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The stability of the Schwarzschild exterior metric against small perturbations is investigated. The
perturbations superposed on the Schwarzschild background metric are the same as those given by Regge
and Wheeler, consisting of odd- and even-parity classes, and with the time dependence exp( —ekt), where
k is the frequency. An analysis of the Einstein field equations computed to first order in the perturbations
away from the Schwarzschild background metric shows that when the frequency is made purely imaginary,
the solutions that vanish at large values of r, conforming to the requirement of asymptotic flatness, will
diverge near the Schwarzschild surface in the Kruskal coordinates. Since the background metric itself
is Rnite at this surface, the above behavior of the perturbation clearly contradicts the basic assumption
that the perturbations are small compared to the background metric. Thus perturbations with imaginary
frequencies that grow exponentially with time are physically unacceptable, and hence the metric is stable.
Perturbations with real values of k representing gravitational waves are also examined. It is shown that
the only nontrivial stationary perturbation that can exist is one that is due to the rotation of the source,
which is given by the odd perturbation with the angular momentum l=1. The significance of solutions
with complex frequencies is pointed out, as is the lack of a theorem (completeness of the eigenfunction)
for the even-parity case to parallel the Sturm-Liouville theory, which is applicable to the odd-parity case.
Such a theorem would be required to convert the computations indicating stability as given here into a
fully rigorous stability theorem.

I. INTRODUCTION

N recent years the phenomenon of gravitational col-
. . lapse as described within the framework of classical
general relativity has been a topic of great interest. '
The geometry surrounding a collapsing, nonradiating,
spherical object is given by the Schwarzschild exterior
metric. ' To an external observer, a spherical mass con-
figuration that has collapsed into the Schwarzschild
horizon in the remote past is represented by the
Schwarzschild exterior geometry extending from r =2m
to spatial infinity. Granted that physical phenomena
do exist that ensure the possible formation of such a
collapsed spherical mass and the consequent production
of the Schwarzschild exterior space-time down to r = 2m,
the question naturally arises whether such an object
can continue to exist. Unless the collapsed spherical
configuration, or, equivalently, the Schwarzschild empty-
space metric, is proved to be stable against small per-
turbations, one cannot continue to treat them as entities
that nature can allow to exist. A priori there is no
definite reason to believe that the Schwarzschild space-
time does represent a stable configuration, and in the
present work we prove formally that it is in fact stable
against small perturbations.

The stability of the Schwarzschild metric was orig-
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inally studied by Regge and Wheeler' in 1957, but the
problem remained far from solved at that time. Their
work presented the standard method of decomposing
any given perturbation on a spherically symmetric
background metric into its normal modes using tensor
spherical harmonics. On the other hand, the main factor
that prevented the problem from being solved was the
lack of a suitable way to formulate and apply the
boundary condition at the Schwarzschild surface r =2m.
More specifically, since the background metric ex-
pressed in the usual Schwarzschild coordinates exhibits
an apparent singularity at r = 2m, it was impossible to
judge whether any divergence shown by the perturba-
tion at this surface was real or only a spurious effect
caused by improper choice of coordinates. The dis-
covery of the Kruskal coordinates' has since then
remedied the situation. In these coordinates the back-
ground metric is singularity free down to the point
r =0 and the surface r =2m no longer displays the ap-
parent pathologies that were originally present. The
correct way to solve the problem is to carry out the
perturbation analysis entirely in the Kruskal reference
frame, which, however, would be a difficult task, since
in the Kruskal coordinates the metric does not display
its time independence in a simple way. Equivalently,
we solve for the perturbations employing the Schwarz-
schild coordinates, transform the solutions thus found
to the Kruskal coordinates, and study their behavior,
which would now be free from effects due to improper
choice of coordinates. Secondly, the differential equa-
tions for the radial factors of the perturbations con-
tained errors as they appeared in the literature. The

'T. Regge and J. A. Wheeler, Phys. Rev. 108, 1903 (1957).' M. D. Kruskal, Phys. Rev. 119, 1743 (1960).
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correct set of these differential equations has been de-
rived by Edelstein and the present author. ' Kith the
help of these corrected equations, and by employing
the Kruskal coordinates to examine the behavior of
the perturbations near the Schwarzschild surface, it
has been possible to establish the stability of the
Schwarzschild metric.

In Sec. II we outline the approach to the problem
of stability taken by Regge and Wheeler and indicate
the modifications necessary in applying the boundary
conditions. In Sec. III the Kruskal coordinates are
introduced and their role in the analysis of the pertur-
bations is described. In Sec. IV we take up the problem
of stability as originally formulated by Regge and
Wheeler. The question raised here is the same as that
raised by those authors: Kith the time dependence of
the perturbations as exp( —iB), where h is the fre-
quency, are purely imaginary frequencies that make
the perturbations grow exponentially with time ad-
missible' By analyzing the linearized Einstein field
equations for the perturbations, and examining the
asymptotic behavior of their solutions in Kruskal co-
ordinates, we prove that such perturbations are phys-
ically unacceptable and hence that the Schwarzschild
metric is stable. In the course of our discussion of
stability we also study perturbations with real frequen-
cies corresponding to gravitational waves. Section V is
devoted to stationary perturbations with 0=0. It will
be shown that the only nontrivial stationary perturba-
tion is due to the rotation of the source. In Sec. VI we
touch upon the perturbations with complex frequencies
and, finally, indicate the work that is yet to be done
concerning the problem of stability. Throughout this
paper only the immediately relevant field equations for
perturbations are cited. The details regarding these
field equations can be found in Ref. 5.

x'=t x'=r
7

x' =0)

c=6=1.
This corresponds to the initial time-independent equi-
librium configuration. The problem is, then, if this
metric is perturbed, whether the perturbations will
execute undamped oscillations about the equilibrium
state represented by the Schwarzschild background

'L. A. Edelstein and C. V. Vishveshwara, Phys. Rev. D 1,
3514 (1970).

II. REGGE-WHEELER APPROACH TO STABILITY
OF SCHWARZSCHILD METRIC

The Schwarzschild metric is written in its usual
form as

ds'= —(1—2m/r) dt'+ (1—2m/r)-'dr'

+r'(d8'+sin'8dy') =gpydx"dx", (2.1)
with

(stability) or will grow exponentially with time (in-
stability). The analysis of the problem proceeds in the
following steps.

I. I'ertlrbatiorIs. Regge and Wheeler have given the
normal modes into which any arbitrary perturbation
on a spherically symmetric background can be decom-
posed. The explicit forms of these modes will be given
in Sec. IV. Here we note a few properties of these
normal modes. These can be expressed in the form of
products of four factors, each of which is a function
of one of the coordinates t, r, 0, and P; this separation
is achieved by the use of generalized tensor spherical
harmonics. Associated with any of these modes, we
have the angular momentum / and its projection on
the s axis M. For simplicity one can choose M=O,
since the particular value of M chosen does not alter
the final results. For any given value of / there are two
independent classes of perturbation characterized by
their parities ( —1)' and ( —1)'+' which are designated
as the even- and odd-parity perturbations, respectively.
Furthermore, a great degree of simplification in the
form of the perturbation matrix can be achieved by
making suitable gauge transformations which will re-
duce the general perturbation to the Regge-Wheeler
canonical form which will have fewer matrix elements
than the former. All calculations will be carried out
in the canonical gauge. Finally, as has been mentioned
before, the time dependence of the perturbations is
given by exp( —ih/), since the background is independ-
ent of time.

Z. Field equations. The next step in the analysis of
the stability problem is to obtain the equations govern-
ing the above perturbations. Let us denote the Schwarz-
schild background metric by g„„and the superimposed
perturbation by h„„. The Einstein field equations for
the Schwarzschild exterior metric are given by

Here the Ricci tensor E„,has been computed from the
Schwarzschild background metric g„, and this is indi-
cated by the g in parentheses. For the perturbed space-
time, the field equations would read

R„,(g+h) =0,

where the computations are carried out using the total
metric g„„+h„„.Here we have made the assumption
that the perturbed space-time is still empty. Since the
perturbations are assumed to be small so that the
second- and higher-order terms in h„„can be neglected,
the above equations can be expanded as

R„„(g)+SR„„(h)=0,

where 5R„„(h) contain only the first-order terms in h„„.
Since R„,(g) =0, the differential equations governing
the perturbations are obtained from the equations
8R„,(h) =0. In order to compute 5R„„, the formulas
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FIG. j.. Kruskal diagram for a spherical mass distribution that
is assumed to have collapsed into the Schwarzschild horizon in
the infinitely remote past. The world line of the collapsing surface
has coalesced with the line I= —v. The hatched region ps+v&0
should be replaced by an appropriate space-time geometry for
the interior of this mass distribution. The unhatched region in
the half-plane u+v&0 up to the hyperbola corresponding to
the physical singularity r =0 represents the Schwarzschild
empty space. The metric is not defined in the cross-hatched
region.

given by Eisenhart' are employed:

rz„„=—gr„s,,+ sr„st, „. (2.2)

Here the semicolons denote covariant differentiation,
and the variation in the Christoffel symbol bI'„„t' stands
for the expression

&rpv =kg (&pa;v+hva;p hpv;a) (2 3)
The differential equations thus obtained will contain
the frequency k as a constant parameter. As shown in
Ref. 5, starting from these equations, which are cou-

pled in the radial factors of the perturbations, a single
second-order linear differential equation containing only
one radial factor can be derived both in the odd- and
the even-parity cases. The final task will then be to
analyze this differential equation and see whether the
frequency k can be purely imaginary or not. Before
this can be done, we must formulate the proper bound-

ary conditions for the perturbations.
3. BonrIdary coeditiorIs. The boundary conditions

originally formulated by Regge and Wheeler are as
follows: The two boundaries chosen are the spatial
inanity and the Schwarzschild surface r =2m. A phys-
ically acceptable perturbation should be well behaved
at both these points at the starting instant. In the
first place, the perturbations were required not to di-

verge for large values of r. Secondly, in order to impose
the boundary condition at r=2m, the Schwarzschild

L. P. Eisenhart, Riemannian Geometry (Princeton U. P.,
Princeton, N.J., 1962), Chap. VI.

space was visualized as "inwardly unbounded" and
considered as "one mouth of a wormhole, the other
mouth of which emerged elsewhere. " With this repre-
sentation of the Schwarzschild space, it was demanded
that one should be able to join the solution for r& 2m
smoothly onto a solution in the other half of the tunnel.
The authors claimed that the solution that vanished
for large r also went to zero at the Schwarzschild
radius, so that the above requirement could not be
satisfied. However, as we shall see later, the solutions
that go to zero at spatial infinity do not fall off at
r =2m, but, on the contrary, diverge as expressed in
the Schwarzschild coordinates. Moreover, as pointed
out in the Sec. I, since the background metric itself
contains an apparent singularity at r =2m, the behavior
of a perturbation —divergent or otherwis" as expressed
in the Schwarzschild coordinates is liable to be spurious
and unphysical. We must therefore formulate and apply
the boundary condition at r =2m within the framework
of a coordinate system which is singularity free at that
point. We shall do this employing the Kruskal co-
ordinates.

III. PERTURBATION ANALYSIS IN
KRUSKAL COORDINATES

In the Kruskal coordinates, the Schwarzschild line
element can be written as

ds'=f (du' —de')+r'(de'+sin'Odg') (3.1)
with

f2= (32''jr) exp( —r/2m).

The relations between (r, t) and (u, v) are summa, —

rized by
(r/2m 1) exp(—r/2m) =u' —a' (3.2)

t/4m =arctanh(v/u).

The coordinate singularity at r = 2m is completely re-
moved and the metric remains finite down to the phys-
ical singularity r=o. The gravitational collapse of a
spherical mass distribution as depicted on the Kruskal
diagram has been described in detail by different au-
thors. ' Figure 1 here represents such a diagram for a
spherical mass that is assumed to have collapsed in the

infinitely remote past. The world line of the surface
of the collapsing mass has coalesced with the line
u= —v and the empty-space geometry produced by
the mass occupies the region u+v) 0 up to the phys-
ical singularity r =0, beyond which, of course, the met-
ric is not defined. The Schwarzschild exterior beyond
r=2m forms part of this region, i.e., the quadrant
between the lines n=~v. %'e can now employ this
picture in analyzing the perturbations on the Schwarz-
schild background.

Since the metric is regular everywhere in the Krushal
coordinates, the correct way to analyze the perturba-
tions is to study them in these coordinates. But the
easiest way to obtain the perturbations that we want
to study is to follow Regge and %heeler in solving the
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equations bR„„=O in the Schwarzschild coordinates
for r beyond 2m. After the solutions are in hand, we
then transform to the Kruskal coordinates for a critical
study of them. These Kruskal transforms should be
regular over the entire region that represents the empty
space beyond r =2' on the Kruskal diagram, i.e., the
quadrant between the lines u =~e. However, at spatial
infinity the I and v coordinates are not suitable for
our purpose since they do not form a Lorentz frame,
whereas we require the space to be asymptotically Rat
in this region. Therefore, we first select the solutions
that fall off to zero for large values of r in the Schwarz-
schild coordinates, find their asymptotic forms near
r =2m, and transform them to the Kruskal coordinates.
We shall then study whether these transforms diverge
or are well behaved. A perturbation giving rise to
such a divergence —a divergence which can not be
removed —is forbidden; if not, it is a perfectly valid
perturbation that can have physical existence. We shall
see that perturbations with purely imaginary frequen-
cies do produce divergent Kruskal transforms. Hence
such unstable perturbations do not exist and the
Schwarzschild geometry is inherently stable against
small perturbations.

IV. STABILITY OF SCHWARZSCHILD METRIC

In this section we shall solve the problem originally
posed by Regge and Wheeler. The perturbations on
the Schwarzschild metric can be represented by nor-
mal modes with time dependence exp( —iht). Suppose
one of these modes is superimposed upon the back-
ground metric at the initial moment t=0 and that it
is regular everywhere in space. Can the frequency of
this perturbation be purely imaginary) If so it will

grow progressively in time, showing that the metric is
inherently unstable. On the other hand, if it is found
that the perturbation that is regular in all space at the
initial instant must necessarily have real frequency,
then the metric is stable. We shall show that this is
precisely the situation. We emphasize the fact already
mentioned in Sec. III: The regularity of the initial
perturbation should be checked in the Kruskal coordi-
nates in which the background metric itself is free of
singularity. A study of the field equations and the
asymptotic behavior of their solutions will show that
this condition is not satisfied by perturbations with
imaginary frequencies.

We shall first write down the most general represen-
tation of the perturbations as well as their canonical
form. Next the Kruskal transforms corresponding to
the canonical perturbations are given in order to ex-
amine later their asymptotic behavior near the Schwarz-
schild surface. The rest of the section will be devoted
to the analysis of the erst-order field equations for the
perturbations corresponding to purely real and imag-
inary frequencies.

A. Perturbations in Schwarzschild Coordinates

The total perturbed metric may be written as

g vv
=gvv+hvv)

where g„, is the Schwarzschild background metric and
h„„ is the small perturbation. We use the same pertur-
bations h„„as originally given by Regge and Wheeler,
retaining their notation. These fall into two distinct
classes —odd and even —with parities (—1)'+' and

(—1)', respectively, where t is the angular momentum
of the particular mode. The most general form of the
perturbations can be written as follows:

odd parity:

0 0

0 0

sym sym

—ho(t, r) (8/sin08$) YP

—hg(t, r) (8/sinN@) YP

hm(t, r) (8'/sinH08$ cosH/s—irP08$) YP

ho(t, r) (sin08/80) YP

hg(t, r) (sin08/80) YP

sym sym —',h2(t, r) (8'/sin08$8$+cosH/80 sinN'/8—888) YP —h&(t, r) (sinH'/BNQ —cosH/8$) YP
(4.1)

ever parity:

(1—2m/r)IIO(t, r) YP

IIg(t, r) Y(M

IIg(t, r) YP ho(t, r) (8/80) Yp

(1—2m/r) ~II2(t, r) YP hg(t, r) (8/80) YgM

ho(t, r) (8/8&) Yp

hg(t, r) (8/By) YP

sym sym r/IC(t, r)
+G(t, r) (8'/80'))YP

sym

sym sym r'G(t, r) (8'/BHQ
cosH/sinNQ—)YP

r'$E(t, r) sin'0

+G(t, r) (8&/Bym

+sin0 cosH/88) GYP
(4.2)
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Here I"~~ are spherical harmonics with angular momentum / and s component M, and ' sym" indicates that
h„„=h„„.As has been mentioned earlier, one can specialize to the case with M =0 without altering the physics of
the situation. The time dependence of the perturbations is given by exp( —ik/), the constant k being the fre-
quency. Further, by suitable gauge transformations the number of elements in the perturbation matrix can be
reduced, thereby obtaining the canonical form for the perturbations given as follows:

odd purify:
0 0 0 hp(r)

0 0 0 h(r)

0 0 0 0
exp ( —ikt) )sin9(8/80) jpi (cos8); (4 3)

eve22 parity:
sym sym 0

Hp(1 —2m/r)

0

H2 (1—2m/r )
—' 0

r2E
exp ( —ikt) Pi (cosg). (4.4)

0 r'E sin'0

Here P1(cos8) is the Legendre polynomial with angular
momentum /.

B. Transformations to Kruskal Coordinates

The relations between the Schwarzschild and the
Kruskal coordinates have been summarized in Sec. III.
Using the tensor transformation law, the canonical
perturbations in the Schwarzschild coordinates can be
transformed to obtain the corresponding perturbations
in the Kruskal coordinates. Since the angular coordi-
nates are common to both of the above frames, the
transforms represent the canonical perturbations in the
Kruskal coordinates with the Schwarzschild time and
radial coordinates mixed through I and v. The Kruskal
transforms can be obtained by a straightforward com-
putation, and the transforms involving r and t are
given below. Components like h22, etc. , that involve
only angular coordinates are the same in both systems.

h"pp ——f'(r) (u' —v')-'Pu2 (1—2m/r)
—

'h'pp

+vph'» (1—2m/r ) —2uvh'pij,

ence we give the following relations:

exp(r*/2m) = (u' —v')

where r* is defined by

r*/2m =r/2m+in (r/2m —1 )

exp(t/2m) = (u+v)/(u —v),

since t is given by

t/2m=2 tanh '(v/u) =1nL(u+v)/(u —v)g.

(4.6a)

(4.6b)

C. Odd-Parity Perturbations

Ke now examine the stability of the Schwarzschild
metric against the odd perturbations. The two cases,
I) 1 and 1=1, will have to be studied separately since
the 6eld equations are not the same in these two cases.

Case 1: /&1. For the angular momentum l&1, the
field equations lead to the "wave equation" )the time
dependence of the perturbations is exp( —ikt)$

h"11=f'(r ) (u' —v')-'fv2(1 —2m/r)
—'h'pp d'Q/dr*'+ (k' V,22) Q =0, — (4.7a)

+u'h'„(1 2m/r) —2u h' v]—, pi

hapl f2(r) (u2 v2)
—1I (u2+v2)hapl

where

Q = (hi/r) (1—2m/r),

V,21 ——(1—2m/r) D(3+1)/r2 —6m/r'j, (4.7b)
—uvL(1 —2m/r) 'h'pp+ (1—2m/r)h'11/I,

h"pp ——4m (u' —v') —
'Luh'pp —v(1 —2m/r) h'12$

h"12 ———4m(u2 —v') '(vh'pp —u(1 —2m/r)h'12j,

where the superscripts s and k refer to the Schwarzschild
and Kruskal coordinates, respectively. For future refer-

hp
——(i/k) (d/dr') (rQ ) (4.7c)

The coordinate r* ranges from —pp to +pp, corre-
sponding to the range of r from 2m to +pp. The

and r* is as defined in (4.6a). The radial function hp

can be found from the equation
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effective potential V,~~ is real and positive everywhere
and vanishes at r*=~00, i.e., at the boundaries.

First consider the solutions with purely imaginary k,
which will give rise to unstable perturbations, i.e., per-
turbations that grow exponentially with time. Set k =in,
where o. is real and positive, so that the time depend-
ence of the perturbations becomes exp(nt). Then Eqs.
(4.7a) and (4.7c) read

OI6-

O.I4

O.I2

O.IO
rn2 q~f

0.08

.0.06
d'Q/dr*'= (n'+ V 44)Q (4 8a)

0.04

hp ——(1/n) (d/dr") (rQ). (4.8b)

The asymptotic solutions of (4.8) for Q as r approaches
infinity and 2m are given by

Q„exp(+nr), Qs ~exp(anr*).

Since we require that the perturbation fall off to zero
for large values of r, we choose

Q„exp( —nr).

But, if Q is taken to be positive, Eq. (4.8a) shows that
d'Q/dr*s never becomes negative within the range of
r from 2m to ~, and hence the solution that goes to
zero at spatial infinity cannot be matched to the one
that goes to zero at r =2m, so that asymptotic solution
near r =2m has to be

Qs ——A exp( —nr"),

where A is a constant. Using this solution, the radial
function A'p in the neighborhood of r=2m is readily
obtained as

hs =——2mAQs~.

0.02

-5.0 -4.0 -3.0: -2.0 -I.O 0 I.O +20 3,0 q,0 5.0

2m

Fro. 2. Effective potential V,44= (1—24N/r) pl(t+1)/rs —6444/r'g
for the odd perturbation of angular momentum l=2 is plotted
against r*/2444=r/24)4+tn(r/24m —1). The peak oi the potential
is at r~3.3m.

a perturbation is unacceptable and hence can not exist.
Thus perturbations with imaginary k that grow expo-
nentially with time are ruled out.

Next let us consider the solutions corresponding to
real frequencies. From Eq. (4.7a) and the plot of V,«
shown in Fig. 2, we see that the asymptotic solutions
near r=2m are

Qs =A exp(+ikr*),

where A is a constant. The two solutions correspond
to the outgoing and incoming waves. Consider the in-
going solution Q2

——A exp( —ikr*). Then we have

Substituting the above solutions for hp and h~, we fir'd
that the perturbations in the Kruskal coordinate:s near
the surface u=v would. be (angular depencience has
been suppressed)

so that

h1 =2mA (1—2m/r) —' exp ( ikr*)—

hp-—-2mA exp( —ikr*),

h'ss=8msA (u' —v') '('u+v) exp( nr*) e~4—

=8 'A( —) ""'*+"I:(u+v)/( —v)7-
—8m2A (u+v)2ma(u v) (4ma+1)—

In deciding whether the Schwarzschild metric is stable,
we start with a perturbation which is regular every-
where in space at t =0 and see whether such a perturba-
tion will grow with time. The above perturbation was
chosen to be regular at spatial infinity. However, at
t =0 near the Schwarzschild surface, it would have the
Kruskal transform (set v =0)

h'ss(t=0) =8m'Au &'" +').

By choosing u small (u—4) this perturbation can be
made as large as we wish, i.e., the perturbation diverges
as I—+0, whereas the background metric remains finite.
This clearly contradicts the assumption that the per-
turbation is small compared to the background. Such

h"ss ——8m'A. (u+v) ' expL —ik(r*+t)j
—8m2A (u+v) —1(u+v)—44&m (4.9)

Since we Anally take the real part of the perturbation,
the function (u+v) 4'" contributes only a rapidly os-
cillating function near u= —u. Nevertheless, the singu-
larity due to (u+v) ' appears to be serious. This can
easily be remedied by building wave packets out of
the monochromatic waves. For instance, let us choose
purely ingoing waves at r"~ 4o, as in Eq. (4.9—) above,
but form them into a packet by using for A =A(k)
the Fourier transform of a function f($) = fA(k)&(
exp( ik$)dk which —vanishes for ((0. Then, when
integrated over k, Eq. (4.9) reads

h"ss ——8m'(u+v) 'f(4m ln(u+v)$. (4.10)

There is then no singularity from the (u+v) ' factor,
since f is nonzero only when u+v& 1. Equation (4.10)



C. V. VISHVESHWARA

gives the asymptotic form for r*—+—ao of this perturba-
tion; for r*—++ ~ it can be examined in the Schwarz-
schild coordinates and will typically contain both out-
going and ingoing parts, but is evidently regular. Thus,
perturbations containing purely ingoing waves for r
near 2' give wave packets which are regular every-
where in the Kruskal geometry. These are stable per-
turbations and are physically acceptable.

For real frequencies k, we found that the regularity
conditions at r =2m could be satis6ed by packets of
waves which were purely ingoing at r*—+—~, provided
that these packets were bounded away from the line
I=—s. They could, of course, also (time reversal) be
satisfied by packets which were purely outgoing at
r*—+—~, provided that these packets were bounded
away from the line n=v. Superpositions of these two
regular types of packets would also be regular. The
physics of the situation makes the first type a natural
form to consider. Matzner, ~ in considering the scatter-
ing of scalar waves from the Schwarzschild "singu-
larity, "imposes the boundary condition of only ingoing
waves at the Schwarzschild surface. This is possible
because the effective potential in that problem has
a peak at r=~4(2') and vanishes exponentially as
r*—+—~, so that there is no backscatter for even small
negative values of r*. The situation is exactly the same
in case of the gravitational waves. Our V,g~ has a peak
at. about r=3m and goes to zero like exp(r"/2m) as
r~~ —~. Hence the same boundary condition as in
the case of Matzner's calculations could be imposed
here too. This boundary condition is assumed by
Kdelstein' in calculating the gravitational radiation
due to a point mass revolving around a larger spherical
mass which produces the Schwarzschild background
metric. One wishes to impose this boundary condition
to de6ne a problem in which all the radiation is being
generated by sources outside r =2m, and none is due
to the matter which collapsed a long time in the past
to produce the Schwarzschild background field.

Case Z: /=1. The case for /=1 is completely different
from that for /& 1.The perturbation in the Ricci tensor
bE» reduces identically to zero, since the angular factor
multiplying the radial equation in 8E» is given by

fcoso (d/do) —sino (d'/d8') $I'~ (cos8),

which vanishes for /=1. The equation 6R»=0 yields
the relation between hp and h~

kg ——(i/k)r'(d/dr)(ko/r'), (4.11)

where the time dependence of the perturbations is re-
tained as exp( —ikt). When the above relation is substi-
tuted into bRp3, it reduces again to zero, giving no new
information. Thus the set of 6eld equations gives rise
to a single relation between hp and h~. Ke now show
that this relation enables us to transform away both

7 R. A. Matzner, J. Math. Phys. 9, 163 (1968).
'L. A. Edelstein, Ph. D. thesis, University of Maryland, De-

partment of Physics and Astronomy, 1970 (unpublished).

hp3 and h» by a gauge transformation that leaves the
other components of the perturbation unchanged.

Consider the infinitesimal coordinate transformation

x' =x +@, P((x'

D. Even-Parity Pexturbations

In Sec. IV A we wrote down the most general form
of the perturbation matrix. For /&1 there are seven
independent radial functions, which, in the canonical
gauge, reduce to only four, namely, Hp, H&, H&, and E.
The field equations yield the relation Hp ——H2 ——H. This
is no longer true for /=1. Nevertheless, as can be seen
readily from the perturbation matrix, there are only
six independent radial functions in the general form
when /= 1.This affords an additional degree of freedom
while making the gauge transformation which can be
utilized to inzpose the condition IIO IIg=II. The——rest
of the computations to obtain the radial equations fol-
low as in the case /& 1, and all the equations appearing
in Ref. 5 hold for both /=1 and /&1. In what follows
we prove stability for only /& 1. The same method can
also be adopted for /=1.

For the sake of simplicity, we remove the factor 2m
from the equations, which are rather complicated, by
de6ning

x=r/2m, k =2mk.x*=r*/2m =x+ln(x —1),
Also, let

S=II'/r.
The second-order differential equation for 5 is given
in Ref. 5. Dropping the bar on k Ltime dependence of
the perturbations is exp( —ikt) j, the asymptotic forms
of this equation, and the corresponding solutions, are
found to be

d'S„/dx2+k'S =0, S„exp(&ikx) for x—+~,
d'Sg/dx*'+2(de/dx")+ (k'+1)Sg =0

Sg exp/( —1aik)x*j for x~1.
As in the odd case, set k =in&0. Then the asymptotic
solutions will be

(4.12)

S„exp(wax), Sg expL( —1an)x*j.

Then k„„changes to k'„„=h„„6IE„—„, where 8h„,=$„,,+
(„,„.Choose $„=(0, 0, 0, $3) with

b= (i/k)ko exp( —ikt) sino(B/89)Pq(coso).

Then one can readily show that 8hp3 ——hps, so that
h ps =0. Similarly, bh» ——h». The other perturbation
components are unaltered. For instance, bh23

——0, as a
result of the angular factor being identically zero.
Therefore, the perturbations with /=1 can be trans-
formed away irrespective of the nature or value as-
signed to the frequency k (except k=0, which we will
deal with later), a particular case being that with
purely imaginary k. This completes the proof of sta-
bility for the odd perturbations.
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To ensure asymptotic fatness at spatial in6nity, we
choose S„exp(—nx). In the case of S~ the solution
exp[(n —1)x*] goes to zero as x*~—~ for n)1 (the
case n = 1 will be discussed separately). We investigate
whether the two asymptotic solutions S„exp(—nx)
and Sq exp[(n —1)x*] can be joined to each other.
If this is possible, the function S should have a station-
ary point between @=1and x= ~, i.e., at some point
in this range dS/dx*=O and d'S/dx*P&0, assuming S
to be positive in this neighborhood. We shall now show
that such a point does not exist. Setting dS/dx*=0, the
differential equation can be expressed as

d'S/dx" = [E(x)/D(x)]S,
where

D(x) = (1-1/x) '[(4/x)(1-1/x)
+2 (1—1)(/+2) (1—1/x)+2n'x' —1/2x ])

which is readily seen to be positive for all values of x
from 1 to , and

E(x) =n'D(x)
1 1 12 ( 3)

Sn'+21 (1+1) —+4 (/ 1)(l+—2) —+ — 1——
ix' x' x' k 2x/

+ —I1-—ID(.)+
2 ( 3i l(l-+1) 1)
x' & 2x& xi

It can be shown that 1V(x))0 throughout the range
x&1, although this is not obvious from the expression
for 1V(x). Our proof of this fact' is rather cumbersome,
requiring separate considera, tion of the regions 1&@&2

and x&2, and a careful grouping of terms. Since both
D(x) and 1V(x) are positive functions, the second de-
rivative of S, d'S/dx*', has the same sign as S for all x,
and therefore S has no stationary point. We conclude
that the solution going to zero for large values of x has
the asymptotic behavior Sz exp[ —(n+1)x*]near the
Schwarzschild surface. Next, in order to show that this
solution gives rise to divergent perturbations in the
Kruskal coordinates, we compute the asymptotic solu-
tion of the radial function EI near r =2m.

The two radial function. H~ and H are related to
each other by the equation

d'Hg d Hg dH 1+
~

—+n'Hg —2n + H =0.
dx*' dx* &x' de* 2@2

(4.14)
Since

S=H~/r exp[ —(n+1)x']
near @=1,we assume the asymptotic forms

Hq=A exp[ —(n+1)x*] H=8 exp[ —(n+1)x*],
where A and 8 are constants. Substituting these in
Eq. (4.14), we 6nd

8= —A
For details, see C. V. Vishveshwara, Ph.D. thesis, University

of Maryland, Department of Physics and Astronomy, 1968
(unpublished) .

f&(r) (u& p&)
—&(u+~)&Hga&

=Bf'(r) (u —v)
—'& +'&.

At t =0 (@=0),the Kruskal transform will be

+f2(r)u —2(a+1)

(4.15)

which is divergent as I—+0. Hence the perturbation is
unacceptable.

Case n=1. In this case the asymptotic forms of the
differential equation for S and the corresponding solu-
tions are

d'S /dx*' —S„=O,

a.e.,

S„e+' for @~00,

d'S~/dx*'+2(dS~/dx*) =0, (4.1&)

dS~/dx*+2S~ ——C for x-+1,

where C is a constant. Hence the asymptotic solutions
are

Sq~exp( —2x~), Sy~gC.

If S„e can be matched to S~ const, there should
be a region where dS/dx*&0, d'S/dx*'&0 for S)0,
which can be shown to be impossible, as in the case
n)1. Again, the alternative solution S~ exp( —2x*)
can be shown to produce divergent Kruskal transforms
at the initial instant.

Thus we have shown that perturbations with /&1
and purely imaginary frequencies are physically un-
acceptable since they are divergent even at the initial
moment. This can be shown to be true for perturba-
tions with /=1 by the same method as above. More-
over, Campolattaro and Thorne" have shown that the
perturbations corresponding to 1=1 can be altogether
removed by suitable gauge transformations for both
real and imaginary values of k. So this perturbation is
only a coordinate effect and has no physical existence.
W'e conclude then that the Schwarzschild metric is
stable against even perturbations, as it was against
the odd ones. This completes the proof of stability
against small oscillations.

E. Even Perturbations with Real Frequencies

We have already given the asymptotic solutions near
the Schwarzschild surface for real frequencies. The out-
going and incoming waves correspond to solutions of
the form exp[(ik —1)x*] and exp[ —(ik+1)x*], re-
spectively. Also, when we evaluate the asymptotic forms
of the radial function H in these two cases, we And
H= —H~ for the outgoing waves, and H=H~ for the
incoming waves. From this information we readily ob-

I A. Campolattaro and K. S. Thorne, Astrophys. J. 159, 847
(1970).

so that H= —Hq near x=1. Then the perturbation in
the Kruskal coordinates is given, for instance (angular
dependence suppressed), by

h'pp ——f'(r) (u' —n') '[(u'+n')H —2uvHg]e '
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tain the Kruskal transform

gfP(r)(u v)
—P(u v)4m'7c

Qkpp gf2(r) (u+v) —P(u+v) —4m'

(outgoing),

(incoming).

The singular behavior of these at N=v or I= —v is
exactly similar )but of one higher order since we have
the term (u~v) ' here( to that for odd-parity pertur-
bations. Once again, as in the odd case, wave packets
can be built by superposition of solutions with the whole
range of real frequencies and the divergence removed.

and Cohen. "The above gauge transformation does not
affect the other components of the perturbation. We
observe that h» or h& was not determined by the held
equations. Once again, whatever value we assign to h&,

it can be transformed away by choosing the appropri-
ate gauge that does not change the other elements of
the perturbation matrix.

Case (ii): t)1.The field equations for 4=0 and t)1
reduce to

hg ——0
and

V. STATIONARY PERTURBATIONS

In deriving the held equations, the time dependence
was assumed to be exp( —ikt), so that, as they appear
in Ref. 5, the time derivatives are replaced by a multi-
plying factor ( —ik). If the perturbations are independ-
ent of time, the corresponding field equations are
obtained by setting k=0. In what follows we shall
work with these equations and study their solutions.

A. Odd Perturbations

d'ho 2~ dho

dr*2 r' dr*
t(t+1) 4m t' 2m'

ri p

For large values of r this equation reads

d'"p/dr' —Lt(t+1)/r'jh ——
p 0,

which has the solutions

hp r ' and r'+'

(5.6)

(5 7)

Case (i): 1=1 (rotatioeat Perturbatioe) For /=. 1 and
0=0, the perturbations of the Ricci tensor 8823 and
6R» both reduce identically to zero; in the first instance,
it is the consequence of the vanishing of the angular
factor and, in the second, it is because of the condition
& =0. The equation bRp&

——0 yields the differential equa-
tions

d'hp/dr'= (2/r)hp. (5.1)
The solution that falls off to zero for large values of r
is given by

hp=c/r, (5.2)

where c is a constant. Then

hpp ——(c/r) sin'0, (5.3)
which can be clearly identihed with the rotational per-
turbation by comparing it with the weak-held approxi-
mation. " Moreover, the solution is acceptable down
to the Schwarzschild surface r =2ns, since a gauge
transformation performed on the angular coordinate
P makes the corresponding Kruskal perturbation regu-
lar at n=v, and leaves the other components of the
perturbation unchanged. Make the gauge transforma-
tion

y'=y+c(2m) 't. —

In the new coordinates the perturbation is given by

hpp
——(c sin'0/Sm') (1—2m/r) (rP+2mr+4m') (5.4)

with the corresponding perturbed Kruskal line element

dS'=f'(r) (du' dv')+r'(dg'+sin'e—dg')

+c exp( r/2m) (r'+2mr+4—m')

Xsin'0 dP(udv vdu)/mr, (5.5)—
which is identical with the expression derived by Brill

"L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Addison-Wesley, Reading, Mass. , 1962), Sec. 103.

We choose hoer ', which vanishes for large values of r.
Near r =2m (r*~ ~) —the asymptotic form of Eq.
(5.6) is

d'hp/dr*' (1/2m—) (dh /dpr') =0,
which has the solutions

(5.9)

hp exp(r*/2m) hp const=c.

We cannot match the solution exp(r*/2m), which van-
ishes at r =2m, to the solution r ', which vanishes for
large r. If we could, there should be a point between
r=2m and r=~ where dhp/dr*=0 and d'hp/dr"&0,
assuming hp) 0. From Eq. (5.6) it is evident that this
is impossible for /) j.Hence, at r =2' we are left with
the solution hp =const = t... The corresponding Kruskal
transform will be

h'pp ——4m(u' —v') 'uhp

=4mcu(u' v')-', — (5.10)

which diverges both at N=v and at I=—v. It can be
shown that if we try to remedy this by gauge trans-
formation the divergence will show up in h» and, more-
over, the perturbations produced by the gauge trans-
formation will necessarily be functions of either t or @
or both. Hence stationary odd perturbations with l) 1
do not exist.

B.Even Perturbations

Regge and Wheeler have shown that stationary per-
turbations of even parity with /=0 and 1=1 represent,
respectively, an infinitesimal addition to the Schwarz-
schild mass and a small displacement of the center of
attraction.

For l& 1 the held equations reduce to

IIp ——II2 ——II, Hg= 0) (5.11)
"D. R. Brill and J. M. Cohen, Phys. Rev. 143, 1011 (1966).
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and

dsH 2 2m) dH+-1—
dr*' r r j dr*

4m' l(l+1) (
r4 r'

& r

The asymptotic solutions are

H~r ' and r'+'

~exp(&r*/2m) for r~2m. (5.12)

As in the odd case, the two solutions going to zero at
the two boundaries cannot be matched. If we choose
II~r ' at spatial infinity, we will be lef t with
H~exp( —r*/2m) near r =2m, and the corresponding
Kruskal transform will be

h"ss ——f'(r) (u' —v')-'(u'+ts)H

f2(r) (us—+ps) (us ~s) 2 (5 13)

This divergence cannot be overcome by a gauge trans-
formation and hence stationary perturbations of even
parity with /& 1 do not exist.

We may note that Doroshkevich et al." studied the
stationary perturbations on the Schwarzschild metric.
They found that the even perturbations diverge near
the Schwarzschild surface; however, they do not seem
to have analyzed those perturbations in the Kruskal
coordinates. Assuming the angular dependence to be
specifically sin'0, they have derived the rotational per-
turbation (again not analyzed in the Kruskai coordi-
nates); higher values of l were not considered.

VI. CONCLUSION

In the foregoing we have answered all the questions
raised originally by Regge and Wheeler. This involved
essentially a detailed analysis of perturbations on the
Schwarzschild exterior with the frequency assuming
values that are real, imaginary, and finally zero. A few
words about one other possibility, namely, the fre-
quency being complex, are in order. ' This aspect can
easily be studied in the case of the odd perturbations
as they involve a simple differential equation. The
imposition of the boundary conditions that the gravi-
tational waves be entirely outgoing at r = ~ and purely
incoming at r =2m leads at once to the requirement of
complex frequencies with negative imaginary parts.
This result is related to the phenomena of radiation
damping and resonance scattering, and leads to a state-
ment of causality. We can conceive of an initial curva-
ture or a "wiggle" superimposed on the Schwarzschild
empty space-time somewhere outside r =2m, which can
act as a source of gravitational radiation. As the wiggle
is smoothed out and the energy associated with it is
carried away in the form of gravitational radiation, the

13 A. G. Doroshkevich, Ya. B. Zel'dovich, and I. D. Novikov,
Zh. Eksperim. i Teor. Fiz. 49, 734 (1965) t Soviet Phys. JETP
22, 122 (1966)g.

radiation damping will make the frequency complex
with its negative imaginary part reAecting the decay
of the source. On the other hand, if the relevant phe-
nomenon is the scattering of gravitational waves, the
complex eigenvalues of the frequency imply poles in
the scattering matrix and the consequent occurrence
of resonances in the scattering cross section. If one
considers the scattering of a wave packet, the ana-
lyticity of the scattering matrix in the upper half-plane
of complex k (since Imk(0, the poles lie only in the
lower half-plane) ensures the causal propagation of the
scattered wave packet after the incoming wave packet
has reached the scattering center. This again is an
indirect confirmation of the stability of the background
metric. For, were the background not stable, it could
generate a disturbance independent of the incoming
wave packet, and this would be observed at a given
point before the scattered wave packet had time to
reach it.

We finally come to a crucial point regarding the proof
of stability. Let us emphasize explicitly what we proved:
Any single mode corresponding to a particular imagi-
nary value of frequency k could not have existed at
the initial instant. But, the metric is inherently stable
only if it is stable against any arbitrary perturbation
which is well behaved at 1=0. A completely rigorous
proof of stability then requires that any arbitrary well-
behaved initial perturbation be a superposition of
modes corresponding to real frequencies only, or, in
other words, that the radial functions associated with
real values of k form a complete set. The last require-
ment can in fact be proved in the case of the odd
perturbations, ' since the differential equation is in the
well-known Sturm-Liouville self-adjoint form and since
the effective potential is positive between r =2m and
r= , and vanishes on the boundary. Unfortunately,
this has not been possible in the case of the even per-
turbations, because the frequency (or k') does not
appear linearly in the differential equation. Neverthe-
less, the close similarity in the asymptotic forms of
the odd and even perturbations, combined with the
lack of logical reasons for fundamentally different phys-
ical behavior of the two classes of perturbations, points
to the possible existence of a rigorous proof of stability
in the latter case as well. This can come forth only as
a result of further work based perhaps on a different
formalism.
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