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The chiral transformation of asymptotic fields in the presence of symmetry breaking is discussed in a
model of interaction between a quantized Dirac field and an external electromagnetic field. We conclude
from this model that the asymptotic fields will generally transform nonlocally and nonlinearly. Only if the
symmetry breaking is small, or if the interaction is sufficiently weak. , will the asymptotic fields transform
locally and linearly as a first approximation.

II. MODEI,

In our model the Heisenberg spinor field P(x)
satisfies the following equation:

( i7„8o+m—)P(x) = gA„(x)pe(x),
where A„(x) is an external iield.

We concentrate on the chiral transformation whose

generator is

X= —fd'x it (x)Pysg(x). (2)

I It can be shown that if one imposes strictly linear chiral trans-
formations for the quartet of asymptotic fields 7i-;;, o;, in the
form i';, rr;;g=o;S;;, i)X,, ai, , g= —.~;,;, the pion would not
decay. See T. Muta and H. Umezawa, University of Wisconsin-
Milwaukee Report Xo. UWM-4867-69-4 (unpublished) .

I. INTRODUCTION

~

~ ~UITE often one would like to know the transforma-

z tion properties of asymptotic fields in the pres-
ence of symmetry breaking. For example, if we knew
the transformation properties of the asymptotic pion
field sr;„under chiral SU(2) SSU(2), we would be
able to determine the sr~tt+o decay amplitude by
taking the vacuum expectation value of i[X;, sr, ,;„),'
where X; (i = 1, 2, 3) are generators of the chiral trans-
formation.

Unfortunately, there is not yet known any tt priori
simple way to determine the transformation properties
of asymptotic fields except in the case of exact sym-

metry, when the generators are constants of motion.
In this case quantities like [X,, sr;, ;„7 satisfy the same
free-field equations as 7t-, , ;„, generally suggesting linear
and local transformation laws for asymptotic 6elds.

In order to get some insight as to how the asymptotic
fields transform in the presence of the symmetry break-

ing, we discuss in Sec. II a simple model of a quantized.
Dirac field interacting with an external electromagnetic
field. This system will not be invariant under the linear
and local chiral transformation P—& exp(iey5) P, as long
as the Dirac particle has a finite mass. P is the Heisen-

berg field. Solving the Heisenberg equation of motion,
i.e., expressing P in terms of the asymptotic field P;„,
we see that P;„will transform nonlocally and, if A„ is

quantized, nonlinearly.

The field lt (x) satisfies the linear transformation law

[X,P(x) j=~,lt (x), (3)

and it is readily seen that only the mass term in (1)
breaks the symmetry. The symmetry-breaking part of
the Hamiltonian IIs& in our case is given by a mass
term

Hsn ——mfd'x P(x)1t (x),

and its "transformation" is given as

iX=[X,as, j=2mfit (x)yP(x)d'x.

In what follows we need the solutions of (1) in terms
of in-fields. From (1) we can write the corresponding
integral equations:

&(x) =4' (*)—gf S~(x—y) A(y)&(y) d'»

lt'(x) =it'; (x) —gfttr(y)A(y) Sg(y —x)d'y, (5a)

where 5~ and Sg are retarded and advanced Green's
functions, respectively.

Because of the linearity of (Sa) in p(x) and lt(x),
respectively, we can write its solutions in the form

P(x) =lf;„(x)—fd'y M&(x, y)P;. (y),

P(x) =P; (x) —fd'y P;„(y)M~(y, x). (Sb)

Sf' and 3II& satisfy the following integral equations~:

Mz(x, y) =g5&(x—y)A(y)
—gfd4s $~(x—s)A(s)Mig(s, y),

M&(x, y) = gA(x) Sp(x—y)
—gfd's cV&(x, s)A(s) S&(s—y). (6)

By means of (5b) and (6), X andiX from (2) and

' It is assumed that the external Geld A„(x) vanishes in space-
time invites. Salam and Matthews studied the scattering on an
external Geld in momentum space. They also discussed the condi-
tion on an external field in order to apply the Fredholm method
in this problem t A. Salam and P. T. Matthews, Phys. Rev. 90,
610 (1953)g. See also R. P. Feynman, ibid. 75, 486 (1949); 75,
1736 (1949); M. Neuman, ibid. 83, 1258 (1952); 85, 129 (1952};
J. Schwinger, ibid. 93, 615 (1954); J. Soln, Nuovo Cimento 18,
914 (1960);32, 1301 (1964).
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(4) are expressed in terms of P;„and P;„as follows':

X(t) = —fd3x p;„(x)p~,y;„(x)

+fd'xd'y p;„(x)pp 3f (x, y) p;„(y)

+ fd'xd's p;„(s)M~ (s, x)py5$;„(x)

—fd'xd'sd'y P;„(s)M&(s, x)Pp, iVii(x, y)P;„(y), (7)

iX(t) = 2m fd'x g;„(x)y5$;„(x)

with the quantity D,[X(t),P;„(x, t) ],where the opera-
tor D, is dined as

D.=p(p —m), P= y„P"= —iy" (8/Bx4) .

This is clear, since D,y5$;„(x)=0.
In our model we can compute the quantity

D,[X(t),P;„(x)] from (9) using the differential
equations for M~ and M~,

( iq—~(B/Bx~)+m gA—(x) )M, (x, y)
—2m fd'xd'y P;„(x)y5Mig (x, y) P;„(y)

2m—fd'xd's P;„(s)HID (s, x)ygP; (x) and

= —gA(x) 8'4&(x—y)

( )~ ( ) ~ ( )~ ( ) (8) Mp(y, x)(ip"(8/Bx")+m gA—(x))= —gA(x)8&@(y—x),

Having the Heisenberg fields expressed in terms of
respective asymptotic in fields, we may easily see what
kind of tra, nsformation P;, (x) satisfies with X as a
generator. Equation (7), together with the anticommu-
tation relations for P;„, gives us

[X(t),4'. (x, t) 7=~ 4'-(x) —fd'y~ ~ (x, y)4'-(y)
+ifd'x'd4s S(x s)3fg(s, —x')Pyg

X[P;.(*')—fd'y ~~(x', y) P;.(y) ], (9)

3 The products like P; t(z) ~ ~ P; (y) should be imagined as
normal products, :P;J (s) ~ ~ P;„(y):. See, for example, S. S.
Schweber, ArI, IllroductiorI, to Relativistic QucrItzfm Field Theory
(Row, Peterson, Evanston, Ill. , 1961).

4 When the electromagnetic field is treated as a dynamical
variable, besides Eq. (1) for the spinor field P(x), we shall have
the corresponding differential equation for A„(x) . Now, however,
both equations will have to contain some extra terms in order to
take into account the mass and coupling constant (charge)
renormalizations. See G. Kallen, Helv. Phys. Acta 25, 853
(1952);26, 755 (1953).

From (9) we see that in our model, P;„ transforms
nonlocally. Generally, P; will transform momlocatly and
moeHeearly, which can be seen if one treats the electro-
magnetic 6eld as a dynamical variable and repeats the
derivation of Eq. (9), say, up to the second order in g.'
The important thing we learn from (9), however, is
that the nonlocal and generally also nonlinear term
which appears in the transformation of asymptotic
fields is "small" if the interaction is weak, regardless of
how strong the symmetry breaking is. Note that in our
model, 3f~,~~0 as g~0.

%e expect that the asymptotic field will transform
approximately linearly if the parameter of the sym-
metry breaking is small. In our model, this would
correspond to small fermion mass m. This expectation
is usually justified by the fact that X is of the order of
the symmetry breaking, thus small if the symmetry-
breaking parameter is small [see (8)7. It does not
appear to be simple to rewrite (9) in such a way that
the mass m appears explicitly on the right-hand side
of (9). However, we ca,n measure the degree of the
nonlinearity and the nonlocality of the transformation

which can easily be derived from (6).
The result is

D.[X(t),P;„(x, t) 7

= 2imfd'x'd's P[P, S(x—s)Mg(s, x') ]y5

&&(4 .(*')—fd4y ~a(x', y)4'. (y)), (10)

First of all, as g
—+0, D,[X(t),P;, (x, t) 7—&0, confirming

what we already found: [X(t),P;„(x,t)]—+pzP;, (x, t).
However, if the mass m becomes smaller, we shall
also have that D,[X(t),P;, (x, t)7~0, meaning that
[X(t),P;„(x, t) 7 approaches gyes;„(x, t). This result is
clear, since in the m~0 limit, X(t) is a constant of the
motion and we can evaluate [X(t),f;„(x,t) ] as

III. CONCLUSION AND DISCUSSION

From the relations (9) and (10) we read off some
interesting properties. First of all, we see that if the
dynamics is absent (which is achieved by putting
g=0), P;„will transform locally and linearly. In other
words, if we demand a local linear transformation law
for the asymptotic field P;„ in the presence at the sym-
metry breaking, we shall have to ignore the dynamics;
i.e., we shall be dealing with a free system. We believe
that this property which we extracted from our model
is generally true, e.g. , in a broken chiral SU(2)
SU(2) or SU(3) SU(3). From our model, we also
learn that the degree of the nonlinearity and the
nonlocality in the transformation of asymptotic fields
is small if the parameter of the symmetry breaking is
small; in our model this parameter is related to the
fermion mass m [see Eq. (10) and the discussion
thereafter]. It is plausible to expect that this is generally
true even in cases where the symmetry breaking would
enter into the interaction part of the Lagrangian.

A natural question that now arises is: How much
sense does it make to classify the elementary particles
according to linear representations of SU(3) or
SU(3) SU(3), when we know that these groups are
broken in nature, and since we expect, as illustrated by
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our model, the physical asymptotic fields to belong to
the nonlinear, nonlocal representations)

For SU(3), one of the answers which is suggested by
Eq. (10) is well known': As long as the symmetry
breaking is small, the classification of the elementary
particles according to linear representations of SU(3)
is good in the first approximation even when the par-
ticles interact strongly. This is rejected in the fact that
the strongly interacting particles can be grouped into
SU(3) multiplets with members having nearly the
same mass. For chiral SU(3) @SU(3), however, the
symmetry breaking does not appear necessarily to be
small, for if it were, the baryon masses, for example,

' M. Gell-Mann, Caltech Report No. CTSL-20, 1961 (un-
published); Phys. Rev. 125, 1067 (1962); Y. Ne'eman, Nucl.
Phys. 26, 222 (1961);S. Okubo, Progr. Theoret. Phys. (kyoto)
27, 949 (1962).

would have to be nearly vanishing. ' Thus we expect, as
suggested by Eqs. (9) and (10), that the asymptotic
fields of strongly interacting particles belong to the
nonlinear, nonlocal representations of chiral SU(3)
SU(3) .

The relations (9) and (10) allow us to discuss another
interesting possibility. Even when the symmetry is
broken strongly (m being large in our model), the
asymptotic fields will transform linearly in the first
approximation if the particles interact weakly. This
possibility is certainly appealing for the theory of weak
interactions and should be further explored.

6 A very nice discussion of a problem of transformation
properties of elementary particles in the presence of symmetry
breaking on the SU (3)SU(3) level was given by S.L. Glashow,
in Proceedings of the Seventh Internationale Universitatswochen
fur Eerrzphysik, 1968, Schladming, Austria (Springer-Verlag,
Vienna, 1968).
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Given data that are plausibly described by the multi-Regge model, it is shown that a distribution in a
certain angle related to a triple subenergy (which in turn is related to co) is ji'at if (1) the amplitude is inde-

pendent of that subenergy and (2) a certain selection of data is made. The test can be applied to up to four
internal vertices, thus allowing a complete analysis of co dependence in reactions with six, seven, or eight
particles in the final state.

I. INTRODUCTION

S INCE its inception a few years ago, the multi-

Regge model has enjoyed much success in fitting
experimental data. ' A significant feature in these
applications of the model has been the essential neglect
of the internal Reggeon-Reggeon-particle vertex func-
tion. Theoretically, ' these are expected to depend on the
two momentum transfers involved and on a Toiler
angle or. Recent theoretical considerations' '" have
shown that in the applications to date, neglect of
dependence on or is justified only because of the highly
peripheral nature of the reactions. That is, the smallness
of the momentum transfers for the bulk of the events
electively uncouples the amplitude from dependence

For a review see O. Czyzewski, in Proceedilgs of the I"ourteenth
International Conference on High-Energy Physics, Vienna, 1966'
(CERN, Geneva, 1969), p. 367.

2 N. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. Letters
19, 614 (1967);Phys. Rev. 163, 1572 (1967).' J. M. Kosterlitz, Nucl. Phys. BQ, 273 (1969).

4 Chung-I Tan and Jiunn-Ming Wang, Phys. Rev. 185, 1899
(1969).' When one of the Reggeons is the pion, the approximate
vanishing of the pion s trajectory further aids the decoupling of u.
See R. A. Morrow, Nuovo Cimento 61A, 215 (1969).

on or. The form of the dependence on the momentum
transfers is not known, however.

Certainly, in developing models of multi-Regge
behavior, or multiperipheral models in general, it is
desirable to have stringent experimental tests of the
dependence of the amplitudes on such variables. In the
case of three-particle final states, such a test for or

dependence has already been proposed' but it has the
drawback of requiring data over a range of incident
energies. It is the purpose of the present paper to
develop a test of or dependence that is particularly
suited to four-, five-, and six-particle final states and
has some use in reactions with higher-multiplicity
final states. (It is not applicable to three-particle final
states, however. ) Furthermore, only data at a fixed
incident energy are needed, although a certain selection
of events must be made.

In point of fact, the test to be explained does not aim
specifically at or dependence. Rather, it tests for
dependence of the amplitude on the trip/e subenergy
(the square of the sum of three final-state momenta)

' R. A. Morrow, Phys. Rev. 176, 2147 (1968).


