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The Q nonleptonic decays are investigated in the framework of a chiral Lagrangian model. En this way,
ambiguities of extension of meson momenta to zero which are present in the current-algebra approach are
made explicit. %e 6nd that these decays may possess a rather complicated structure and a discussion of
approximation schemes is given which may help to explain the present experimental data. The approxima-
tion of the 2m- decay mode by ™*~is also discussed.

I. INTRODUCTION

''N this paper we shall investigate the nonleptonic
~ ~ decay modes of the 0 particle in a phenomeno-
logical chiral Lagrangian model. A similar model' ' was
previously considered for the nonleptonic decays of the
ordinary octet hyperons. It was found that in this way
the "current-algebra" results' could be obtained very
simply, thus eliminating the usual delicate arguments
that are needed when the pion four-momentum is
extrapolated to zero. Furthermore, the phenomeno-
logical Lagrangian gives terms which may make sizable
contributions but which vanish in the zero-pion-
momentum limit. This may help to clear up the
discrepancy between the current-algebra p-wave pre-
diction and experimental results.

Two treatments4' of the 0 decay in the current-
algebra scheme have already appeared. However, the
newer experimental data' seem to disagree with these
predictions. This situation gives a motivation for study-

ing the Q decays in more detail. Ke also investigate
additional (rare) nonleptonic decay modes.

We remark that the 0 nonleptonic decays are not
simply isolated curiosities but involve interactions
which also appear in ordinary hyperon decays. This
point, coupled with the fact that the energy is somewhat

higher than in the hyperon case, suggests that these
processes may be among the most useful probes of the
structure of the hadronic weak interactions.

The following nonleptonic modes are allowed by
energy conservation:

n: o-~=p~- (217), (1a)

(216), (1b)

n :n-~ ~"—Z- (61), (1c)

ale —. fl
—~ *'~— (3.5&2.1), (2a)

* Supported in part by the U. S. Atomic Energy Commission.
' J. Schechter, Phys. Rev. 174, 1829 (1968).' B. W. Lee, Phys. Rev. 170, 1359 (1968).
'H. Sugawara, Phys. Rev. Letters 15, 870 (1965); 15, 997

(1965); M. Suzuki, ibid. 15, 986 (1965); Y. Hara, Y. Nambu, and
J. Schechter, ibid. 16, 380 (1966); S. Badier and C. Bouchiat,
Phys. Letters 20, 529 (1966); L. S. Brown and C. SommerfieM,
Phys. Rev. Letters 16, 751 (1966).

4 Y. Hara, Phys. Rev. 150, 1175 (1966).See also R. Rajaraman,
Phys. Letters 22, 102 (1966).

' X. Y. Pham and R. Zaoui, Phys. Rev. 167, 1319 (1968).
6 See Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
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Qp.
Qpp ..

(3.3+2.9),
0 —+ 'm n-' (82),

0 —& ~'vr' (81)

0-~=. 7r+~- (72).

(2b)

(3a,)

(3b)

(3c)

In the above, the Q value in MeV for each decay has
been indicated in parentheses. It is clear that the decays
(2) are really special cases of (3). However, in the
present method of calculation they may be distinguished
(see Fig. 1), and the question of how well (2) approxi-
mates to (3) can be discussed. It may also be possible
to discriminate between (2) and (3) experimentally
when it is remembered that the Q values of (2) are quite
small and the width' of ™*is only about 7.3 MeV. A
predominance of very-low-energy ~' or x mesons in
the 0 rest frame would probably mean that (2) holds.

For the most common decay modes (1), the general
matrix element may be written as

u(P') (A+Byg)kt, u), (p), (4)

where uq(p) is the fl wave function, u(p') the or h.
wave function, and k), the meson four-momentum.
A is a real quantity corresponding to the parity-
conserving "p-wave" transition, while 8 is a real
quantity corresponding to parity-violating "d-wave"
transition. The formula for the decay width in terms
of A and 8 is given in Appendix A. If DI= ~ transitions
are dominant for the "~ mode, we would have the
amplitude rule

The very scanty present experimental results' support
this rule.

For the rare modes (2), we have the general amplitude

u~(P )L~i~ .+Cevr&„,+Cap„p„'+C4yrp„p„'ju„(p). (6)

The decay rate is also given in Appendix A, and the
AI= 2 rule reads

(7)

Finally, decays into ", m (k&), and m'(k2) can be
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FIG. |.Diagrams for nonleptonic. Q decay. The squares indicate strong vertices,
while the circles indicate weak vertices of various types.

represented by the general matrix element

M.g(kg, k2)
= ~(P )L(J'~+~2'r~+iF3h'&i)+i~4(7 &i)75) (&i)~

+ (Gg+G2y, +iG3(y kg)

+i«(v &i)v;) (&2),3~,(P) (8)

In this case the AI= 2 predictions take the form

Moo(k, k )=-', [M~ (k,k )+M+ (k.,k )], (9a)

m, (u„a,) = —(~-', )ps+ (u„s,) —m+ (u„u,)j. (9b)

II. CALCULATIOÃ OF DECAY AMPLITUDES

We will construct an effective Lagrangian out of
octet baryons, decuplet baryons, and octet pseudoscalar
mesons. The octet baryons will be taken to transform
as $(8,1), (1,8)$ under the chiral SU(3) &&SU(3) group
so that in a representation of the Dirac matrices where
y5 is diagonal, we have

p I.&

cVy =i, Sg =(Rg",Lg ),kRg"

These may be combined to give

M~ 3fpo+ (Q-,')M o = 0—.

The decay rate corresponding to Eq. (8) is also given
in Appendix A. ~ J. Schechter and Y. Ueda, Phys. Rev. 177, 2300 (1969).

where unprimed indices refer to the "left-handed"
(10) SU(3) and primed indices to the "right-handed" SU(3).

The decuplet baryons then can be described by the
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t (1,10), (10,1)j representation

satisfying

b —
g b+22f2y b 2f2(y2) b+. . .

, b g b 22f2y b 2f2$2) b+. . .

~ S'~, c g
c'

3f ~ iV '=5"

(13a)

(13b)

(14a)

(14b)

transform as (3,3*) and (3*,3). The quantity f is
identical' to the pion decay constant and is numerically
close to 1.0' '

(p is the pion mass). Although, as
written, the baryons transform linearly under chiral
SU(3) XSU(3), it is possible to perform an equivalence
transf ormation to obtain new baryon fields which
transform nonlinearly but which yield the same matrix
elements. which procedure is adopted is evidently a
matter of taste.

The characteristic feature of a chiral-invariant inter-
action (or an interaction with simple chiral transforma-
tion properties) is that, because of the presence of M b',

vertices with any number of pions coming out are
present and are all related to each other in powers of f.
For example, the nucleon vertex with no pions (mass
term) is related to the nucleon vertex with one pion
(Yukawa-type term), etc. This is the essential content
of the Goldberger-Treiman relation. A similar situation
exists for the weak vertices as previously noted, so that
the relation between the s-wave and p-wave hyperon
decays is the weak analog of the Goldberger-Treiman
relation. For the case of 0 decay, all possible ("tree"-
type) diagrams involving at least two baryons at the
weak vertex are shown in Fig. 1. In order to compute
these, it is necessary to have at hand both the strong
(square) vertices and the different types of weak (round)
vertices.

We need the strong vertices which involve at least
one decuplet particle. The usual strong vertices in-
volving two baryon-octet lines are given, for example,
in Eq. (7) of Ref. 1. The vertices which involve two
decuplet lines come from the decuplet mass term in the
Lagrangian, which may be written as

—bm(N*)PI ~""R„&,iM "Mb"M ~

,'(m(F*)——-m(N*) jD '"D bb

(Ib'*)D "D, ,

——,'Lm(F*) m(iV*))D "'D„„,.—(15)

8 See J. A. Cronin, Phys. Rev. 161, 1483 (1967).

D D gbr .(P ab(: I (r'b'c'), (12)
Rpabc

where our normalization is such that 0 „=(Q-,')D»22.
The pseudoscalar mesons' will be taken to transform
nonlinearly but the combinations

In (15) the last term breaks the SU(3) as well as the
chiral symmetry in order to give each member of the
decuplet its proper mass. It is evident that we can
arrange things so that the "degenerate" mass multi-
plying the chiral-invariant term in (15) is something
other than m(Ã*). However, based on an analogy to the
nucleon case, ' the present choice seems reasonable. The
SU(3)-breaking term can be written (using the M's)
with different chiral transformation properties but we
shall not discuss this point here.

The strong vertices involving one decuplet line may
result from the following chiral-invariant part of the
Lagrangian:

,'ih Lb""I—,&~R„.„M B„M.~'

2"'~'R—g, "I. .b M~~'8 M, . jr+ Hc.

h fb""N—d,
'D b, B @,~

ihf2b""—Ng'ybD„. b.pr B„g.~+ . (16)

The unknown parameter h in (16) may be determined
from the widths of any of the decuplet particles,
assuming symmetry breaking to be unimportant. From
the N* width, we find ~h~ 0.88, while f'rom the
width, we find ~h~ 0.53. The range gives us an idea of
the SU(3) breaking for decuplet decays if a decay
interaction without form factors is used. Since in the
present context we will be interested in ™*couplings,

~
h~ 0.53 seems more reasonable.
The construction of the weak vertices is somewhat

more complicated and involves a certain number of
assumptions:

(i) The BI=2 rule will be assumed for simplicity,
since this is generally roughly true for other nonleptonic
decays and seems presently" to be 311 right for 0 —& ™~.

(ii) The chiral transformation property of the effec-
tive weak interaction will be taken to be T22+ T22, where
all indices are unprimed. This would correspond to a
fundamental "quark-type" current-current interaction
with octet dominance (or AI=-22rule) assumed. We
remark that it is not necessarily clear that the induced
effective interaction need have the same transformation
properties as the fundamental one (since symmetry
breaking may be rather important).

(iii) Weak vertices not involving a baryon will not
be considered in the present paper (neither will strong
vertices involving mesons other than the pseudoscalar
octet).

(iv) The weak vertex of each type will be constructed
with the minimum number of derivatives necessary.
This assumption is made to reduce the number of
arbitrary parameters appearing in the theory.

Figure 1(e) shows that the weak octet-octet spurion
of ordinary hyperon decays is needed. This will be taken

' J. Schechter, Y. Ueda, and G. Venturi, Phys. Rev. 177, 2311
(1969).

'0 Reference 6 gives j. (Q0 )/F(Q:) = 8 for 11 events, while the
prediction of Eq. (5) is &.
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as the weak interaction of type 0:
H„&oi= (&+@)ttI 2M, R, , b'M, "+By "M,, eL, M b']

+ (8 P) (—I e M 'R "M '+8 'M "L 'M ]+(2+-+ 3)
= (8+y)[g 'Xe~+2ifg 'yb~Vebrt4be+i kg'(1 —y;)IV

+. ($ p) Lambe+
2 2ifNe'7o"Xb2y b if+&a(1 +b)4V ey 2]+H C +. . .

Fitting the s-wave hyperon decays gives 4t~ —38 3&&10 'p, while fitting the P-wave decays' (and adjusting
the s waves with a E* 7r pol-e diagram) gives P ——,'8 6X10 'p.

The type-1 weak interaction involving two decuplet lines may be written as

(1)
g C

L a'b' R44M, 2M, eM, f+It4 2bcL . . .M d'M 4'M f'+ (2 ~3)]
2beD +4ifI) 2bc+ g) y e if@) abc(1 + )D y 2

+ ifD» (1+~b)D„.„y,e+(2~3)+ .] (18)

where gi is a priori unknown but may be estimated on the basis of certain models.
We define a type-2 weak vertex as one involving a decuplet line and a baryon-octet line. The most general form

containing only one derivative is

H„"=i(are'"Lb"R„bd,S„,'+a2e'"L. R„M,S„,'+abc "I.R„ba4S„b'+a4e "L.'R„bb4S„:+abc"L."R„babS„.')
+ie"'"tdiLe'R„ereM;eB„Mb rM, e+drLe'R„. f M '8 Mb M,'
+Ia'R„.fe(de8„3II. aMb'M, r+d4M ."B„Mb'M;r+dbM. "Mb'B„M,.f)]
+ie"'Ba "L„;fe )eiMb '8 M ~'M. e'+erB„M "'Mer'M &'

+eeM, 'B„Me 'M, e'+e4M, "'Mb 'B„M,e'5+H c , .(1.9)

where 5„~'=M, B„M~"=2M,."8„M~" and the u s, d s, and e s are real arbitrary constants. Although there
appear to be a horrible number of arbitrary parameters in (19), the situation is actually not so bad when we
expand it to give the terms which are interesting for 0 decay. These may be written as

H ~"'= f[(v'2)Z+(pi+ p2yb) Q„B„7r'+Z'(pi+ p2+b) Qe l9p7r++ (2j+6)A(pe+ p4y;) Q„8„E+]
2&f j" (pb+pe're)D & r) 7r +~™~(p7+ps7b)f) ~ 4) 7r + ~ [(pb+p7)+(pe+pe)'Yb]f)

—(Q2) '(pb —
pp) (1—rb) 0„—m+r)„m'}+H.c.+ . (2{))

the decuplet field. Since we are only interested here in
diagrams with a physical decuplet particle, the latter.
terms would vanish when account is taken of the spin-~3

field subsidiary condition [p„u„(p)=0]. Thus in our
case a type-2 vertex with no mesons present makes no
contribution, and this is the reason that no such
diagrams have been included in Fig. 1. However, a
vertex of this type could contribute when the spin-2
particle is virtual. Such diagrams may arise in com-
puting ordinary hyperon decay. Unfortunately, as we
have just seen, chiral symmetry does not uniquely re-
late these vertices to quantities appearing in Q decay.
In fact, the quantity

Here we have only the constants" p&- p8. The tri-
linear vertex involving a E meson is unrelated to the
others. The other vertices are related by the AI= —,

' rule,
which are displayed in (20), as well as the equations

(21a)p6= pl p2 p5 )

P7= kpi 2P2+Pb ~ (21b)

(21c)p8 —
g Pj. YP2 P5 ~
3 1

Equations (21) represent additional information over
the DI=-,'- rule that is given to us by chiral symmetry.
It means that of the six possible constants appearing
at the trilinear and quadrilinear (0 ) type-2 vertices,
only three are independent.

In writing (19), we did not include terms where the
derivative acted on the octet-baryon fields; these can
be transformed by partial integration to terms of the

type given and also terms where the derivative acts on

e"bB„L:R„b,e+H.c. ,

which does not involve any meson, has the correct chiral
transformation property and could contribute only to
hyperon decays.

Now using the strong and weak interactions that we
have given, it is a straightforward matter to compute the
amplitudes corresponding to Fig. 1. In diagrams (j)
and (k) it is possible for the "*propagator to develop a
pole in the physical region. To avoid this, we adopt the
usual procedure of adding a small imaginary part pro-

"The relations between the independent p s and the parameters
of (19) are

pi= (V'-,') ( 2ab+db d—, e4), — —
p2= (Q-', ) (2ab —d4+d4 —e4),
p4= (V' ,') ( 2a4+2a4+-a4 —', d4+d4 de+—db—e&+e4—e4), — —
p4 ——(Q—,') (2a& —2a4 —a4+-2d& —d4+d4 —db —er+er —e4),

and
pb= (4'-', ) (ab+d4+ee).
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portional to the ™*width in the denominator. It is seen
that diagrams (j) and (k) are essentially the same as (f)
and (g).

The results for the amplitudes are given in Appendix
B. These provide the framework for the different types
of approximation schemes and plausible estimates
which can be made.

III. DISCUSSION OF TWO-BODY
DECAY MODES

The only decays of 0 observed so far' "are the two-

body modes listed in (1): 0, Qe, and Qa . The
experimental results show that there is no apparent
violation of the DI=-2 relation between 0:and 00 .
Furthermore, the Qz mode seems to be slightly more
frequent than the 0 and Qo modes put together.
However, it may be more dificult to observe a ™xdecay
than a AE decay for experimental reasons. "Therefore,
we should probably reserve final judgment on the data
until more events are seen.

I.et us first consider a theoretical model containing
only type-0 and type-1 weak vertices. This corresponds
to the previously considered4' current-algebra-type
models. The relevant diagrams a,re (b), (d), and (e)
of Fig. 1. From Appendices A and 8 we may then

completely calculate these decays in terms of the type-1
weak parameter g& Lsee Eq. (18)j and the type-0
weak-parameter combination (3p —8). Since we have
experimental findings on both the AE and ™7rrates, we
may then determine these parameters.

It is convenient to make use of the curves of Fig. 2
to present our results. There, the quantity 3P—8 is
plotted against the branching ratio

R= 1'(0~Alt)/I'(0 ~Zs ) =E(gt, (3$—8))

for the experimental 0 lifetime z, which is evidently
well approximated by

The motivation for presenting the results in this form
is that 8 seems to be more unreliable" than r, so that it
is worthwhile to see how the predictions would change
if 8 changes. The value of 3@—8 can be determined
from ordinary hyperon decays, as noted after Eq. (17).
In this method of presentation, the unknown type-3.
weak-coupling parameter g~ has been eliminated for
convenience but, of course, is known.

Two cases can be distinguished depending on the
relative signs of gt and 3p —8. The same sign would

correspond to destructive interference between dia-

HYPERON
DEGAY VALUE

8-

(3$-8)/lO y.

0.5 I.O I.5 2.5 3.0

20-

(0) CONSTRUCTIVE INTERFERENCE

FIG. 2. Type-0 parameter com-
bination 3P—5 versus E. In each
case the dashed curve corresponds
to ~h~ =0.88, while the continuous
curve corresponds to )h) =0.$3.
Note that in (a) no solution exists
for R(0.32 and in (b) the solution
is two-valued for R(0.32.

l2-
HYPERON

DECAY VALUE
8

t

0.5
I

!.5 2.0
1

2.5
s

B.O

(b) DESTRUCTIVE INT ERFERFNGE

» R. Speth s& al., Phys. Letters 298, 252 (1969).
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grams 1(d) and 1(e), while the opposite sign would
correspond to constructive interference. These cases
are shown in Figs. 2(a) and 2(b), respectively. The main
curves in Figs. 2 are computed with the value of

~
h~

Lsee (16)j computed from the * width, while the
dashed curves were computed with the less plausible
value of ~h~ found from the N* width.

For orientation, we note that jY seems to be, "with
large uncertainty, a little greater than 1. Ke see from
Fig. 2 that the case of constructive interference is ruled
out. Furthermore, the case of destructive interference
does not lead to a solution with E& 1 if the most reason-
able value of fi is used and if 3p —8 is obtained by fitting
s-wave hyperon decays. Even if 3p —8 is obtained by
fitting p-wave hyperon decays, there is no solution. If
the less reasonable value of h is i&sed, there exist
solutions for E&1. This corresponds to g~(0.4&(10 ~,

which means that the weak decuplet spurion would be
rather smaller than the weak octet spurion. Hara's
previous solution4 had a larger g& but led to very
small R, which now seems to be ruled out experimentally.

Thus we cannot conclude that a very reasonable
solution exists if only type-0 and type-1 weak vertices
are included in our model. Of course, a more careful
study of symmetry breaking in Eq. (16) is very desirable
in this context. Our tentative conclusion is that addi-
tional weak interactions, possibly of type-2, are re-
quired. Unfortunately reference to Eq. (20) shows that
there are too many arbitrary parameters. In the future,
when the experimental results on the three-body modes
and on the asymmetry parameters become available,
we may expect to determine these, however.

A type of diagram which is often considered useful
for nonleptonic decays is the meson-pole diagram. This
is illustrated for 0~™vrin Fig. 3. However, by strange-
ness conservation at the strong vertex, we see that this
diagram cannot contribute to 0—+AE. Thus a pure
meson-pole model would predict E=0, in violent
disagreement with experiment. Interference effects
with the pole diagram may be important though.

Finally, we note that exactly the same weak vertex is
found in Eqs. (1b) and (1d) and only the EJ= —', part
can contribute to a ~-0 transition. Thus the two-body
decay modes by themselves give no information on
disentangling any possible AI=~ component which
may be present in type-i weak interaction.

IV. DISCUSSION OF RARE DECAY MODES

The energetically allowed modes ™*xand Zxm- have
not yet been seen, but since in our model they involve

rIG. 3. Meson-pole diagrams for Q~
(K) represents any 5= —1 meson.

the same parameters as the z and AK modes, it is
expected that they can yield much useful information
in the future.

First let us consider the zw modes. These correspond
to diagrams (h)—(m) of Fig. 1 and the amplitudes are
given in Appendix B. The decay rate can be calculated
using formula (A3) of Appendix A. Actual details of the
method of evaluation are given in Appendix C. Again,
since we presently have no information on the type-2
vertices, let us assume for simplicity that they are
absent (although we have seen in the previous section
that this is doubtful). Then we are to evaluate only
diagrams (i)—(l) of Fig. 1. It turns out that diagrams
(i) and (1) are less important than (j) and (k). The
reason is that the "*propagator in (j) and (k) pa, sses
through resonance in the physical region. We note that
these two graphs are essentially the same as (f) and (g),
so that the approximation of the ™~mmode by ~~x is
not too bad. If the type-2 interaction turns out to be
large, we cannot, of course, draw this conclusion.

For a rough estimate of the branching ratio,

we may use diagrams (f) and (g) with the value of. gi
determined by fitting E and r (disregarding whether or
not 3p —8 is the value which fits hyperon decay). Then
we find

go=0.6&&10 ',
3P —8= 16.2X10 r,

Ri 1/20.

If E» should turn out to be much less than this, it might
be interpreted to mean that the type-1 weak interaction
is very small compared to the type-2, since diagrams (f)
and (g) show that only type-1 vertices contribute in
the *x approximation.

Finally, we may point out that, since in the case of the
mw mode the sr+-vr', ™0-™,and ™*'-™*mass differences

are not completely negligible fractions of the Q value
of the decay, there may be apparent violations of the
DI= —,

' predictions, Eqs. (9).
Further discussion will be given elsewhere.

APPENDIX A

The decay rate for reactions (1) is found from (4) to be

I'(0 —+ B~)= — —LA '(J'."'+m') +8'(I.' —nz') j,
12vrm(Q)

where 8' and. m' are the energy and mass of the Anal baryon, respectively, in the 0 rest frame.

(A1)
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The decay rate for reactions (2) is found from (6) to be

F(Q —& *2r) =
gg~2 m~2 j./2 2 A' —m' E'+2m'—C12(P.'+m') 1+—

42rm(Q) 9 m' m'

2 P.'+m' E' —2m' 2 m(Q)'
+C2'(E' —m') 1+— — + — —(E'"-—m")'[C2'(E'+m')+C4'(E' —m')]

2 m(Q) 2P.'+m'
+— (E"—m") C1C3(E'+m')

9 m' m'

2E —m
+ C2C4(P.

' m')— (A2)

where again E' and m' refer to the final baryon in the 0 rest frame.
The decay rates for the three-body decays in Eqs. (3) can be written in terms of J(PI,b in Eq. (8) as

2m'
r(Q(P) ~=(P'),~.(k,)~'(k, ))= (1——,'~.b) d'P'd'k, d'k, r(P' +m' )~(k,'+ p, ')

(2~)'

&&8(k,2+4422)0(p(2')8(k, (2)0(k20)8'(p —p' —kl —k2)-', Q tomb(kl, kg) (', (A3)
spans

where

~
m. b(k„k,) ~

'=
spins

2 -(P(k, p)'
p, ')(P, '(m—'m P' P) P, '—(m'm+—P' P)

3m'm ( m2

+F4 [141 m m+pl (p 'p)+2(kl'p)(kl'P )] P4 [gl m m 141 (p 'p) 2(kl'p)(kl'p )]
+2F1F&[m(kl p')+m'(kl p)]—2F2F4[m(kl p') —m'(kl p)])

m2

+2P4G(([((41'm'm+421'(p' p)+2(kl p)(kl p')] —2F4G4[441'm'm —pl'(p' p) —2(kl p)(kl p')]

+F1G3[ (kl P )+m (kl P)] F2G4[ (kl P ) m (kl P)]
+F2G1[3m(kl p')+m'(kl. p)]—F4G9[3m(kl. p') —m'(kl p)]j

((k2 p)' r'(kl P)(k2 P)
+I —»' (F'~ G')+I +2, 4)(2P,G, (m'm —P' P) 2P G (m'm+P' P)—

m'

(F1G2 F&G1 F2G4+F4G2)(1/m)(((41 m (k&'p )+pl (k& p)(p p) (kl P) (k2'P )+(kl'P)(kl'k&)(p 'P)}

where m, m', pI, and p2 are the masses of 0, the Anal baryon, and the mesons, respectively.

APPENDIX B

Using the interactions given in Sec. II, we compute the following matrix elements corresponding to the diagrams
in Fig. I:

diagram (a):

diagram (b):

diagram (c):

m. (Q- =-o~-) = —fu(p')(p, +p,~,)k„u„(p),
—2 (Q6)kgl f

m, (Q- =-o -)= u(P')kPu. (P),
m(Q) —m(:-*)

M, (Q —+ AK ) = —(2fj+6)u(P')(pb+p4yb)k„u„(P),

diagram (d): m. (Q- AK-) =— gf
u(p')kPu. (P),

m(Q) —m( *)

diagram (e):
kf(3$ '('2)—

cV,(Q —-P AK ) = u(p')k„u„(p) . —
m( ') —m(A)
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The total matrix element Q:=M,+IV o is to be identified with (4). Qo can then be found from (5). Similarly,

QI, ——All, +Ma+%, .
For the *ozr decay mode we have Q~ =-M~+&V„where

diagram (f):

diagram (g):

3f (Q *'zr ) = 2&3—gifu„{p')(1—y;)u„(p),

4&3m($*)
cVo(Q ~.*ozr ) = gifu„(p')yozz„(p).

m(Q) —m(=-*)

This corresponds to (6), and Q*o is given by the DI= zi rule (7).
Finally, the amplitude M+ (k&,k&) is M&,+M,+iV;+M&,+Mi+cV, where

diagrain (h): Af&, (Q ~ ",zr+(ki), zr (kz))

=»f'u(p') L(P"+PA ")ki.+(Pz+P»o)«z. ]u.(p),

2(+6)zgihf'
diagram (i): M, = - —u(p') (ki —kz) „you„(p),

m(Q) —m(=-*)

2(+6)zgih fz

diagram ()): M, = — — u(p') {(bi+zy ki)ki„+(bz+zbzy ki)kz„) (1—yo)u„(p),
(p —kz) '+m(. *)'+ zm (=*)I'(- *)

diagram (lc): cVo ——

diagram (1): Mt ——

4(+6)ig,hf' m(:7'*)

(p —k )'+m( *)'+im( *)1'( *) m(Q) —m{ *)

Xu(p')[(bi+zv. ki)ki„+(b,+zbov ki)kz„]y„.u„(p)

4(+6)igihf' 1
u(p')(b4+ib;p ki)y„;kz„u, (p),

(p —kz)'+m(Z)' m(Q) —m(~*)

2if'
diagram (m): cV„= u(p')(b4+zb, ski)(p, yo+p-z)Izo„u„(p) .

(p —k )'+m(:-*)'

In the last four equations we used the abbreviations

bi —m(-) —m(=——'"),

b, = L1/3m(~*) ']{2[m(=-)+m{:"*)]k,(p —kz) —zzi'm(Z*) )
b&= L1/3m(. *)']{m(=.*)[m(=)+m(=*)]—2«i. (p —«z)),
b4= 2P(zziz —2ki P'),

bo (1+4&)m(=), ——

where P~—0.33 as defined in Ref. 1. The AI=-,' relations (9) enable us to find Moo(ki, kz) and Mo (ki, kz) from

3f+ (ki, kz) given above.

APPENDIX C

The amplitudes for diagrams (j) and (k) contain a factor

so that
~

M', o(ki, kz)
~

' contains a factor

(p —k,)'+m(=*)'+im(=-*) r(=-*)

L(p «)2+m(~~4)2]2+m(~~4)2+2 ((p k )2+m(~~8)2]2+m(~~8)2/2
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Since the ™~width is fairly small, we make the zero-wiuth approximation. I en,

We define 3f~b(ki, k2) by

--—-B[(p—k )'+m(:-')'J.
L(P —kg)'+m(. *)'7'+m(:"*)'I" m(=*)

iM.,(ki, k,) i

-'= bg(p —k,)'+m(:-*)'7(3E„i(k„k;)
i
'.

The decay rate for Q(p) ~ (p'), ir'(ki), and 7r~(k2) is given by

2m'
P'O'kiO'k&~(p"+m")~(po') ~(ki'+pi2)~(klo)

&&6 k ' 2')0(k )8$(p —k )'+m(:.*)'76'(p —p' —ki —kg)-,' Q ~3~I.i(ki, k~) ~'.

We introduce new variables

with the properties

where

It =ki+P', Q= ki —p',

O'P'O'ki = ,';O'KO'Q—

g(P 2+m 2)g(k 2+@ 2) —4)(KB+Q2+2pl~)~(E'Q+p22)

/2=p +m and p2 =pi —m

In terms of these new variables,

2
O'k O'EO'Q 6(k '+p")8(E'+Q'+&pi2)b(K Q+p2')F(D —+=7r V )m-'(k2)) =(1 ,'5mb)——

(2m.)"
yg(E2+m(=*) )6'(P —k, —E) P ~3E.,(k, ,k,) ~'

Sp 1I18

2
= (1—8.i,)- — O'k2O t ~2 p2'E 8(k '+ ')8(IP+m( *)')5'(P—k2 —IS)I(p k~, E, masses), (41)

(2m-)'

where

I= "Qb(K'+Q'+2 ') (E Q+p ') P ~IV (k, l ) ~'.
spins

Jis al.orentz-invarian q
'

yt uantit and can be eva uate s raig orw1 d t ' 'htf rwardly" by choosing the frame where E=(O,iKo).
'

l t to the calculation of the decay rate for the two-The evaluation of the decay rate (C1) then becomes equiva, ent o e ca cu
body final state, and this can be easily carried out.

Theor 1962 Brandeis Lectures I'K. A. Benjamin, nc. , X wnc. New York 1963),'"' J. D. Jackson, in Elenzentary Partzcle Physics and Fie d eory,
Vol. 1, p. 392.


