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Perturbation-theory techniques are used to generate an approximate transcendental equation for the
leading Regge pole produced by an infinite sum of Feynman ladder diagrams, This equation is not restricted
to the weak-coupling domain and can be used to produce trajectories with o. (0))0. The equation is solved
both below and above the elastic and inelastic thresholds to provide the first complete description of a
relativistic Regge trajectory in the ladder-diagram model, The same technique is used to generate potential-
theory trajectories which agree with the exact solutions obtained by more complicated methods.

I. INTRODUCTION

N the past few years the concept of a Regge pole has
. . played a very important role in both the interpreta-
tion of high-energy scattering experiments and in the
classification of many of the hadronic resonances dis-
covered at lower energies. In spite of the phenomeno-
logical success of Regge poles, there does not exist at
this time a firm theoretical understanding of the
mechanisms by which they are generated in intrinsically
relativistic processes. Regge poles have been intensively
investigated in potential theory and, in fact, potential
theory constitutes the only complete theory of Regge
poles. However, because of the absence of such rela-
tivistic phenomena as multiple thresholds, cuts, and
daughter poles, the utility of potential theory as a guide
to the nature of Regge poles in a relativistic world is
questionable.

Since there does not exist a complete relativistic
theory of strongly interacting particles, it is recognized
that valuable insight into the properties of real Regge
trajectories can be obtained by studying simple models
that embody certain aspects of the complete problem.
Such models can be divided into two main classes. There
are S-matrix models which usually assume the existence
of Regge poles and generate constraints on their behav-
ior through the use of crossing, unitarity, duality, and
so forth. The second class of models is based on field

theory; a fundamental interaction is assumed and Regge
poles are dynamically generated either by summing

diagrams with perturbation-theory techniques' ' or by
solving the Bethe-Salpeter equation. ' Although both
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5-matrix and field-theory models are useful, field-theory
models, though more unrealistic, are more fundamental
in the sense that they provide a dynamical mechanism
for the appearance of Regge poles. For those who would
argue that the multiperipheral model or its generaliza-
tions are a fundamental theory of Regge poles, we point
out that the multiperipheral equation in its original
form is mathematically identical to the Bethe-Salpeter
equation. ' Thus, all work on field-theory models can be
couched in the more fashionable language of the multi-
peripheral model, but we prefer to retain the more
familiar ideas and language of field theory while keeping
in mind the possibility of translation.

The simplest field-theory model of a Regge pole uses
an infinite sum of ladder Feynman diagrams where all
internal particles have zero spin. ' ' The ladder approx-
irnation to the Bethe-Salpeter equation is one way of
representing this sum. This formidable integral equation
can be solved either in the weak-coupling limit or
numerically for arbitrary coupling. ' The numerical solu-
tions are difficult to obtain and have never been
extended above the two-particle threshold. The trajec-
tories obtained from ladder diagrams by perturbation
theory have been extensively investigated only in the
weak-coupling limit where the leading pole is given by
n+1=G'J (s),' G being the coupling constant. Pertur-
bation-theory solutions, however, have the virtue of
yielding relatively simple analytic expressions for the
trajectories. Polkinghorne4 showed that through the use
of Mellin transforms it is possible to obtain an exact
equation for the leading Regge pole that has the form
n+1=F(n, s). The Regge trajectory n(s) is the solu-
tion of this transcendental equation, and F(n, s) is
given by a power series in the coupling constant. The
coefFicient of G'~ is a (31V—1)-dimensional integral over
Feynman parameters. A,s a result of this complexity,
this exact equation has not been used to generate
explicit trajectories. By keeping only the lowest term
in the series for F(n, s), Polkinghorne4 apparently
obtains weak-coupling trajectories near the threshold
energy where n(s) ——,'. However, his threshold solu-
tion is not unique. It depends crucially on the depend-
ence of the 6rst-order term in his expression for F(n, s) .
The very nature of a perturbation expansion for the
trajectory function implies that this 0. dependence is

D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento
26, 6 (1962);B.W. Lee and A. R. Swift, ibid. 27, 1272 (1963).
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We start with the exact equation for the leading Regge
pole obtained from an infinite sum of ladder diagrams:

(1)a(s) +1=F(n(s), s),

where F (n, s) is given by

F(o., s) = —g (—G'i~+'
N=O

g dy, ds,
p 'b=l

not unique but rather represents a judicious sampling
of higher-order terms.

In this paper we present an approximate, but non-

perturbative, method of solving the exact equation
obtained by Polkinghorne. From perturbation theory
we calculate Regge trajectories which are not restricted
to the weak-coupling domain and, moreover, can be
analytically continued above threshold to obtain the
erst complete description of the trajectories in the com-
plex angular momentum plane for a relativistic 6eld-
theory model. The final equation we obtain retains
much of the simplicity of perturbation-theory models.
Our technique can equally well be applied to potential
theory, where it is possible to compare it with exact
solutions8 in order to test its validity. The basic approach
is to exploit the formal similarity between the expression
for F(o., s) and an infinite sum of ladder diagrams with
contracted ends. We construct a set of Feynman rules
which enable us to write an integral equation for
F(n, s). The kernel of the equation is approximated by
one of 6nite rank. The first approximation with just a
single separable kernel turns out to be surprisingly good,
both when compared with the second approximation
and when compared with the exact results available for
nonrelativistic Regge trajectories. Since our method
yields a simple transcendental equation that is valid
both for strong couplings and for energies above thresh-
old, it should provide a useful technique for investigat-

ing, among other things, the properties of daughter
poles and cuts in a domain previously unexplored.

We start in the next section with a development of
the basic theory. Nonrelativistic and relativistic scat-
tering are developed simultaneously with Polkinghorne's
exact equation for the leading Regge trajectory as the
starting point. In the final section the equations are
solved in the first and second approximations and com-

pared with exact solutions where available. The behav-
ior of the relativistic trajectory is discussed. As an
example of the usefulness of our approach we solve for
the leading Regge trajectory in a model with multiple
thresholds. The limitations of the method are discussed,
and other applications are suggested.

II. THEORY

where

P(n, s)
F(n, s) =

1+F(n, s)/(n+1) ' (3)

F(~ s) Q (G2'l %+1
oo N+1 QN

Q dy, ds, iI dx,x,'
p i=1 j=l ~N

At a pole of F(n, s), F (n, s) =n+ 1, so that the problem
of solving (1) reduces to the problem of finding the pole
of F(a, s). H a is set equal to zero in (4), F(0, s) is
identically the expression for an infinite sum of con-
tracted ladder diagrams with four-dimensional loop
integrations over internal momenta. If we replace the
normal propagator (p'+X') ' by

1'(~+1)/(P'+7 ') +'

where F(s) is the gamma function, this sum of con-
tracted ladders would yield (4) (including the x, ) with
AN

—' instead of AN ' +'&. The power of hN is tied to the
dimensionality of the loop integrations. In other words,
if instead of a four-dimensional space, we had an I;
dimensional space, we would find Aiv ~i2. Thus, F(n, s)
represents the sum of contracted ladder diagrams in an
L-dimensional space with 1. equal to 2(n+2) and the
propagator given by the above expression. In what
follows we use this set of formal Feynman rules to
replace (3) by an equivalent expression involving loop
integrations. The admittedly heuristic step of working
in a (2n+4)-dimensional space is justified on. the
grounds that the results so obtained are reasonable and
agree with other methods of solving the same problem.
The loop integrations in a (2n+4)-dimensional space
where o. is an arbitrary complex number are to be under-

and G'=g'/16m' in the notation of P.4 The rungs of the
ladders carry mass X, and the corresponding Feynman
parameters are x;. The parameters for the sides of the
ladder carrying mass p are y, and s;. The functions Q&
and AN are defined in P and describe an S-rung ladder
with both ends contracted. In nonrelativistic scattering
from a Yukawa potential, the leading pole is given by
(1) with only a slight change in the form of F(a, s) to
take into account the fact that the ladders are one-
sided and the space is three rather than four dimen-
sional. ' Thus, G' becomes g/2+~, where

l'(~) = —a(e-"'/~)

The Feynman parameter s; is absent; dN is derived
from the relativistic hN by setting s;=0; and AN & +')
is replaced by Av &"+3i'&. The expression for Qiv is given
in Ref. 9. Since the solutions of (1) generate trajectories
which lie to the right of Reo. = —1 in the complex
angular momentum plane, the derivatives with respect
to a, can be removed from (2) by integration by parts
to give

8 C. Lovelace and D. Meeson, Nuovo Cnnento 26, 472 (1962). ' A. R. Swift, Phys. Rev. 176, 1848 (1968).
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Fig. 1 Steps involved in going from the infinite-sum representa-
tion of Il to the integral equation for V shown diagrammatically.
Each Feynman diagram is computed using the Feynman rules
developed in the text.

stood as first being carried out in an L-dimensional
space, L an arbitrary positive integer; then L is replaced
by 2m+4.

With the additional restriction of a Euclidean metric,
F(a, s) can be written in the form

Q2 d'+'k V(a, s, k)
F(n, s) =

(2r) +'
t (k+28) '+/i']p(k —iE) '+/i'] '

(5)

where E is a vector in the ko direction in an L-dimen-
sional space and E"'=~is. The function V(n, s, k) repre-
sents an infinite sum of ladders with one end contracted;
and, just as the amplitude which is a sum of conven-
tional ladders satisfies an integral equation, V(n, s, k)
satisfies the equation

Q2
V(n, s, k) =1+

d' +'q I'(a+1) V(n, s, q)

t (k q) 2+) 2]a+1/(q+2F) 2+~2]$(q 2g)2+ 2]
'

(6)

The steps involved in going from (4) to (6) are shown
diagrammatically in Fig. 1. Clearly the poles of F(a, s)
are also the poles of V(n, s, k) . The problem of solving
for the leading trajectory becomes one of solving (6),
which, except for the o. dependence of the kernel, is
essentially the Bcthe-Salpeter equation. The steps
leading to (6) can be repeated for the nonrelativistic
problem and yield

Vp n, s, k =1 g/2+2r d' +'q I'(n+1) Vi (n, s, q)
2ra+2/2 [(k )2+y2]a+1( 2 S)

In this case Qs is the nonrelativistic energy. The
momentum integration has one less dimension than in
the relativistic case, as is expected.

Equations (6) and (7) do not lend theinselves readily
to numerical solution owing to the presence of the
(2n+4) -dimensional integration. Moreover, direct
numerical solution of these equations would encounter
the same problem of continuation above threshold that
addicts work on the Bethe-Salpeter equation. Rather,
we approximate the kernel of (6) or (7) by one of finite
rank as a method of obtaining nonperturbative solu-
tions. We expand the kernel in the following way:

(
0.+I () 2) a+1

(p k) 2+y2 (p2+g2) a+1(k2+) 2) a+1

&&I(1—&) '+"]
()I2) a+1

(p2+g2) a+1(k2+g2) a+1

XL1+(+1)~+"], (g)

where 8= (P'k2+2&2P k)/(P2+Z2) (k2+Z2) . This ap
proximation to the kernel has been used before in
similar situations and matches well the form of the
exact kernel when p' or k' separately become large.
Keeping just the first term in (8), we find that

V(n, s, k) =1+LO'I'(m+1) (X') ~'/(k'+X') +']C. (9)
The constant C is given by

C=E( +1)/$1 —O'I'(n+1) (X2) "+'E(2n+2) ]. (10)
The function E(p) is defined by

1 d2n+4$
E(/') =

2ra+' (k2+X2) ~$(k+28) '+ p,']f(k —2&) '+/1']

(11)
If the propagators are written in exponential form by
use of Feynman parameters, the k integration is easily
carried out. The corresponding potential-theory solu-
tion is the same, except that

E.(P) = (1/~.+") Ld'-+'k/(k pe) s(k2 —s) ].
Since the poles of C are the poles of V(a, s, k), the
leading Regge trajectory in this approximation is the
solution of the simple transcendental equation

1=O21'(~+1) (y2) a+1E(2~+2). (13)
Note that (13) is scale invariant. If every mass, energy,
and coupling constant is scaled by so'l', the dependence
cancels out completely. This is an important property
of the exact equation (1) and means that the energy
scale is set by the masses in the problem and is not
arbitrary. Not all approximations to (1) have this
property.

If the next approximation to the kernel in (8) is
retained, V(0/, s, k) is found to have the form

V(~, s, k) =1+EC1/(k2+l12) a+']+t C2/(k2+X2) +'].
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C& and C2 have poles given by the equation

1=O'F(n+1) (X') "+'E(2n+2).

+O'F (a+ 2) (X') "+'1 E(2m+2) —2X'E(2u+3)

+)t4E(2n+4) )—O' F(n+1) F(a+2) (X')' +'

&&PE(2~+2)E(2~+4) —E(2~+3)23. {14)

The p. k term in (8) does not contribute to this order.
Both (13) and (14) reduce to the well-known weak-
coupling solutions when 6' is small and 0.—&—1. In
Sec. III we solve (13) and (14) and show that the
second approximation differs only slightly from the
6rst approximation, but in the right direction to im-

prove the agreement with the exact solutions.
If (6) is solved with Fredholm theory instead of with

the finite rank approximation, the poles of V(a, s, k)
come from the vanishing of the Fredholm denominator.
In lowest order the position of the pole is just that
obtained in first order from (1). Explicit calculation
shows that this first-order term is proportional to
F ( —a) . The pole of the gamma function at n =0 makes
it impossible to generate trajectories which rise above
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FIG. 2. Position of the leading Regge trajectory at s=k =0
in potential theory shown as a function of g, the strength of the
potential. The range of the potential is set equal to 1.The curves
labelled 1 and 2 are the first and second approximations developed
in the text, while the dashed curve is from the exact solutions of
Lovelace and Masson (Ref. 8).
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Fro. 3. Rem plotted as a function of s for the potential-theory
trajectories obtained in either the first or second approximations.
In (a), G'=g/2++=4. 0, while G2=16.0 in (b). In both (a) and
(b) the lower of the two solid curves represents the 6rst ap-
proximation and the upper is the second approximation. The
dashed curve is the exact trajectory calculated by Lovelace and
Masson (Ref. 8) for G'=2.0. The range of the potential is the
same as in Fig. 2.

0.=0. Presumably this pole is cancelled by higher-order
terms. In any case,our method of approximation avoids
this difliculty. A second point to notice is that (13)
and (14) are unaffected by the possibility of replacing
x +'—1 by x +'—f(n) in (2), where f(a) is an arbitrary
function of o, and the I'eynman parameters satisfying
f(—1) =1."The freedom in choice of f(n) affects only
the ends of the Feynman-diagram representation of
P(n, s) Lsee Eq. (4)j and does not change the kernel
of the integral equation for V(a, s, k).

III. RESULTS AND DISCUSSION

In order to extract trajectories from (13) or (14),
we write the propagators in exponential form and per-
forrn the k integration in E(p) to obtain

E(P) =EF(P) 3-
"dxdyds x& ' expL —X'x —p'(y+s)+ -'sg)

X 1-
0 (.+y+ )-"

where (x+y+s) Q=x(y+s)+4ys. Using standard
scaling transformations, we convert the three-dimen-
sional integral in (15) to the form

(p ~) 1 1

E(P) =
F(P)

dx xs—'(1—x) dy (16)

with 3I=P,'x+p'(1 —x) ——,'s[x(1—x)+4(1—x)'y(1 —y)].
The corresponding expression for potential theory is

I'(P —a —-') ' dxx~ '
E~(P) = '

17
F(P)

', ~~-"
where Mi =X'x—s(1—x). Ep(P) is proportional to a
hypergeometric function. The integral representations
of E(P) and Ei (P) in (16) and (1'I) are convergent

"For a discussion of the ambiguity in summing-ladder diagrams
see Ref. 9.
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correct continuation of E(p) for 4p,'(s(4()j.+/i)' is
W-+&~2 i—tan~~

8/2

I'(~+5) (~'+~)'(/'+~) "'
I'(p' —a ——,') F(1—p, 1; ', +/J. -pX'—/(X'+6) )

p(p) () 2~g) ( Rgb) 1/2(yR)// n —3/2—

1 r(P — )
dw(1 —w) -'w, , (18)

2 I'(P) (M') /'

where F(//, , b; c; s) is a hypergeometric function and
M' = (/i'+6) w'+xP. '—()I,'+&)w$. To continue (16')
above the second threshold, we deform the m and u
contours in a way consistent with the +is prescription
on s. The resulting contour integrals are performed
numerically on a computer.

To continue (17) above threshold, we carry out the
integration and analytically continue the resulting
hypergeometric function above threshold to obtain

m s +'/'(i tannin—) I'(P —cx——,')
Ei I'( +!)() '+~)' I'(P)

-0.5

-O.C
-l.o -0.5 0.0 0.5 1.0 P, O

Retx
FIG. 4. The trajectories plotted in Fig. 3 are shown in the

complex n plane. Again G'=4.0 in (a) and 16.0 in (b), and the
two solid curves are the erst and second approximations. The
dashed curve is the exact trajectory for G'=2.0.

l.5

I'(P —n) 1
E(P) = dw(1 —w) &

I'(P) 2

du
X t 3f(&, w)g &, (16')

QN

for s below the elastic threshold. LThe elastic thresholds
are at s=4//, ' in (16) and at s=0 in (17).) For s)4p, ',
the singularities of (16) are most conveniently exposed
by a further change of variables to y=-,'(1+I'/'), x=
1—w, and s=4(p, '+6) so that

P(1 P1 -'+——P X'/(X'+ s) )
(19)

() 'gs) (9)s-.-'/'
As expected, there is just a single threshold in the
potential-theory case. -

The simplest way to solve (13) or (14) is to choose a
value of s and then calculate G' as a function of o.. The
set of G'-versus-a curves for diQerent s is used to extract
n as a function of s at constant G'. Above threshold,
cx is complex and for a given s and Rem, Imo. is varied
to locate a real positive G2. Changing Reer yields a new
Imo. and G'. The Re+-versus-G' curves for various
values of s are used to determine the trajectories. In
practice, the trajectories are determined by a simple
interpolation procedure on the University of Massa-
chusetts time-sharing computer system.

I

(a)

where M (u, w) =)I.'(1—w) —Aw(1 —wu) +/ti'uw'. As the
energy is increased, the curve M(u, w) =0 moves into
the region of integration when 6 becomes positive. This
produces the elastic threshold. For 0(h(X'+2K/i, the
curve 3E(N, w) =0 cuts the boundary of the region of
integration at @=0, w=X'/(X'+6) and at w=1, u=
6/(p, '+b). However, for b)X'+2K/i the curve also
cuts the u= j. boundary twice. This introduces a second
threshold singularity at s=4(X+//, ) 2. This four-particle
threshold presumably reflects the higher thresholds con-
tained in the integral equation (6). The representation
(16') is contained above the first threshold by separating
the region of integration in which M is negative and
using the fact that s has a+i& attached to it. This allows
us to write M/' = expc —kr(P —n)$( —M)& . The

-"I
-2 lo 12 l4

FtG. 5. Reo. plotted as a function of s for the relativistic Regge
trajectories calculated in the two approximations. In (a), G =4.0,
while G' = 16.0 in (b) . In both (a) and (b) the direct and exchange
masses are given by X=p=1.0, so that the elastic threshold
is at s=4.0 and the four-particle threshold is at s=16.0. The
dashed curve is from Chung and Snider (Ref. 6) for G =3.4.
As in the potential-theory case, the lower solid curve is the 6rst
approximation, and the upper curve is the second approximation.
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FIG. 6. The trajectories shown in Fig. 5 are drawn in the
complex a plane. Again G'=4.0 in (a) and 16.0 in (b) and both
the first and second approximations are shown.

In Fig. 2, we plot the position of the potential-theory
trajectory at s=0 as a function of the coupling constant
g, where G'=g/2v w. From these curves, comparing
the exact and approximate solutions, we see that the
approximate solutions are quantitatively correct up to
g=4 and n(0} =0.25, a long way from the domain
where the weak-coupling solution n+1=g/2( —s}'"is
valid. In Figs. 3 and 4, we show the potential-theory
trajectories for G'=4 and G'= 16 (g = 14 and 64) in first
and second approximations as well as the exact solution
of Lovelace and Masson' for g=7. Note in the Ren-
versus-s curves that the second approximation lies
above the first approximation everywhere, but the two
curves have essentially identical shape. Even though
there is not quantitative agreement for these large
couplings, the approximate trajectories have the same
shape throughout the whole complex n plane. The
agreement could be improved by decreasing the range
of the potential (increasing X) . Since, in the units where
jt'/2@a = 1 (I being the mass of the scattering particles),
the only mass in the problem is P, increasing X would
alter the energy scale and effectively broaden the peak
in the Rem-versus-s curve. The fact that the trajec-
tories obtained from the relatively simple transcenden-
tal equation match the exact ones so closely gives us
confidence in the validity of our method. The agreement
between the first and second approximation also sug-

(b)

- b
E

-I

6 8
I t
I

-0
I 0 I2

(cl
-2
8
E

-I

0 I

I I

Re+

0I I24 6 8 0
Re&

Fzo. 7. In (a) the trajectory calculated in a two-threshold
model is shown as a function of s, while in (b) it is drawn in the
complex m plane. The exchange mass X=1.0. The first threshold
at s=4pP=4. 0 is coupled with a strength GP=4.0. The second
threshold at s=4pP=6. 25 is coupled with equal strength. In
(c) and (d) the solid curve is a trajectory calculated in a three-
threshold model. The channels are coupled with a strength
Gp=4.0, Gq'=6.0, and G32=8.0, where pq=1.0, @2=1.25, and
p3 1.5. The exchange mass is given by ~= 1.0. The dashed curve
is the identical calculation with ) =2.0 in order to smooth out
the local maxima in the curve of Reo. versus s. In both (a) and
(c) arrows mark the positions of the thresholds.

gests that the finite-coupling trajectories extracted from
perturbation theory in this manner are a good approx-
imation to the exact solutions.

Figures 5 and 6 show the corresponding trajectories
obtained from the field-theory model. Again the second
approximation constitutes only a small correction. The
only exact solution available is by Chung and Snider'
and we show it also. The conclusion is that in the region
below and just above the elastic threshold, relativistic
trajectories are very similar to potential-theory ones,
except for minor differences in scale and shape. How-
ever, as s approaches the second threshold at 4(p+X) ',
there are some distinctly relativistic eRects. Depending
on the value of O', Ren as a function of s stops falling
and may even rise. This rise is followed by a sharp fall.
Above the second threshold, Rem resumes its potential-
like behavior and falls smoothly to —i. The relativistic
trajectories make larger excursions into the complex
plane, for comparable couplings, than do the potential-
theory trajectories. We have not investigated the
trajectories in great detail in the region of this second
threshold. The accurate evaluation of the analytically
continued double integral in (16 ), while possible, is a
time-consuming task; and it is not clear that the
trajectories that would result warrant the effect, par-
ticularly in light of the approximations involved in the
solution of (6) . However, it is interesting to see,
qualitatively, the effect of inelastic thresholds on Regge
trajectories.

One new effect that can be explored with this simple
ladder-diagram model is the effect of varying the masses
in the problem. If the exchanged mass X is increased for
constant 6' and direct-channel masses, the maximum
value of Ren is depressed and the whole Rem-versus-s
curve is Qattened out. The scale of energy variation is
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increased. If the exchanged mass is decreased, the peak
becomes very sharp and the maximum value of Ren
increases. If P =0, Rem becomes infinite at threshold
and we have the Coulomb limit of an infinite nu~ber of
bound states. If G' and the exchange mass are held
constant, while the direct mass 5 is increased to raise
the threshold, we find that the trajectories always rise
to threshold no matter how high it is. However, the
maximum value of Rem is essentially unchanged.
Raising the threshold energy just shifts the Rem-versus-s
curves to the right.

As an application of our method we discuss a possible
model for indefinitely rising trajectories. Chew" has
suggested that such trajectories are generated by the
continual opening of new channels. In this way, although
each channel by itself produces a trajectory that turns
over above threshold, the presence of new channels
maintains the rising behavior. To examine such a model

by our method, we note that E two-body channels are
included in the theory by replacing the pair of propaga-
tors for the sides of the ladder by a weighted sum of Ã
pairs of propagators. The final result is that in (13) or
(14), E(P) is replaced by g G,2E,(P), where GP is the
coupling strength to the ith channel whose threshold
is at s=4p, 2. It, (P) is given by (11) with p,

' replaced
by p, . In Fig. 7 we show trajectories from two- and
three-threshold models. (We stay below the lowest in-
elastic threshold. ) From the form of (13) it is easy to
understand what is happening. The eBects of the
various channels are approximately additive in Rem.
If each channel has equal strength, then each channel

by itself would produce the same maximum value of
Reo.. Thus, unless the thresholds are very close together,
they combine to produce a Rem that oscillates as a
function of s and whose maximum value increases
slightly, if at all. This roller-coaster eQect is smoothed
out by using the second approximation or by increasing
the exchanged mass, but the model still does not
generate a smoothly rising trajectory in the region
where new thresholds are opening up. More interesting,
though not shown in the figure, is the presence of
stationary points in Imo. as a function of s near the
minima of Reo., even though in a single-threshold model
Imn still rises smoothly in that region. If the higher
thresholds have weaker strengths as suggested by experi-
ment (i.e., more inelastic), then it is very hard to
support a rising trajectory in this model. Although we
have not considered all possible variations of the many
parameters in this multiple threshold model, our con-
clusion is that it does not appear to be a plausible
mechanism for generating rising trajectories. We note

"G. F. Chew, in Proceedings of the Regge-Pole Conference,
University of California, Irvine, Calif. , 1969 (unpublished).

that such trajectories would always start at 0.= —1.
The mechanism which shifts n( —~ ) from —1 to —~
is probably responsible for the rise above threshold.
On the other hand, multiparticle channels may be
crucial for explaining physical trajectories.

Finally we comment on the validity of our method.
From plots of G' versus n below threshold, it can be
seen that at fixed s, there is a point where a large
increase in G' produces a small change in the value of
a obtained from (13).The exact calculations of Love-
lace and Masson' tell us that 0. should continue to
increase. Hence, for sufIiciently strong couplings, (13)
ceases to be valid. However, the fact that (14) gives
larger values of u for the same G' suggests that including
more correction terms would increase the region in
which the method provides reliable results. The most
encouraging feature of our solution is that the qualita-
tive structure of the curves is correct. No one should

try to make a detailed comparison with experiment
with our theory. We also mention that although ladder
diagrams contain three-particle cuts, the transcen-
dental equation for n developed here does not have such
cuts in its approximate form. However, it does have a
nontrivial dependence on the exchange mass, which
leads to a four-particle cut. Since ladder diagrams do not
satisfy three-particle unitarity, the absence of three-
particle cuts is not disturbing.

There are several possible applications of this general
approach which come to mind. One involves changing
the basic three-particle interaction from a field-theoretic
point vertex to one involving form factors. Work is
nearly complete on a class of models of this type. A
second application would involve investigations of the
first daughter trajectory; exact solutions like that given

by (1) are available for secondary trajectories in ladder
diagrams. "Such investigations might answer the ques-
tion as to whether any of the secondary Regge poles
reach the physical region along with the leading pole.
A third application would involve realistic investiga-
tions of Regge-cut phenomena. Perturbation-theory
models are the only ones in which cuts arising from
third spectral functions are thoroughly understood. "
However, the weak-coupling restriction has limited the
usefulness of these models in physically interesting
situations. Still another possible application would be
to a model involving the exchange of an infinite set of
particles. Such a theory would contain some of the
features of the Veneziano model and might be con-
sidered one method of unitarizing it. Work is in progress
on a model of this type.

' A. R. Swift, J. Math. Phys. 8, 2420 (1967)."S. Mandelstam, Nuovo Cimento 30, 1148 (1.963); J. C.
Polkinghorne, J. Math. Phys. 4, 1396 (1963).


