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The ©~ nonleptonic decays are investigated in the framework of a chiral Lagrangian model. In this way,
ambiguities of extension of meson momenta to zero which are present in the current-algebra approach are
made explicit. We find that these decays may possess a rather complicated structure and a discussion of
approximation schemes is given which may help to explain the present experimental data. The approxima-

tion of the E27 decay mode by E*r is also discussed.

I. INTRODUCTION

N this paper we shall investigate the nonleptonic
decay modes of the @~ particle in a phenomeno-
logical chiral Lagrangian model. A similar model''* was
previously considered for the nonleptonic decays of the
ordinary octet hyperons. It was found that in this way
the “current-algebra’ results® could be obtained very
simply, thus eliminating the usual delicate arguments
that are needed when the pion four-momentum is
extrapolated to zero. Furthermore, the phenomeno-
logical Lagrangian gives terms which may make sizable
contributions but which vanish in the zero-pion-
momentum limit. This may help to clear up the
discrepancy between the current-algebra p-wave pre-
diction and experimental results.

Two treatments®® of the @~ decay in the current-
algebra scheme have already appeared. However, the
newer experimental data’ seem to disagree with these
predictions. This situation gives a motivation for study-
ing the @~ decays in more detail. We also investigate
additional (rare) nonleptonic decay modes.

We remark that the @~ nonleptonic decays are not
simply isolated curiosities but involve interactions
which also appear in ordinary hyperon decays. This
point, coupled with the fact that the energy is somewhat
higher than in the hyperon case, suggests that these
processes may be among the most useful probes of the
structure of the hadronic weak interactions.

The following nonleptonic modes are allowed by
energy conservation:

Q- Q- —Em— (217), (1a)
Q—: Q- —E (216), (1b)
Q. - —AK- (61), (1c)
QF - Qo EM— (3.5+2.1), (2a)

* Supported in part by the U. S. Atomic Energy Commission.
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Q5 - ERT0 (3.342.9), (2b)
Qo O —-Er 70 (82), (3a)
Qum: Q- Eror0 (81), (3b)
Q7 = Eatn (72). (3¢)

In the above, the Q value in MeV for each decay has
been indicated in parentheses. It is clear that the decays
(2) are really special cases of (3). However, in the
present method of calculation they may be distinguished
(see Fig. 1), and the question of how well (2) approxi-
mates to (3) can be discussed. It may also be possible
to discriminate between (2) and (3) experimentally
when it is remembered that the Q values of (2) are quite
small and the width® of E* is only about 7.3 MeV. A
predominance of very-low-energy #° or 7~ mesons in
the Q@ rest frame would probably mean that (2) holds.

For the most common decay modes (1), the general
matrix element may be written as

a(p")(A+Bys)kyn(p) 4)

where ux(p) is the @~ wave function, #(p’) the & or A
wave function, and %, the meson four-momentum.
A is a real quantity corresponding to the parity-
conserving “p-wave” transition, while B is a real
quantity corresponding to parity-violating ‘“d-wave”
transition. The formula for the decay width in terms
of A and B is given in Appendix A. If A7=1 transitions
are dominant for the Ex mode, we would have the
amplitude rule
Q=(7)Q-. ®)
The very scanty present experimental results® support
this rule.
For the rare modes (2), we have the general amplitude

(6)

The decay rate is also given in Appendix A, and the
AI'=1} rule reads

1u(p") LC18ust Coysbpust Capupy'+ Cayspupy Jun(p) .

= — (V). @)

Finally, decays into &, w%(ky), and #®(k;) can be
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F1c. 1. Diagrams for nonleptonic,Q~ decay. The squares indicate strong vertices,
while the circles indicate weak vertices of various types.

represented by the general matrix element

Mab(klyk2)
=a(p"){F1t+Fays+iFs(y-k1)+iF s(y - k1)ys) (k1)
F+{G1+Gorys+iGs(vy - k1)
+iG4(7 . kl)’Yﬁ} (]32)11]%»(17) . (8)

In this case the AI=3 predictions take the form

M oo(k1kz) =3[ M 1 —(kyko)+M o —(ko,kr) ], (9a)
Mo (ki) = —(V3) My —(k1,ks) =M _(ka,k1)].  (9b)

These may be combined to give
My =Moo+ (V3)Mo-=0. (10)

The decay rate corresponding to Eq. (8) is also given
in Appendix A.

II. CALCULATION OF DECAY AMPLITUDES

We will construct an effective Lagrangian out of
octet baryons, decuplet baryons, and octet pseudoscalar
mesons. The octet baryons will be taken to transform
as [(8,1), (1,8)] under the chiral SU(3)X.SU(3) group
so that in a representation of the Dirac matrices where
7v;5 is diagonal, we have

Ly
().
Rbla'

where unprimed indices refer to the ‘“left-handed”
SU(3) and primed indices to the “right-handed” SU(3).
The decuplet baryons then can be described” by the

=(Rb’al7z'ba): (11)

7 J. Schechter and Y. Ueda, Phys. Rev. 177, 2300 (1969).
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[(1,10), (10,1)] representation

) L;‘a'b’c’ —~ - -,
Duabc"‘_‘ ) Duahﬂz(RﬂﬂhﬁyLI‘"‘ hICI>) (12)

Rnabc

where our normalization is such that Q== (v/3)D,s33.
The pseudoscalar mesons® will be taken to transform
nonlinearly but the combinations

M= 824 2if*¢a" =2 f*¢%)a’+ -, (130)

M b= 6,2 —2i 2,0 =2 2% o+ - -, (13b)
satisfying

MY Mye=35,, (14a)

MMy =5, (14b)

transform as (3,3*) and (3*3). The quantity f is
identical® to the pion decay constant and is numerically
close to 1.0u™! (u is the pion mass). Although, as
written, the baryons transform linearly under chiral
SU(3)XSU(3), it is possible to perform an equivalence
transformation to obtain new baryon fields which
transform nonlinearly but which yield the same matrix
elements. Which procedure is adopted is evidently a
matter of taste.

The characteristic feature of a chiral-invariant inter-
action (or an interaction with simple chiral transforma-
tion properties) is that, because of the presence of M ,%,
vertices with any number of pions coming out are
present and are all related to each other in powers of f.
For example, the nucleon vertex with no pions (mass
term) is related to the nucleon vertex with one pion
(Yukawa-type term), etc. This is the essential content
of the Goldberger-Treiman relation. A similar situation
exists for the weak vertices as previously noted, so that
the relation between the s-wave and p-wave hyperon
decays is the weak analog of the Goldberger-Treiman
relation. For the case of @~ decay, all possible (‘“tree’-
type) diagrams involving at least two baryons at the
weak vertex are shown in Fig. 1. In order to compute
these, it is necessary to have at hand both the strong
(square) vertices and the different types of weak (round)
vertices.

We need the strong vertices which involve at least
one decuplet particle. The usual strong vertices in-
volving two baryon-octet lines are given, for example,
in Eq. (7) of Ref. 1. The vertices which involve two
decuplet lines come from the decuplet mass term in the
Lagrangian, which may be written as

—%m(N*) [Z‘ua'b’C’RMdefMa,de,eMc,f
+ Ry Lyare o Mo My M ]
—3[m(Y*) ~m(N*)ID,**Dyse
= — i) D, Dy
—1 fm(N*)D by sDpayepa’+ - - -

—1[m(Y*) —m(N*)1D,*%Dysp.. (15)

8 See J. A. Cronin, Phys. Rev. 161, 1483 (1967).
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In (15) the last term breaks the SU(3) as well as the
chiral symmetry in order to give each member of the
decuplet its proper mass. It is evident that we can
arrange things so that the “degenerate’” mass multi-
plying the chiral-invariant term in (15) is something
other than m(V*). However, based on an analogy to the
nucleon case,’ the present choice seems reasonable. The
SU(3)-breaking term can be written (using the M’s)
with different chiral transformation properties but we
shall not discuss this point here.

The strong vertices involving one decuplet line may
result from the following chiral-invariant part of the
Lagrangian:

Lin[ e La R yap M 7190, M J'
— e VYR Ly o M ;¥ 3, M o/ 1+ H.c.
= *‘hffebd]VdCDpabcan‘ﬁea -

-ihf%ebdec75Duub¢¢faau¢ef+ <+, (16)
The unknown parameter % in (16) may be determined
from the widths of any of the decuplet particles,
assuming symmetry breaking to be unimportant. From
the N* width, we find |%|~0.88, while from the E*
width, we find |/%]|~0.53. The range gives us an idea of
the SU(3) breaking for decuplet decays if a decay
interaction without form factors is used. Since in the
present context we will be interested in Z* couplings,
| #|~0.53 seems more reasonable.

The construction of the weak vertices is somewhat
more complicated and involves a certain number of
assumptions:

(i) The AI=% rule will be assumed for simplicity,
since this is generally roughly true for other nonleptonic
decays and seems presently!® to be all right for @~ — Er.

(ii) The chiral transformation property of the effec-
tive weak interaction will be taken to be 73?4 T'53, where
all indices are unprimed. This would correspond to a
fundamental “quark-type” current-current interaction
with octet dominance (or AI=31 rule) assumed. We
remark that it is not necessarily clear that the induced
effective interaction need have the same transformation
properties as the fundamental one (since symmetry
breaking may be rather important).

(iif) Weak vertices not involving a baryon will not
be considered in the present paper (neither will strong
vertices involving mesons other than the pseudoscalar
octet).

(iv) The weak vertex of each type will be constructed
with the minimum number of derivatives necessary.
This assumption is made to reduce the number of
arbitrary parameters appearing in the theory.

Figure 1(e) shows that the weak octet-octet spurion
of ordinary hyperon decays is needed. This will be taken

9 J. Schechter, Y. Ueda, and G. Venturi, Phys. Rev. 177, 2311
(1969).
10 Reference 6 give§ I‘I(Qg’) /T(2-7)=4% for 11 events, while the

-

prediction of Eq. (5) is 3.
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as the weak interaction of type 0:
Hw(o): (6+¢>[Ea2M b’aRc’ b'M3E’+Rb,c’Mc,3L2aMab']
+ (6—¢)[Ls®M Y’ Ry ¢ M o 2+R ¥ Mo¢ L3M 3]+ (24> 3)
= (0+ ) [V 2N 52+ 2i N 25N 5% 1+ if]\'flﬁ_(l —Y5)N ¢ ]
+(6—@)[NVs*No*—2i fN5%ysN ¢’ —ifN3*(1—ys) Vo> [+ Heet- - (17)

Fitting the s-wave hyperon decays gives ¢~—36~3X 107y, while fitting the p-wave decays! (and adjusting
the s waves with a K*-7 pole diagram) gives ¢~ —46~6X 10""y.
The type-1 weak interaction involving two decuplet lines may be written as
Hw(l) = gl[pralb,caniie/Ma'?Mb' eMc’f_“RqucLyd’e’f’M3d’Mbe,Mcfl+ (2 A 3)]
= gl[DyzbcDu3bc+4ifDu2bc'Y§Du3ec¢be_‘ifDuabc<1 “75)Du3bc¢a2 _
+ifDy?*(14v5) Duayeds®+ (2 3)+ - - - ],

(18)

where g1 is @ priori unknown but may be estimated on the basis of certain models.
We define a type-2 weak vertex as one involving a decuplet line and a baryon-octet line. The most general form

containing only one derivative is
Hw @ = i(ale2bc-Z/3dprdeSuce+ GZEazc-[_JadRu3deSpce+ aseawLadRubdeSuSe'l_ a4€abEEa2Rub3eSuce+ aﬁeachadRp.bthucz)
-|—~iea'b'c'[dldeRM3nga,d(’*)“Mb/ch,9+d2E39R“enga,26“Mb,ch,!7
+I1deRuef3(d3auMa’de’ 2Mc’f+ d4Ma'dayMb’2Mc’f+ dEMa’de’2auMc’f)]
+’L.GQZCRd/e'L“e»f»gr[61M3d,a“Mcf,Ma‘],+ eza"Mad,Mgf,Mcg'
+esM MM+ el MM T+HHee.,, (19)
where S,,°=M Cz“(('—):,M v =2M 29, M ¢ and the a/s, d/s, and e;s are real arbitrary constants. Although there
appear to be a horrible number of arbitrary parameters in (19), the situation is actually not so bad when we

expand it to give the terms which are interesting for @~ decay. These may be written as

H,®= fL(v/5E o1+ prys) 2 0, +E (14 p2y5) Q=0+ (2/7/6) K (ps+ pays) 2 9,K ]
— 20 f2{E* (ps+ poys)Qumt 0 +EH (or+ psys) Um0t 55 (o5 pr) + (o6t ps) 5 I, w00,

Here we have only the constants! p;- - - ps. The tri-
linear vertex involving a K meson is unrelated to the
others. The other vertices are related by the AI= 1 rule,
which are displayed in (20), as well as the equations

Pe= —P1—P2—P5, (213')
pr=3p1—3patps, (21b)
ps= —3p1—3p2—ps. (21¢c)

Equations (21) represent additional information over
the AI=1 rule that is given to us by chiral symmetry.
It means that of the six possible constants appearing
at the trilinear and quadrilinear (QE) type-2 vertices,
only three are independent.

In writing (19), we did not include terms where the

derivative acted on the octet-baryon fields; these can

be transformed by partial integration to terms of the
type given and also terms where the derivative acts on

11 The relations between the independent p;’s and the parameters
of (19) are
pP1= (\/%) (“‘ 2as+ds—ds— ez),
p2=(V§) Qas—ds+ds—e2),
p3= (/1) (—2a142as+as—3d1+do—ds+ds—e1+es—ed),
q ps= (/%) (2a1—2a2s—as+3ds—dotds—ds—ei-tea—e),
an

ps= (V%) (@s+date2).

— (VDE o5 —p) (1 =75+ 9, + Hoch - - . (20)

the decuplet field. Since we are only interested here in
diagrams with a physical decuplet particle, the latter
terms would vanish when account is taken of the spin-§
field subsidiary condition [p,u,(p)=0]. Thus in our
case a type-2 vertex with no mesons present makes no
contribution, and this is the reason that no such
diagrams have been included in Fig. 1. However, a
vertex of this type could contribute when the spin-3
particle is virtual. Such diagrams may arise in com-
puting ordinary hyperon decay. Unfortunately, as we
have just seen, chiral symmetry does not uniquely re-
late these vertices to quantities appearing in €~ decay.
In fact, the quantity

€229, LR p5+H.c. |

which does not involve any meson, has the correct chiral
transformation property and could contribute only to
hyperon decays.

Now using the strong and weak interactions that we
have given, it is a straightforward matter to compute the
amplitudes corresponding to Fig. 1. In diagrams (j)
and (k) it is possible for the Z* propagator to develop a
pole in the physical region. To avoid this, we adopt the
usual procedure of adding a small imaginary part pro-
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portional to the Z* width in the denominator. It is seen
that diagrams (j) and (k) are essentially the same as (f)
and (g).

The results for the amplitudes are given in Appendix
B. These provide the framework for the different types
of approximation schemes and plausible estimates
which can be made.

III. DISCUSSION OF TWO-BODY
DECAY MODES

The only decays of &~ observed so far®:!? are the two-
body modes listed in (1): ©=, @, and Qx~. The
experimental results show that there is no apparent
violation of the AI=3% relation between Q_~ and Q™.
Furthermore, the Qx~ mode seems to be slightly more
frequent than the @~ and Q¢ modes put together.
However, it may be more difficult to observe a Zr decay
than a AK decay for experimental reasons.'? Therefore,
we should probably reserve final judgment on the data
until more events are seen.

Let us first consider a theoretical model containing
only type-0 and type-1 weak vertices. This corresponds
to the previously considered*® current-algebra-type
models. The relevant diagrams are (b), (d), and (e)
of Fig. 1. From Appendices A and B we may then

HYPERON

D. N. GOSWAMI AND ]J.

SCHECHTER 1

completely calculate these decays in terms of the type-1
weak parameter g1 [see Eq. (18)] and the type-0
weak-parameter combination (3¢—4§). Since we have
experimental findings on both the AK and Er rates, we
may then determine these parameters.

It is convenient to make use of the curves of Fig. 2
to present our results. There, the quantity 3¢—4 is
plotted against the branching ratio

R=T(2— AK)/T(Q— Em) = R(g1,(3¢ —0))

for the experimental @ lifetime 7, which is evidently
well approximated by

1/7=T(Q— AK)+T(Q— Er)=1/7(g1,(3¢—5)).

The motivation for presenting the results in this form
is that R seems to be more unreliable!? than 7, so that it
is worthwhile to see how the predictions would change
if R changes. The value of 3¢—4& can be determined
from ordinary hyperon decays, as noted after Eq. (17).
In this method of presentation, the unknown type-1
weak-coupling parameter g; has been eliminated for
convenience but, of course, is known.

Two cases can be distinguished depending on the
relative signs of g; and 3¢—4. The same sign would
correspond to destructive interference between dia-

DECAY VALUE '©
8 -

G

(34-8)/10 7% 4}

2t

0
F16. 2. Type-0 parameter com-
bination 3¢i5 versus R. In each
case the dashed curve corresponds
(@) CONSTRUCTIVE INTERFERENCE to | %] =0.88, while the continuous
curve corresponds to |Z|=0.53.
201 Note that in (a) no solution exists
for R<0.32 and in (b) the solution
16 is two-valued for R<0.32.
12+
HYPERON |/ 0
DECAY VALUE N
(3¢-8)/107 4
0 1.5 20 2.5 30
R —>
(b) DESTRUCTIVE INTERFERENGE

12 R, Speth et al., Phys. Letters 29B, 252 (1969).
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grams 1(d) and 1(e), while the opposite sign would
correspond to constructive interference. These cases
are shown in Figs. 2(a) and 2(b), respectively. The main
curves in Figs. 2 are computed with the value of ||
[see (16)] computed from the E* width, while the
dashed curves were computed with the less plausible
value of |%| found from the N* width.

For orientation, we note that R seems to be,%!? with
large uncertainty, a little greater than 1. We see from
Fig. 2 that the case of constructive interference is ruled
out. Furthermore, the case of destructive interference
does not lead to a solution with R> 1 if the most reason-
able value of % is used and if 3¢ —§ is obtained by fitting
s-wave hyperon decays. Even if 3¢—4 is obtained by
fitting p-wave hyperon decays, there is no solution. If
the less reasonable value of % is used, there exist
solutions for R>1. This corresponds to g;<0.4X 1077,
which means that the weak decuplet spurion would be
rather smaller than the weak octet spurion. Hara’s
previous solution* had a larger gy but led to very
small R, which now seems to be ruled out experimentally.

Thus we cannot conclude that a very reasonable
solution exists if only type-0 and type-1 weak vertices
are included in our model. Of course, a more careful
study of symmetry breaking in Eq. (16) is very desirable
in this context. Our tentative conclusion is that addi-
tional weak interactions, possibly of type-2, are re-
quired. Unfortunately reference to Eq. (20) shows that
there are too many arbitrary parameters. In the future,
when the experimental results on the three-body modes
and on the asymmetry parameters become available,
we may expect to determine these, however.

A type of diagram which is often considered useful
for nonleptonic decays is the meson-pole diagram. This
is illustrated for @ — Er in Fig. 3. However, by strange-
ness conservation at the strong vertex, we see that this
diagram cannot contribute to @— AK. Thus a pure
meson-pole model would predict R=0, in violent
disagreement with experiment. Interference effects
with the pole diagram may be important though.

Finally, we note that exactly the same weak vertex is
found in Egs. (1b) and (1d) and only the AI=% part
can contribute to a E*-Q transition. Thus the two-body
decay modes by themselves give no information on
disentangling any possible A7=% component which
may be present in type-1 weak interaction.

IV. DISCUSSION OF RARE DECAY MODES

The energetically allowed modes Z*r and Err have
not yet been seen, but since in our model they involve

DECAY 295

(X)
Q =]

S WJ

T16. 3. Meson-pole diagrams for Q— Hrr.,
(K) represents any S= —1 meson.

the same parameters as the Zr and AK modes, it is
expected that they can yield much useful information
in the future.

First let us consider the Erm modes. These correspond
to diagrams (h)-(m) of Fig. 1 and the amplitudes are
given in Appendix B. The decay rate can be calculated
using formula (A3) of Appendix A. Actual details of the
method of evaluation are given in Appendix C. Again,
since we presently have no information on the type-2
vertices, let us assume for simplicity that they are
absent (although we have seen in the previous section
that this is doubtful). Then we are to evaluate only
diagrams (i)-(1) of Fig. 1. It turns out that diagrams
() and (1) are less important than (j) and (k). The
reason is that the E* propagator in (j) and (k) passes
through resonance in the physical region. We note that
these two graphs are essentially the same as (f) and (g),
so that the approximation of the Erm mode by E*r is
not too bad. If the type-2 interaction turns out to be
large, we cannot, of course, draw this conclusion.

For a rough estimate of the branching ratio,

Ry=T(Q— Err)/T(Q— AK)

~I'(Q— E*r)/T(Q— AK),
we may use diagrams (f) and (g) with the value of gy
determined by fitting R and 7 (disregarding whether or

not 3¢—4 is the value which fits hyperon decay). Then
we find

g1=0.6X1077,
3¢—06=16.2X1077,
Ri~1/20.

If Ry should turn out to be much less than this, it might
be interpreted to mean that the type-1 weak interaction
is very small compared to the type-2, since diagrams (f)
and (g) show that only type-1 vertices contribute in
the E*r approximation.

Finally, we may point out that, since in the case of the
Emm mode the n-x?, 5-E-, and F*0-E*~ mass differences
are not completely negligible fractions of the Q value
of the decay, there may be apparent violations of the
AI'=1% predictions, Egs. (9).

Further discussion will be given elsewhere.

APPENDIX A
The decay rate for reactions (1) is found from (4) to be

B —m'"

(%

I(Q— Br) =

127m(Q2)

—[ AL +m')+BAE —m')],

(A1)

where E’ and m’ are the energy and mass of the final baryon, respectively, in the Q- rest frame.
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The decay rate for reactions (2) is found from (6) to be

E’ZAm/zl/Z 2 El_ml E’—{—Zm’
~—~{C12(E’—i—m’)[l+— ]
9

T(Q— E*r) =
4drm ()

m’ m’

2E 4w E'—2m'7 2 m(Q)?
] (B =l )4 CE =)

—}—Cf(E'—m’)l:l—l—B

w' w' m'2
2 m(Q) 2B +m’ 2FE —wm’
+ 5 —’—(E'2—m'2)\:C1C3(E'+m’) s +C2C4(E'—m’) ] :” 5 (AZ)
m m m

where again £’ and m’ refer to the final baryon in the Q rest frame.
The decay rates for the three-body decays in Egs. (3) can be written in terms of M, in Eq. (8) as

’

I(Qp) = EP)w(kr),wb(k2)) = (1—35,3) 2 / d4p d4Rrd*hod (p'2m'2) 6 (12 +ur2)

)5
X 8(ka+us?)0(po’)0(k10)0(k20) 04 (p—p' —k1—k2): 3 | Map(krke)|?, (A3)

spins
where

2 ((krp)? , ,
> [ Map(krke) | 2= ; [( ) —#12>{F12(m'm—10 ) —=Fot(m'm—+p' - p)
m

spins m m
FE2LuPm mA-pa(p' - p)+2(k1- p) (ky- p') = F [P’ m—pa(p" - p) —2(k1- p) (1 p") ]
28 Fs[m(ky-p")+m' (ky- p)1—2FF Lmky- p') —m' (k1 p)]}

k2 p)* k1 p) (ke
+<( ?) _#22>{Fi_96i}+<( ) (k2 p)
m

+k1 . k2>{2FlG1(m’m_Pl . P) —21"2G2(m’m+1bl : p)

m
F2F G uPm m—+ui* (" p)+2(k1- p) (k- p') ] =28 G uiPm'm—pus*(p" - p) —2(k1- p) (k1 ") ]
F Gy p")+m' (ky- p) ]—FoGaLm(ky- p") —m' (k1- p)]

+P‘3G1[3m(k1'ﬁ’)+m,(k1' P)] —F4G2[3m(k1 : 17/) _ml(kl'P)]}

—(F1G3—F3G1—FoGatFoGy) (1/m){ ur*m?* (k- p")+ui(kz- p) (' p) — (k1'P)2(k2'P')—f'(kl'P)(kl'kz)(P"P)}] )

where m, m’, u1, and u» are the masses of Q, the final baryon, and the mesons, respectively.

APPENDIX B

Using the interactions given in Sec. IT, we compute the following matrix elements corresponding to the diagrams
in Fig. 1:

diagram (a): M (@ —Em) = — fu(p") (pr+pays)kun,(p)
—2(+/6)hg:
diagram (b): My —Efr )= Mﬂ(p’)kuu“(p) ,
m(Q) —m(2*)
diagram (c): M (& — AK™) = —(2f//6)i(p") (ps+pavs)kurn(p) ,
6hg.f
diagram (d): MO — AK)=— ——————a(p k. (p),
m(Q) —m(E*)
3d—
diagram (e): M (2 — AK")= "/t d’—-af)w-ﬂ(;b’ Ve, ().

m(E®) —m(A)
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The total matrix element Q_—=M ,+ M, is to be identified with (4). Q¢~ can then be found from (5). Similarly,
Qk—z M6+Md+‘ME‘
For the Z*'7~ decay mode we have Q* ~= M ;4 M ,, where
diagram (f): M (@ — E*r™) = = 2V3g: fi(p') (1 —v5)uu(p) ,
) HV3m(N*)
diagram (g): M (@ — E*¥r™) = ———————¢1 fii(p)vsun(p) -
m(S) —m(E*)

This corresponds to (6), and Q*;~ is given by the AI=1% rule (7).
Finally, the amplitude M, _(ky,ks) is M+ M ;A4M M 1+ M+ M, where

diagram (h): M@ —E" 7" (ky),m(ks))
=2if2u(p" ) (os+pevs)krut (or+psvs) ko Jun(p) ,
Ve 2(V0)igh

i= —aa(p") (k1 —Fka) wysuu(p),
k) ()

diagram (i):

di G: M HV O 25N by )b (ot by - B an) (L —y9)(p)

lagram : j=— /4 1TVY Ri)R1u 2T 108Y " R1)R2p —Y5)Uu y

J (p—ke)*+m(E*>+im()T () ! ! Tt
4(\/6)igihf? m(\*)

diagram (k): M=
(p—k2)* +m(2*)*+-im(E*)T(E*) m(Q) —m(E¥)

Xa(p" (bt - k) 1yt (botibsy - ki) keay Ty s1u(p)
4(+\/6)igihf?
T p—km(=)t m(@)—m(=*)
2if?
" =kl

diagram (1):

w(p') (batibsy - ky)yskouu,(p)

diagram (m):

#(p") (bs+1bsy - k1) (prys+p2)kautu(p) -

In the last four equations we used the abbreviations
b= —m(E)—m(E"),
b= [1/3m(2*)* J(2Lm(E) +m(E*) Jer- (p—ks) —u*m(E¥)}
bs=[1/3m(=*)*J{m(E*)[m(E)+m(E*) ]—2ks- (p—Fk2)}
bs=2B(u1?—2k1-p"),
bs= (1+48)m(E)

where B~—0.33 as defined in Ref. 1. The AI=1 relations (9) enable us to find M go(k1,%2) and M_(k1,k2) from
M _(k1,k2) given above.

APPENDIX C
The amplitudes for diagrams (j) and (k) contain a factor
h
(p—ko)2+m(E*)2+im(E*) T (E*) ’

so that | M 45(k1,k2)| % contains a factor
h? T
[~k +mE ) F4mE ) [(p—ha)+m(E)Fm(zt)yre
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Since the =* width is fairly small, we make the zero-width approximation. Then,
I T
L(p—Fk2)*+m(E*) P4m(E*)’T*  m(Z*)
We define 27 ,,(k1,k2) by

3L (p—ka)*+m(E*)7].

| M a3 (s ko) | 2= 8L (p — ko) >4+ m(E*) 2| M o (fr o) | 2.
The decay rate for Q(p) — E(p’), 7*(k1), and w(k2) is given by

’

I‘(Q"") E,'7r“1rb) = (1 —%5,1},) /(l“gb’(l“k1(l4k25(p'2+m'2)0({)0’)5(/312—{—#12)0(/610)

X 8(kea?4-12)0 (fea0) S[ (p —ke2)*+m(E*)2)54 (p— p’ —k1— k)t 2 | Mas(kr,ks)]?.

spins

(2m)?

We introduce new variables
K=ki+9p', Q=ki—p’,
with the properties
d*p'd*er= 5 d*Kd*Q
and
30 m 3kt ) = 40(K 2 0+ 2913 (K - O+ p),
where
pl=um’? and  po?=pul—m'2.
In terms of these new variables,

T(Q— Exe(k)rb (k) = (1 —%5@22;)? / Abad K d*Q 8(ks2+ua?) (K24 02 +2p12)8(K - O+p22)
T 5

XO(K24m(E*))64(p—ka—K) X [ Map(krks) |

m

=(1 ~%~5ab)(——)j/(/4/ezrl4[( 8(oFue®) S(K2+m(E*)2) 64 (p—ke— K)I(p, k2, K, masses), (C1)
1r Bl

where

I= / QK20+ 201 8(K - Q+pa2) 3 | M aup(kr,les) |2,

spins

1 is a Lorentz-invariant quantity and can be evaluated straightforwardly'® by choosing the frame where K = (0,:K,).
The evaluation of the decay rate (C1) then becomes equivalent to the calculation of the decay rate for the two-
body final state, and this can be easily carried out.

3 J. D. Jackson, in Ilementary Particle Physics and Field Theory, 1962 Brandeis Lectures (W. A. Benjamin, Inc., New York, 1963),
Vol. 1, p. 392.



