where p and s are the physical momentum and spin
of the positron. The photon wave function is

e"(x) = $2(2zr)'] 'i' exp( —ip„x&)ei(p) &, (3.17)

where eq(p) is one of our infinite-momentum-gauge
polarization vectors. Finally, it may be useful to note
that although the p matrices appearing explicitly in

Eq. (3.14) are, as always, the "new" p matrices, the
old fo still plays a role in lp=lPtfo.

We begin the program of deriving the rules for r-
ordered diagrams by inserting the momentum expan-
sions (3.7) and (3.12) for the propagators into (3.14).
Let us, for the moment, ignore the contributions to
Sp and Dr "" proportional to 8(r). Then each of the
3.' possible r orderings of the vertices determines a
r-ordered diagram; let us consider, say, the ordering

r~(r2(r3. For this diagram we draw the picture in

Fig. 2(b). The corresponding contribution to the S
matrix is obtained by inserting 0'(rs —rs)O~(rs —rt) into
(3.14). Thus only one of the 0'(r) or O~( —r) terms
survives from each propagator. We can do the xr and

lp(x) = L2(2zr)'] '~' exp( —ip„xl') u(p) s) ) (3.15)

where p and s are the momentum and spin of the
electron and the spinors u(p, s) are normalized to
uN=2m. For positrons we use the charge conjugate
wave functions
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To= 7])

Tj —7 2 7])

T2—7 3 797

the r integrals become

7 ] —Top

rs TQ+ Ti)

rs TO+ Tl+ Tsy

fdTpdTidTsO(Ti)O(Ts) exp{—iL(X;—Xy) Tp

+ (Xi—Xr) Ti+ (Xs—Xr) Ts) I, (3.19)

where X;=Hi+Hs is the total "energy" of the initial
state, Xi Hs+Hs+——Hs is the total "energy" of the
first intermediate state, Xs——Hs+Hq+H7+Hs is the
total "energy" of the second intermediate state, and
Xr ——Hs+Hs+Hs is the total "energy" of the Anal
state. The integrations can now be done using

dT exp( iXT—) = 2s-b(X),

(3.20)00

dT exp(iXT) =
X+is

Thus we get an over-all factor of (2m.)b(Xr —X;) and
a factor of i(X~—X+is) ' for each intermediate state.
With a little thought, one can convince himself that
this result is completely general.

We now have to consider the effect of the 8(r) terms
in the propagators, which we have so far omitted. To
the contributions to the S matrix from a particular
Feynman diagram so far obtained, we should add the
contributions obtained by replacing the v/0 parts of
Ss(x) and Ds (x)"" with the 8(r) part in any of the
internal lines. We will use the pictures in Fig. 3 for
the 8(r) parts of Ss(xs—xi) and D&(x&—xi)"". Dia-
grams containing one or more of these b(r) internal
lines are then treated as before except that we con-
sider structures such as those shown in Fig. 4 as
single vertices when we do the v.-ordering. Thus we
get (2sr)'b'(pr;. —pr.„,)8(g;„—g.„,) at each end of a
8(r) internal line, an over-all (2n.)b(X~—X;), and a
factor i(Xq X+is) '—for each intermediate state be-
tween two different "times. "

At this point, let us notice that diagrams in which
two or more b(r) parts of propagators are linked to-
gether give a zero contribution to the 8 matrix. Indeed,

Z integrations to give (2n.)'b'(pr i~—pT out)b(gin 'gout)

at each vertex. The ~ integrals in this example are

fdridrsdrsO(rs r—&)O(rs r—i) expI —i[(H1 Hs Hs) rl

+ (Hs H4 H7) rs+ (H7+Hs Hs) rsjI . (3.18)

With the change of variables

(b)
Fzo. 4. Structures considered as

single vertices. Structures like (c)
and (d) give zero.

(c)

',d)

consider a diagram containing a part like that shown
in Fig. 4(c). The corresponding contribution to the
5 matrix contains p'y„y' times apl"" or el". Because of
our choice of gauge, only @=1, 2, 3 occurs; but, since

—y'y'y~ ——0, and goy, yo popo' 0. Hence goy»o~I"
goy„yoagI"=0. Now consider a diagram in which the
structure shown in Fig. 4(d) occurs. The correspond-
ing contribution to the S matrix contains a factor

bs"bs"(" V'V " ) =bs"( "V'vs" )
&'&' ~ ~ ~ ) = O.

We are now in a position to summarize the rules for
r-ordered diagrams. With our choice of gauge there
are three types of interactions as shown in Fig. 5.
These interactions are to be 7.-ordered in all possible
ways. We then associate the following factors with the
parts of the diagram".

(i) wave functions u(p, s), u(p, s), u, (p, s), u, (p, s),
and e&, (p) for the external lines;

(ii) (P+es) = P, u(P, s)u(p, s) for electron propa-
gators; (—P+m) = —g. u, (p, s)u, (p, s) for positron
propagators; Pq eq(p) i'eq(p)" for photon propagators;

(iii) («) "'~p„&(g. & g; )bs(pr.— pr;.) for ea—ch
vertex as shown in Fig. 5 (a);
L"/4(2 )'7b "b "(1/no')b(~- —n'-)b'(p"- —pr;-)

~ o op ~ o op o ~ o

for each vertex as shown in Fig. 5(b), where gs is the
total q transferred across the vertex;

P'/& (2~) '$y.v'V, (1/qs) &(gout 'gin) b (pr out pr in)

for each vertex a,s shown in Fig. 5(c);
(iv) an over-all factor of —2s.ib(Xi X;), an—d a

factor of (Xr—X+is) ' for each intermediate state;
(v) the usual over-all sign from the Wick reduc-

tion, determined by the structure of the original Feyn-
man dlagl am)

(vi) an integration

FIG. 3. (a) Pictures used for the
B(~) terms in the electron pro-
pagator and (b) the photon
propagator.

0—— I

X) Xp

for each internal line.

00

dp, f—
O g

P "We have done the momentum integrations over the b(~)
lines and rearranged the factors of ~, i, etc.
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(b)
Fxo. 5. Vertices in the in6nite-

momentum frame.

(c)
/

Note that since each line carries positive q and q is
conserved in each interaction, vacuum diagrams like
those shown in Fig. 6 cannot occur.

In Sec. IV we shall develop the canonical field theory
for quantum electrodynamics in the infinite-momentum
frame. As we will see, the Hamiltonian we will obtain
reproduces the scattering theory we have developed
here.

Z(x) = 4$( 'i8„—eA„)y—" —m)4' 'F—&"F „—(—4.1)

where the electromagnetic 6eld tensor Ff"" is related to
the potential A & by Ii I""=8 "A&—81"A ". Variation of the
fields 0', 0', and A& give the Dirac equation and Max-
well's equations:

L(iB„—eA„)y&—m]0=0,

&~I ~'= e% y~%—=J~.

(4.2)

(4 3)

It will be convenient to work in the infinite-momen-
tum gauge, A'(x) =0. In this gauge, the field tensor is
related to the potential by

P'~= —O'A~= —83A ~ (A=1, 2, 3). (44)

In order to specify the gauge completely, we must
choose boundary conditions for A "(x). For reasons of

symmetry, we will require that A"(x', x', x', +~) =
—A"(x', x', x', —~).With these boundary conditions,
the solution of (4.4) is

A&(x) = ——', fd&e(x' —P)F'"(x' x' x' &) (45)

where
e(x) =1,

I7. CANONICAL FIELD THEORY

A. Equations of Motion

We base our field theory on the usual Lagrangian
ensi. ty'4

we have imposed are consistent with Maxwell's equa-
tions. Thus it is reassuring to note that the de6nition
(4.5) of A&(x) works for the classical electromagnetic
field. If the field F""(x) is produced by a current
which, say, is nonzero only in a bounded space-time
region, then the components F'"(x) go to zero like
(x') ' as

~

x'
~

~~. Thus the integral (4.5) is well

defined. Using the homogeneous Maxwell's equations,
8"F"i+8 "F~"+B~F""=0,one can easily show that the
potential A" defined by (4.5) satisfies 8 "A &—81 A "=Fl""

for all indices p, , v.

We have eliminated one component of A&(x) by our
choice of gauge. Only two of the remaining three com-
ponents can be independent dynamical variables, since
the three components of A&(x) are related at any
"time" x by the differential equation

Bs(BiAi+BsAs+ t)sA)sr)~Fol Jo (4.6)

It will be convenient to regard A' and A' as the inde-
pendent components. Then A' satis6es

8383A'= —83& .A J—J'
(We adopt the convention that Latin indices are to
be summed from 1 to 2.) The solution of this equation
which equals A' as defined by (4.5) is

A'(x) = ——;fdic [
xs —t ) La,a,A~(xo xi xs ()

+J'(x', x', x', $) ]. (4.7)

To see that this equation reproduces our definition of
A' in terms of Ii03, write it as"

A'(x) = —-',

fdic

~

x' —
& ~

8 Fs'(x', x', x', &)

= ——,
'

fdic(a/axs

~

x' —P ~ )F&s(x', x', x', P)

= —-', fd& e(x' &)F"(—x', x', x', P). (4.8)

Thus only two components, A'(x) and A'(x), of
A"(x) are dynamical variables. As(x) is identically
zero, and A'(x) is determined at any "time" x' by
A'(x), A'(x), and 4(x) at that x' by means of Eq.
(4.7). This reduction in the number of independent
components of A& is a familiar feature of quantum
electrodynamics in any reference frame.

FIG. 6. Typical diagrams that vanish because
of g conservation.

It is perhaps not obvious that the gauge conditions

'4 We use the notation ag„b for a(8„b) —(8„a)b.

"For classical fields, the integral (4.8) converges because
BSF03 goes to zero like (x') ' as x'~~. Furthermore, no surface
term arises in the integration by parts since &' falls off like
(x') ' as x'—&~. Note, however, that it is not permissible to
integrate by parts in Eq. (4.7) .
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In the infinite-momentum frame, we find that the
number of independent components of the electron
field 4'(x) is also reduced from four to two. In order
to show this, we pause briefly to examine the proper-
ties of the infinite-momentum y matrices, p&=C&„y".
The "ordinary" p matrices && are chosen to satisfy
l7", $ "}=2g"" and y&t=v„. Thus the infinite-momen-
tum 7 matrices satisfy lp", p"}=2g&", p&t=p„. From
this it follows easily that P+———-', p'&' and P =—-', &'p' are
Hermitian projection operators with P+P =0 and
F++F =1. These facts, as well a,s some others that
we will need later, are listed for convenient reference
in Table I.

It will be helpful to have a specific representation of
the p matrices in mind. We will consistently use

(a= 1, 2, 3),

0 0 0

0 0 0 0

0 0 0 0

I, O 0 0 1,

'oooo'
0 1 0 0

0 0 1 0

fo o o of

(4.10)

(4.9)

where 0-', 0-', and a' are the usual 2)&2 Pauli matrices.
With this choice for the y&, we find that

TAM.z I. y-matrix identities.

P =—-'y'y' P =—-'y'p'

&+ = (&+)'=&+
P++P =1, P+P =PM+=0

y'P+=P y'=0,
pop =P+p0=0,

v'P-= P+v'= v'
~OP —P ~0 —~0

7'= (&/~2) (v'+~') = (I/~2) (I'-v'&++&+7'&-)
y'yo=V2P+, 7'y'= VTP

(4.12) as

e (x) = ——,'ifd~. (x'—~)

Y, [gaia; eA—;(x', xr, f)$y'+m}y%+(x', xz, $). (4.13)

Thus the two components of 0 (x) are dependent
variables in the infinite-momentum frame. They are
determined at any "time" x by the independent fields

4+(x) and A&'(x) at the same x'. We recall that the
dependent variable A'(x) is determined at any x' by
A&' and J at that x. It is reassuring to note that the
dependence of J'(x) on the independent fields 4+ and
A' is very simple:

J'= e4'p'%= e4tf'y'% =42e+~tN+. (4.14)

What are the equations of motion for our independ-
ent fields A'(x) and ++(x) P For A&'(x), we have the
Maxwell equations

By applying the projection matrices P+ to the elec-
tron field %(x), we obtain two two-component fields
which we call @~(x) and + (x):

!'0'

or
a, (a "A&—a&'A") =J',

2apapA'= J'+a'a, A "—a;a'A'

=J'+a'apA'+a'a, A' —a,a'A'

=J"+a'apAP+a;F'&. (4 15)

0
(4.11)

Using the deanition (4.5) of A&' in terms of Fo&, we have'

l. o J

a,+ = ——',iL(ia;—eA;) 7'+may%+. (4.12)

For reasons of symmetry, we write the solution of Eq.

With this preparation completed, we are ready to
examine the dynamics of the electron field 4'(x) . If we

multiply the Dirac equation by p and recall that
y'y'=0, we obtain

(iap eA p) goy'+ = pot' —(ia, eA;) y'+—m5+—

Using our y-matrix identities, this becomes

(iap eAp)e =—,'$(ia, eA-, ) y&+—m]y&~

This differential equation is considerably simplified be-
cause of our choice of gauge, A3 ——A'=0. Thus

apA&(x) =-,'fd& o(x' &)apaoA—& (x' XT, '&). (4.16)

Substituting into (4.16) from (4.15), we obtain

apA&'(x) = -', a&

fdic

p(x' &) a A'p(— xxTp, &)

+-,' fd$o(x' —p)! J&(x', xr, p) +a,F'&(xo, xr, $) $.

Since the integral in the first term is just 2A (x) be-
cause of Eq. (4.5), we have, finally,

apA&(x) =-',a&'A'(x)+-,' fd& p(x' —&) LJ'(xp, xr, p)

+a;F"(xp xz' $) j. (4.1/)

We can obtain the equation of motion for 4'~(x) by
multiplying the Dirac equation by p'. After making
use of some of our y-matrix identities, we obtain

ap++(x) = ieAP(x)%+(x—)
',i}tia, eA, (x) j—y'—+m}y—o4(x). (4.18)''
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B. Momentum and Angular Momentum

(4.19)

(4 2o)J x —x T x x T x+.g
where

~""=l'+(v"t v., v.7+ Lv., v.7v")++F".A —F".A'
(4.21)

If the 6elds satisfy the equations of motion, then
T„"and J„,~ are conserved:

Thus the total momentum,

8),J„,~=0. (4.22)

P„=—fd' xdrxT„,o

and the total angular momentum,

(4.23)

The invariance of the Lagrangian under the Poincare
group provides us, using Noether's theorem, with a
conserved momentum tensor T„"(x) and a conserved
angular momentum tensor J„„"(x):

T."=+(oi)B.V"++ (B.A-) F" —a."~

containing 80, and we are left with

Too= 4—(-,'i g B„y" —rr/)@+eA„4 y)'@
v=1

+-',F"F~o——,
' (BoA') (BoA') —(B;A') (BoA') . (4.29)

C. Momentum-Space Expansions of the Fie1ds;
Commutation Relations

Let ++(pr, g; r) be the Fourier transform, at the
"time" r, of 4'„(x), so that

4+(r, xr, &) —(2~) /' jd'prdr/

Xexpt —i(g$—pr xr) 7@ (pr, )t; r). (4.30)

It will be useful to def)ne operators b(pr, )/; s; r) and

d(pr, g; s; r), where s takes the values &-,', by

2 '/4g '/'b(pz, r/; +~~; r) =4'+q(pz, r/; r) for r/) 0,

2—'/4)t-'/'b(pr, g; ——,', r) =4+4(yr, r/; r) for r/) 0,

2 '/dr/ '/'dt(pr, g; +-', ; r) =4'+d( —yr, —)t; r) for r/) 0,

2—'/4r/ —'/'dt(yr, r/; —-'„r) =++)(—pr, r/ r) fol ')j)0.
M„,= fd'xzdx'J„, o, (4.24) (4.31)

T o=V2+t( ',i) B 4+ (-B A') (B—oA;) (n=1, 2, 3),

are constants of the motion. In our quantum theory,
P„and 3f„,are the generators of the Poincare group. '6

We recall from our discussion of the Poincare group
in Sec. II that the operators I'i, I'2, I'3, %~2, Mj3, and
&23 are "kinematical" symmetry operators in that the
subgroups of the Poincare group which they generate
leave the planes a=const invariant. Thus we might
expect that they take a particularly simple form. In-
deed, we find that

Then our Fourier expansion of 4+(x) takes the form

d, (, xr, z) =2-'"(2 )-'~'/d'pr dg g-'~' r.
p s=+1/2

X Izt)(s) expL —i()tz —pr xr) 7b(p; s; r)

+zt)( —s) exp)+t (r/Z —yz ~ xz) 7d (pp sp r) I, (4.32)

where the spinors w(s) are

'01

y&zo= x&T o—xoT&o+ +2%+t(-', i) y)7o%'+1 A'(BoA')

(4.25) ~(+l) = (4.33)

—A'(BoA') (4.26)

J]3 $$T3 $3T$ p

J23' ——X2T3'—X3T2'.

(4.27)

(4.28)

~60r course, this remains to be verified using the commutation
relations of the Qelds, which we discuss in Sec. IV C.

Note that these operators involve only the independ-
ent fields 0+ and A', and thus do not depend on the
coupling constant e.

The most important operator in the theory is, of
course, the Hamiltonian H=I'p. From the definition
(4.19), we have

To' ——4 (-', i)Boy&+ (BoA),)F'"

4P( ',iB„eA„)y)'—///7%-+ ,'—F)'"F„„.— '-
The 6rst two terms cancel the terms in the Lagrangian

Let us see what the electron parts of the momentum
operators I'j, I'2, and I'3 look like in momentum space.
Taking the operators P from (4.23) and (4.25), and
doing a little algebra, we get

~a(elet:&ppn) = d &TdZC2%+ ~& XT& X 2Zt9a+p &y XTp 2o

~dg
;S~v 5 ) $~7

p g s=+1/2

—d(p; s; r)dt(p; s; r)7 (a=1, 2, 3). (4.34)

Up until now we have not mentioned the commuta-
tion relations of our independent fields. The form of
(4.34) makes a very clear suggestion as to what com-
mutation relations to choose. We are led to interpret

b(p; s; r) and d(p; s; r) as destruction operators for
electrons and positrons, respectively. [The minus sign
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I++(r, xr, Z), ++(r, xr', Z') }

= I@+"(r, xr, X), ++t(r, x&', X') }=0.

(4.36)

We will use the same procedure to find commutation
rules for the field A'(x). Since A&'(x) is to be a Hermitian
field, we write its I ourier expansion as

00 dg
A'(r, xr, X) = L2(2pr)')-'~' d'pr —Q 8p,;

p
'g )=1

&& I exp) —i(gZ —pr xr) ) a(pr, g; li; r)

+exp/+i(qZ pr x—r) ) at(pr, g; lI. ; r) }. (4.37)

In terms of the operators a(p; li; r), the photon part
of the momentum I' is

P~(pgoto~) = — d'xrdZ 8~A ' (r, xr, Z) BoA, (T) xrl) X)

"dg
Z' 0. g 8 ) X) 7 6

p 'g X=1

+a'(p; l~; r)a(p; X; r)) (n = 1, 2, 3) . (4.38)

The interpretation of (4.38) is clear if we let the oper-
ators a(p; X; r) be destruction operators for photons
and normal-order the expression for I' . Thus we are
led to postulate the covariant commutation relations

La(p; l; ), a'(p'; l'; ))=~»~~(n —~')~'(pr —p.'),

Pa(p; Z;.), a(p', Z', r)]=0. (4.39)

Transforming back to coordinate space, we obtain easily
the equal-7 commutation relations

PpA'(r, xr, X), A& (r, xr', X'))'
= —-', i5,,8(X—X') P(xr —xr') . (4.40)

Utilizing the relation (4.5) between A' and BpA'=
—FP' we obtain

$A'(r, xr, X), A&(r, xr', X') )
= ——,'ib, ;p(X—Z') P(xr —xr'). (4.41)

We also assume, of course, that the photon creation
and destruction operators commute (at equal r) with

in (4.34) can then be disposed of by normal ordering. ]
We thus postulate the covariant anticommutation re-
lations

{&(p;e; r), &'(p'; ~', r) }= Id(p; ~; r), d'(p'; ~'; r) }

=&- n~(~ —n') ~'(p —p '), (4.35)

with all other anticommutators vanishing. Transform-
ing back to coordinate space, we obtain the following
equal-v anticommutation relations:

I @+(r, xr, X), @+t(r, x&, X ) }

= 8+8 (X—X') 5'(xr —xr') /v2,

i}P;, A*(x))=8;A'(x), i/P;, @+(x))=Op+(x),

iLq A. '(x) )=8 A '(x) iLrl 'p+(x)]=~p'p+(x)

oLIS) A (x))= (x182—x281) A (x) —p~iA (x) ~

oLJp, ++(x)]= (x&a&—xppj, )++(x)+-,'y, y,++(x), (4.43)

iL», A*'(x) ]= (xpa,—x,pjo) A'(x),

L» + ( )]=( ~ —A)++( ).
It is considerably more tedious to show that the opera-
tors II, S~, S2, and E3 have the proper commutation
relations with the fields. We present in Appendix A
some details of the calculation which verifies the crucial
assertion

iLH A'(x))=BpA (x) iPI +~(x))=Op+~(x).

Similar but lengthier algebra gives
(4 44)

j/Ep, A'(x) ]= (xpBp xpBp) A'(—x),

iLICp, e+(x))= (xppjp —xp8o) 0+ (*)+p++ (x), (4.45)

iPS;, A&(x)]= (x;Bp—xpB;) A&(x) —g',Ap(x)+ajar, (x),

i&~,, e„(x)]= (xA —
xone, )e+(x)+-',ynoP(x)

—ieh. ;(x)@+(x),

the fermion creation and destruction operators. Thus

fA *'(r, xr, Z), 4'+ (r, xr', Z') )= 0. (4.42)

Our field theory in the infinite-momentum frame is
based on the equal-r commutation relations (4.36),
(4.41), and (4.42). We would expect, a priori, that
dynamical effects could propagate from one point to
another in a plane a=const along a line xi=const
(i.e., along a light cone). Thus we might expect that
the commutation relations would depend on the cou-
pling constant e. The commutation relations among
the independent fields of the theory are in fact inde-
pendent of e. However, the electrodynamic interaction
does affect in the equal-r commutation relations among
the components of the complete fields A&(x) and%'(x),
since the charge e appears in the definition of the
"auxiliary" components 2' and 4 of the fields. We
find, for instance, that

LA'(r, xr, X), ++(r, xr', Z') ]
= pe I

X—X
I

b'(x& xr')@+(—r, x&', Z').

We can gain further confidence in the equal-r com-
mutation relations by using them to show that the
operators P'„and 3f„„actually generate translations
and I.orentz transformations when commuted with the
independent fields of the theory. The verification for
the "kinematical" operators is particularly simple be-
cause these operators involve only the independent
fields. One finds



J. B. KOGUT AND D. E. SOP ER

where h;(x) =2fdfe(x' —p)A;(x', xr, p) is that func- where
tion which preserves the gauge during the Lorentz
transformation. '~

D. Free Fields 24(p +1) 2—)/4~ —1/2

p'+ip'

Let us see how the methods of the preceding sections
work if the interaction is turned off. Consider first the
electron 6eld 4'(x). With no interaction, each compo-
nent of N(x) satisfies the Klein-Gordon equation

I01

(28282+8;8'+ r/22) + (x) =0. (4 46)
24 (p 1)—2—1/4~—1/2

Using this in the Fourier expansion (4.32) of 4'+(x),
we find that the operators b(p; s; r) and d (p; s; r)
satisfy the differential equations

2ir/—(8/Br)+pr2+2/227b(p; s; r) =0,

[+2ir/(8/Br) +pr2+2/225dt (p; s; r) = 0.

Solving these equations, we get
~(p +-') =2 "'~ "'

pl+ ZP2

]

P+ P

(4.51)

b(p; s; r) =exp( —ipor)b(p; s; 0),

dt(p; s; r) = exp(+ipor) dt p; s; 0), (4.47)
'

&2)/

where P2 ——(pr2+2/22)/22/ is the free-particle Hamilton-
ian. Thus the Fourier expansion for 4'+(x) takes the
form

2) (p 1) —2—1/4~—1/2
pl+ ip2

@+(X) L2 (22r) 87
—1/2 d2Pr

0 g

&& p I2'/42/'/'2e(s) exp( ip„x"—) b(p; s; 0)
s=+1/2

+2'/4r/'/'2///( s) exp(+iP„x—")dt(P; s; 0) }. (4.48)

The auxiliary field 4' (x) is given in terms of ++(x)
by Eq. (4.13),

e (x) = —-', ifd~. (x2—P) (ia,~'+ ~)~oe, (xo, x„~).

(4 49)

+/*) =L2/2 )'j-"'f 4'p.
O 7f

X p [N(p, s) exp( —ip„x )b(p; s; 0)
s=+1/2

+2)(P, s) exp(+iP„x)') dt(P; s; 0) I, (4.50)

' Cf. J. Bjorken and S. Drell, Relativistic QNantum Fields
(McGraw-Hill, New York, 1965), p. 886.

We have now only to add @+(x) and 0' (x) to obtain
the complete field +(x):

I o J

If the field 4(x) which we have obtained in the
infinite-momentum frame is to be equal to the usual free
Dirac field, then the spinors u(p, s) should be solutions
of the Dirac equation normalized to u(p, s)N(p, s') =
22228„and the spinors 2)(P, s) should be related to
N(P, s) by charge conjugation. Indeed, a quick check
shows that this is the case.

The destruction operator b(p; s; r) destroys an elec-
tron with momentum p described by the Dirac spinor
24(p, s). Using the explicit form of N(p, s), we can
clarify the physical meaning of the spin index s. In a
short calculation presented in Appendix 8, we 6nd
that s is the helicity of the electron as measured in a
Lorentz reference frame moving with (almost) the
speed of light in the —s' direction.

We can also check to see that, with the interaction
turned off, our field A)'(x) is just the usual free-photon
field (in the appropriate gauge). The calculation is
completely analogous to the calculation for 4'(x), so
we just state the result. With e=0, we And

~dg
~"(x)=L2(2~)'5 '" d'Pr —Z e(p)"

O g )=1

&&(exp( ip„x")a(p—; X; 0)+exp(+ip„x)') a"(p; X; 0) 7,

(4.52)

where the eq(P) )" are just the infinite-momentum-gauge
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polarization vectors defined in Eq. (3.9). Using the
explicit representation of the polarization vectors, we
can clarify the physical meaning of the index P. An
easy calculation shows that the creation operators
2 '~s/ut(P; 1; 0)&iu"(P; 2; 0)7 create photons with
helicity ~1.

We also define P+ ——4+ and P=f++P . Similarly, we
write A'= Cts+Q, where

Cts(x) = —-', fdic ~

x' —$ ~
BsB;A'(x', x&, $), (4.57)

P(x) = —-', fd) ~

x'—$ ~
J'(x', xr, $), (4.58)

and we put Ct'=A&', Ct =0. Let us insert @=p+Y and
A"=Ct"+Bs"@into our Hamiltonian density (4.54) and
simplify the result

From the first term in To, we get four terms

E. Scattering Theory

We have seen that in6nite-momentum quantum
electrodynamics is the same as ordinary quantum
electrodynamics in the trivial case e=0. The two the-
ories can be compared for e/ 0, at least formally, by
constructing the S matrix in old-fashioned perturba-
tion theory in the infinite-momentum frame and com-
paring it with the S matrix given by the 7.-ordered
diagrams of Sec. III.

The perturbation expansion of the S matrix takes a
familiar form once we have divided the Hamiltonian
into a free part and an interaction part. To make this
division, we start with the Hamiltoniandensity Ts (x):
Ts' 4f( ',—i——B, e-A;)—y& m7@

'—4(;i—) Bsys-@

+eAs+y~+-'FisF» ——', (B,A') (B,A') —(B,A') (BsA&).

(4.53)

The integrated Hamiltonian can be somewhat simpli-
fied if we realize that the first term is equal to —2 times
the second term after an integration by parts in the
transverse variables x', x'. To see this, write —2 times
the second term as

4'siBsy% =&2%' siBs+ ='t/2P siBsf +92TtsiBsY

+&2' t ',iBsT-+V2Tt ', iBsf-. (4.59)

The first two terms can be left as they stand. The inte-
grated form of the third term can be integrated by

parts so that —,i83 is replaced by i&3. This integration
by parts can be justified simply by using the definitions
(4.55) and (4.56) to write

—fdxBsp t(x)T(Z)

= —-,'fdzd~ B,P t(x) e(x—~) B,Y(~)

=+ ',fdzd& -Bsg t(z) e((—x)BsT(()

=+f«e '(~) B.Y(~).

Similarly, we can replace —,i83 by —ip& in the fourth
term. Then, making use of the definition (4.56) of T,
we obtain for the sum of the third and fourth terms
of (4.59)

( /e~~)0'(P V'P++P+-VsP-)CtnV=eCt AVE (460)

Turning now to the second term in T0, we write
simply

eAs4 p'%=eAÃ+p%+=eCt'Py /+ega P. (4.61)

The third term in To' can be left unchanged since it
involves only A&=Q, '. The fourth term requires some
work. With an integration by parts we can make the
replacement"

——', (BsA') (BsAs) ++ ', AsB—sBsA-s

Writing A'= Cts+P, we obtain the sum

s Ct'BsBsCt +sgBsBsg+ s@BsBsCP+s Ct BsBs~h (4.62).

We write the first and second terms simply as

(4.63)20', 83838 = —go', 838~(V

and

(4.64)-'4BsBs4 = —s4~'= —se44VV.

We see, with use of the definitions (4.57) and (4.58),
that the integrated forms of the third and fourth termsy (x) = ——;sfd~. (xs—P) I sB,~+~}~'e,(x', », ]),

(4.55)

Y(x) = 'iefd( s(xs —()A, (x', —xr, ()7'y&y(x, xT, $).
(4.56)

"We may find some reassurance about this in the fact that,
in classical electrodynamics, the surface term A'83A' vanishes
like Z ' as X—+~.

4 sBsys4 =4'f'ysiBs+=42% 'iBs% .

Using Eq. (4.12) for Bs+', this is

@ tq'—$(iB; eA;) q—& m7@+—/v2

e+'ps'( sB;—eA;) p& —m]e—/&2. —
With an integration by parts in the transverse vari-

ables, we can replace ig, and —~g; by 2i~; and obtain

et(P y'P++P—+ysP ) D ;iB; eA;)y& nz-Q/—v2. —
But P psP++P+y'P =y +y'=V2$, so this is just

P(-', iB; 'eA;) y'—m7@. —
Thus the Hamiltonian density can be rewritten as

Tss=@-,'iBsy%+ Ae+sp&+-' FisFis

—-,'(B A') (B A') —(B,A') (B A ') . (4.54)

At this point we realize that part of the interaction
is buried in the dependence of 0' and A' on e. In
order to bring out this dependence we write + as the
sum of a "free" part P and an "interaction part" T,
where
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in (4.62) are equal. Indeed,

fdzLBpB,y(z) )e'(z)
=lfdz@LB 8 4(z)) I

z—
& I I:8 8 8'(k))

=f«~(~)LB 8.~'(~)) .
Thus we can write for the sum of the last two terms
in (4.62)

pfBpBpg +pg 838p~lgp838 = QBpBjo,(4.65)

Finally, we consider the fifth term of To', which we
write, using an integration by parts in the variables
x' and x', as

gives the "ordinary" vertices of Fig. 5(a). The second
term in V, when written out in full using the definition
of T, is

Vp
—— pz—e'fd'xrdzd& p(z —

&) tp(0, xr) Z)y"S„(0, xr, Z)

X'Y'7"~ (0» k)4'(0» 5) (472)
Using

fdz exp(igz) p(z) = 2i/ri, (4.73)

one finds that the interaction V2 gives the vertices of
Fig. 5(c).

The third term in V, written out in full, is

V,= ,'epf—d'—xrdzdf
I
z—( I p(0, », z) py(0, », z)

XtP(0, xr, $) HAPP(0, xr, $). (4.74)—(8;A') (BpA& )~'A'BzB;A&= $8pB (V+8''Bp8,, 2& (4..66) Using

The integrated Hamiltonian is now in the form we
wanted. Adding up the pieces, we have

(4.67)H=Hp+V,
where

Hp= fdzxrdzI 42lP t2zBglP +pF Fip+ pQ BpBi(V),

fdZ exp(znz) I
z

I
= 2/n', — (475)

it is easily shown that the interaction V3 gives the
"Coulomb" vertices of Fig. 5(b).

Thus when we formally calculate the 5 matrix from
canonical field theory developed in the infinite-momen-
tum frame, we get the same results as when we directly
transform the S matrix for ordinary quantum electro-

(4 68) dynamics to the infinite-momentum frame.

Vi= fd'xrdz eg„gy"f (4.71)

"Of course, we encounter most of the usual problems too, Cf.
W. Heitler, The QNaetlm Theory oj Eadiatiom, 3rd ed. (Oxford
U. P., New York, 1966), p. 276ff.

V= fd'xz dzgeegy&P+V2Tt pi BzY+ p egtPy iP). (4.69)

If we work in the Schrodinger picture, we can evaluate
all Heisenberg operators at "time" ~=0. We note that
the Fourier expansions of the fields iP(x) and (V(x)
at I,=O in terms of creation and destruction operators
are the same as the expansions (4.50) and (4.52) for
free fields. Thus the free Hamiltonian Ho generates the
free motion of the qus, nta created by at(p; lI. ; 0),
bt(p; s; 0), and dt(p; s; 0). The remaining part of
the Hamiltonian, V, gives rise to the scattering of these
quanta.

We can formally calculate the scattering matrix with
the aid of the "old-fashioned" perutrbation-theory ex-
pansion

Sr;= 1—2zriB(Kr —K,)LV+ V(K—Hp+ip) 'V+ ~ ~ ).
(4.70)

In a field theory in an ordinary Lorentz frame, this
formula leads to a set of rules for calculating scattering
matrix elements using time-ordered diagrams. In the
present case, we are led in the same way" to rules for
r-ordered diagrams.

These rules are the same as the rules developed di-
rectly from the covariant Feynman rules in Sec. III.
This can be seen by calculating a few matrix elements
of the interaction Hamiltonian V. One finds that the
interaction term
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APPENDIX A

In this appendix we will show that the canonical
Hamiltonian presented in Sec. IV 8 generates the cor-
rect equations of motion for the independent field oper-
ators A'(y). We begin with expression (4.54) for the
Hamiltonian,

H= fdxfi2 "'0' tBgk +APJP ', BpA'Bz—A-'

+-'F"Fiz 8;A'8pA'). (—A1)

In order to compute fH, A'(y)) we need to first
compute two rather complicated equal-7 coDUnutators
which we list here:

L+-(x), A'(y) ) I"="=——'.e dk p(x' 5) p(k y'—)—
XBp(»—yr) p'p~+(y', yr, $), (A2)

I
A'(x) A'(y)) I"= = (1/4z)

I

*'-y'
I

8 8'(»—yr).
These relations follow from the definitions of the auxil-
iary fields, 4 (y) and A'(y), and the basic equal-r
commutators of the independent fields.

With these preliminaries done, we can compute

$H A'(y))=2i/&fdxL+ &(x) piBp+ (x), A'(y)), o=„o

+fdxJP(x) LA'(x) A'(y))"=w'
——',fdxI 8 pAp(x) 8pA'(x), A'(y) ) o=„~

+-', fdxLF" (x)Fip(x), A'(y) ),o=„~

—fdxLB~A'(x) BpA'(x) A'(y) )"-u' (A3)
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For convenience we label these five terms (I), (II),
(III), (IV), and (V) and compute each in its turn:

(I) =2' 'fdx{+ (x)-;i8,+ (x), A'(y)]. „(A4)
=i2—'~'fdx{+ t(x) Lp33e (x), A'(y)].p=„

+I +-'(x), A'(r) 1"-"&8+-(x)
—& +-'(x) I:+-(x), A'(r) 1*-"

$—83%('x), A '(y) $, =„p0' (x) }

=i2 '~'fdxL ——,'ee(x' —y')

= (1/4i) )f'pi; fdx'e(x' y—') 82&»(y' yr, *')

+82 fdx'e(x' —y') &i&"(y', yr x )]
=—(1/4i) fdx'e(y' x')—Bg "(y', yr p

*') . (A11)

The fourth term becomes

(IV) =-;JdxLF»(x) F,.(x), A'(y) ~. =„ (A10)
—fdz P12(x) P2A1(x) $1A2(x) Ap(y) j p p

= (1/4i) fdz F»(x) Lb»8'8'(xr —yr) e(x' —y')

-~.;~'~'("- y.) ("-r')j

&&y(x,—y, )e t(x) v'voe, (x)

'6e—fd—k e(x' &) e—(k y')—

&&8'(x —y )4 t(yo, x, $)v'v'8%' (x)

+'.efd—k ~(x' 5)e—(& y')—

&&p32(xr —yr) 8&% t(x) V'v&+(y', xr, $)

+-.'"("-y )~ ("-y.)~,'( )v'v'~-( )j
= ie2 r~'fdx'e(x' —y')

&&i+-'(y', yr, +)v'v*++(y', yr, *')

++ '(y', y., +)v'v'+-(y', y., *')3

—ie2

@'fdx'fdic

e(x' —P) e($—y')

&&5~.'(y', y., ~) v'v'~. ~-(y', y, +)

+&3+-'(y', y., *')v'v'++(y', yr, ~)j
=(1/4i) f4e(r' —&)~'(r' yr &).

We have observed in this calculation that

(AS)

Finally,

(V) = —fdxLB,A'(x) p3;AJ(x), A'(y) j.=yp

= —fdx{B;A'(x)p33I A'(x), A'(y) 7,'=„p

+~~LA'(x), A'(y) j"=w'~SA'(x) }

= —(1/4i) fdxI 8 A'(x) 8; h'(xr —yr) 83e(x' y')—
+8;8'b'(xr yr) I

*—'—y'
I

& A'(*)j
= —(1/4i) JdxL28;A'(x) P (x—y)

P I
x'—y'

I
p3'8,8;A (x) 8'(xr —yr) j

= —(1/») ~'A'(r)

(1/4i)8'fdxa
I

*'—y'
I

p3~~ A'(r" yr x').

Collecting these five terms, we have the result

PH, A'(y) )= (1/4i) fdx'e(y' —x')

&&V'(y', yr, x')+~A'*(y', yr, *')j
—(1/4i) p3'f dx'

I

x' —y'
I

)&I 888;A&'(y, yr, x')+J'(y', yrp x') j. (A14)

and
+-(r) = .Jdk e(r-' 3)~8'p—(y', yr-, 5)

'(y) = "' { -'(r) 'v' +(y)+ +'(y)v'v' -(y) }.
Continuing,

Recalling the relation (4.7) for A'(x), we have, more

simply,

(H, A'(y) )= (1/4i) fdx'e(y' —x') LJ'(y', yr p
x')

+p3 F&'(yo yr x') $+ (1/2i) pA3'(y). (A1S)

(11)= fd»'(x) LA'(*), A'(y) j"="
= (1/4i) fdx I'(x)

I
x'—y'

I
8*'IP(xr —yr)

Next,

(111)= —-', fdxI a,A (x)a,A (*),A'(y) j,=„

=—fdx B,A'(x)
I 8&A'(x) A'(y)] p= o

L» A'(r) j= (1/i) ~oA'(r)

The verification of the Heisenberg relation

LH, ++(r) j= (1/i) ~o++(r)

is also tedious but straightforward.

APPENDIX B

(A16)

(A17)

(A6) Referring to (4.17), we see that we have indeed veri-
fied our claim,

= (1/4i) fdx a~A'(x) 8;8'(xr —yr) e(x' —y')

= —(1/2i) '
p3A( )y

We will discuss here the physical meaning of the
spinors appearing in the expansion (4.50) of the free
Dirac field. . We will show that these spinors are eigen-

(A9) states of helicity referred to a Lorentz reference frame
moving with (almost) the speed of light in the —s

We have applied here the definition (4.5) of A (x). direction. To do this, we consider, using the representa-
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tion (4.9) of the p matrices, the helicity operator in We compute
the laboratory frame q' e "q 0 0

1 p'6
ho(P) =—

1
2

p 0

p+ p'—

0

(B1)
h-(p) =

0

0 0
(B3)

0 0 p,

(0 0 p, —pe[
io 0

Now let co—+~. Then

e "q+ qJ

where"&p+ p'+——ip' Th.en the operator which measures
helicity from a reference frame moving in the s direc-
tion with a velocity e, = —tanh(to) is"

and

( tl (, q'—+-', e (P'+P') = 2 '"e"rt

where
h„(p) = exp( —'&'p') -ho(q) exp(-', p'y'), (B2)

0 0 0

q =A(co) p"

~cosh' 0 0 sinh~

0 1 0 0

0 0 1 0

[sinhto 0 0 coshco J
' In this appendix all quantities are referred to the ordinary

coordinate system. We omit the carets.
"Cf. J. Bjorken and S. Drell, Relativistic Quantum Mechamcs

(McGraw-Hill, New York, 1964), p. 186.

v2p~/q —1 0
h-(P)~h-(P) =

2 0 0 1 v2P/&

0 0 —1 J

h„(p) tt(p, a-', ) = +-', tt(p, a-', ),

h„(p) u(p, a-,') = Tv(p, a-', ).

We can now verify that the spinors listed in (4.51) are
eigenstates of h„(p):
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Model Amplitudes Containing Arbitrary Trajectories,
Nondegenerate Daughters, and Duality*
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Model amplitudes are discussed which can accommodate nonlinear trajectories, satisfy duality, and have
a nondegenerate spectrum of daughter resonances.

CONSIDERABLE activity has been generated
M recently by Veneziano's suggestion' of an elegant

approximate form for scattering amplitudes which
embodies many of the features thought to be possessed
by real scattering amplitudes. This expression is con-
structed from functions of real linear Regge trajectories
and correlates a rich resonance spectrum with Regge
asymptotic behavior in a crossing-symmetric manner.
On the other hand, not only is it restricted to linear
trajectories, but also it fails to accommodate Regge
behavior for real energies (except in an average sense)
or finite-width resonances. Moreover, the requirement
of factorized resonance residues demands a degeneracy
of secondary resonances at J—I (J being the spin of

the leading resonance at a particular mass value) that
increases very rapidly with e. It is, therefore, of interest
to explore alternative model amplitudes which contain
additional desirable properties not possessed by the
Veneziano formula while retaining most of its virtues.

The fundamental reason for both the requirement of
linear trajectories and the high degeneracy in the
Veneziano model is that the resonance residues are
polynomials in the trajectory functions. The degeneracy
is introduced in the transformation from the momentum
transfer variable to the cosine of the scattering angle.
We propose a model which can accommodate nonlinear
rising trajectories with right-hand cuts and even left-

* Work supported in part by the National Science Foundation.' G. Veneziano, Nuovo Cimento 57A, 190 (1968).

2 K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640
(1969); S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811
(1969).


