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We present detailed calculations illustrating the breakdown of the Bjorken limit in perturbation theory,
in the "gluon" model of strong interactions. To second order in the gluon-ferrmion coupling constant in
the scalar, pseudoscalar, and vector coupling models, we calculate the Bjorken-limit commutator of a
pair of currents oi arbitrary (vector, axial-vector, scalar, pseudoscalar, tensor) type. To fourth order
in the coupling, in the scalar- and pseudoscalar-gluon models, we determine the leading logarithmic be-
havior of the SU3-antisymmetric part of the vector-vector commutator. In the body of the paper we present
the main results and discuss their various features and implications. The computational details are relegated
to two appendices.

I. HISTORICAL INTRODUCTION tator of the currents,

EQUAL-TIME current commutators have come to
& play a central role in particle physics. In his

famous papers of 1961 and 1964, Gell-Mann' proposed
that the time components of the vector and axial-vector
octet currents satisfy a simple SU313SU3 algebra. The
exploitation of this postulate by the "infinite-mo-
mentum" and "low-energy theorem" methods has led
to important predictions, which agree well with ex-
periment. ' The beauty of these "classical" current-
algebra methods is that they depend only on the
postulated commutation relations together with such
weak dynamical assumptions as pion-pole dominance
and unsubtracted dispersion relations. They are inde-
pendent of more detailed (and therefore, more dubious)
dynamical assumptions. The experimental successes
thus provide a strong argument that any future theory
of the hadrons must incorporate the SU313SU3 time-
component current algebra.

This requirement, of course, does not uniquely
specify a model of the hadrons —there are many
possible field-theoretic models which satisfy the Gell-
Mann hypothesis. In an attempt to narrow the selec-
tion, attention has been turned recently to the study of
the space-component —space-component commutators,
which can be used to distinguish between models which
have the same time-component algebra. The problem
of 6nding experimental tests of the space-space algebra
is made dificult by the fact that the "classical" current-
algebra methods of inhnite-momentum limits and low-

energy theorems cannot be made to apply in this case.
However, in 1966 Bjorken' pointed out that the
asymptotic behavior of a time-ordered product of two
currents is simply related to the equal-time commu-

~ M. Gell-Mann, Phys. Rev. 125, 1067 (1962);~&Physics 1, 63
(1964).

'For a survey, see S. L. Adler and R. F. Dashen, Current
Algebras. (Benjamin, New York, 1968).' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

1

lim
qp-&choo;q fixed

d'a e'q'*T(Jo& (x)J&„(0))

=iq d're"*8(x')LJo&(a) J(s)(0)j+O(qp ). (1)

Equation (1) has been extensively applied to the study
of space-space current commutators, leading to a new
class of asymptotic sum rules 4These. sum rules have
testable experimental consequences in inelastic electron
and neutrino scattering reactions and important impli-
cations in the theory of radiative corrections to hadronic
P decay.

In all of the applications of Eq. (1), an important
assumption is made: It is assented that the equal-time
commutator appearing on the right-hand side of Kq.
(1) is the same as the "naive commutator" obtained by
straightforward use of canonical commutation relations
and equations of motion. That this is a questionable
assumption was pointed out by Johnson and Low, ' who
independently discovered Eq. (1). They studied this
equation in a simple perturbation-theory model, in
which the currents couple through a fermion triangle
loop to a scalar, pseudoscalar, or vector meson. They
found that in most cases the results obtained by
explicit evaluation of the left-hand side of Eq. (1)
differ from those calculated from naive commutators by
well-defined extra terms. Because of special features of
the triangle graph model, however, these extra terms
did not directly invalidate the applications of Eq. (1)
mentioned above.

Recently, we have reported a more realistic perturba-

4 For a survey, see lectures by J. D. Bjorken, in Selected Topics
in Particle Physics, Proceedings of the International School of
Physics "Enrico Iiernzi, " Course XLI, edited by J. Steinberger
(Academic, New York, 1968).' K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto)
Suppl. Nos. 37—38, 74 (1966). Important early work on the validity
of the Bjorken limit, in the context of the Lee model, has also
been done by J. S. Bell, Nuovo Cimento 47A, 616 (1967).
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8JORKEN LIMIT IN PERTURBATION THEORY

We consider a simple, renormalizable model of the
strong interactions, consisting of an SUB triplet of
spin--', particles )P bound by the exchange of an SU2-
singlet massive "gluon. " We assume that the gluon
couples to the fermions by either scalar, pseudoscalar,
or vector coupling. In order to treat simultaneously
commutators involving vector (axial-vector, scalar,
. . . ) currents, we introduce the abbreviated notation

~(1)= 4''r(1A' ~(2) = )PV(2A'~

V(1) rP~ (7P 0)1 y
~

& ) &

y(2) =y,X'(y,yPX', X', . . .),
according to whether the first or second current is a
vector (axial-vector, scalar, . . .) current. The naive
equal-time commutator of the two currents is

tion-theory calculation, ' which showed that for com-
mutators of space components with space components,
the Bjorken limit and the naive commutator do differ
by terms which modify all of the principal applications
of Eq. (1). In other words, asymptotic sum rules derived

from the 22aive space spac-e commutators fail il perturba
lion theory. One is, of course, still free to postulate that
nonperturbative effects conspire to make the asymp-
totic sum rules valid when all orders of perturbation
theory are summed, but the need for this assumption
means that asymptotic sum rules do not just give a test
of the space-space algebra, but involve deep dynamical
considerations as well.

In our previous work, we considered only vector and
axial-vector current commutators in the quark model
with a massive vector "gluon, " to second order in the
gluon-fermion coupling constant g„.7 In the present
paper, we extend our results to arbitrary (vector,
axial-vector, scalar, pseudoscalar, tensor) currents in
the quark models with vector-, scalar-, or pseudoscalar-
coupled gluon. Working to second order in g„, we obtain
results analogous to those found previously in the more
restricted case. In addition, for the vector-vector
commutator in the scalar- and pseud'osc alar-gluon
models, we obtain the leading logarithmic part of the
g„4 term. In Sec. II we summarize our results and in
Sec. III we discuss brieRy their significance. To facilitate
reading, all computational details are relegated to
Appendices.

II. RESULTS

(/o
's, ' ~(a}

Q( 2) ~(ga)

fb)

Fxo. 1. {a) Lowest-order current-fermion scattering diagrams.
(b) Diagrams obtained from the lowest-order ones by insertion
of a single virtual gluon.

Eqs. (1) and (3) are sandwiched between fermion
states. To do this, we calculate the renormalized cur-
rent-fermion scattering amplitude T(1)(2)*(p, p', g)
in the limit qo~i~, and compare the coeKcient of the
gp

' term with the renormalized vertex 1 (C; P, P') of
the naive commutator. The asterisk on T~~)(2)* in-
dicates that it is the full covariant scattering amplitude,
which differs from the renormalized 7 product,
T«„„(p,p', q), by a "seagull" term a(1)(»(p, p', g)
which is a polynomial in qo,

T(1)(2) (p p g) &r(1) (2) (p p Q) +T(1)(2) (p p g) ~ (4)

Identity of the Bjorken limit and naive commutators
would Incan that

T(1)(2)(p, p', q) =qp 'I'(C; p) p')
qp-+ioo;q, y, yI fixed

+O(qp-' inqp). (5)

In the calculation which follows, we test the validity of
Eq. (5) in perturbation theory. P

rpLVpp(1) Qpp(2) j I(1)+07(2) y(2)F07(1) ~ (3)

We wish to compare the Bjorken-limit commutator with
the naive commutator, in the special case in which

'S. L. Adler and W.-K. Tung, Phys. Rev. Letters 22, 978
(1969). See also R. Jackiw and G. Preparata, ibid. 22, 975
{1969),who have independently arrived at similar conclusions.' In Ref. 6 we denoted the coupling constant g, by g. In the
present work, g will always indicate a gluon (or its four-
momentum) .

A. Second Order

To second order in the gluon-fermion coupling
constant g„, there are two classes of diagrams which
contribute to T(~)(2)*. The diagrams of the first class,
illustrated in Fig. 1, consist of the lowest-order current-

8 A general discussion of the mechanism responsible for Bjorken-
limit breakdown has been given by W.-K. Tung, Phys. Rev.
188, 2404 (1969).See also R. Jackiw and G. Preparata, ibid. 185,
1929 {1969).
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FIG. 2. Diagrams containing fermion triangles.

fermion diagrams and the second-order diagrams ob-
tained from the lowest-order ones by insertion of a
single virtual gluon. The diagrams of the second class,
illustrated in Fig. 2, involve a fermion triangle diagram.
We denote the contributions of these two classes to
T(1)(2) by T(1)(2)* ' I" and T(1)(2)

*"""I,respectively.
The first-class diagrams are evaluated by the stand-

ard technique of regulating the gluon propagator with
a regulator of mass P, which defines an Neremormalised
amplitude T(1)(2)* ' I". To get the rerIormalised ampli-
tude, one multiplies by the external fermion wave-
function renormalization constant Z2 and takes the
limit 'A~ ao,

T(1)(2)* &'= hmZ2T(1) (2)* ' p'. (6)

is calculated by the same techniques from the diagram
of Fig. 3. Finally, we take the limit go~i~ in our
expression for T(i)&»* ' &t and compare with I'(C; P, P'),
giving the results

+(i)(2) (Pi P i q) (7a)

In certain cases, as discussed below, this limit diverges
logarithmically; in these cases, we take A, to be finite
but very large, dropping terms which vanish as X~ao
but retaining all terms which are proportional to ln)2.
The renormalized vertex

f'(C; p, p') = lim Z21'(C; p, p')

gtriang ), —0~q=q' 0 ~ (9)

/Equation (9) is true when the triplet of fermions )P are
degenerate in mass. Johnson and Low' also discuss the
effect of mass splittings. ) Thus, for the physically
interesting case of the commutator of spatially inte-
grated currents, the entire answer is given by Eq. (7) .
No cancellation between the SU3-singlet part of
6 ' &' and 2"""&is possible, and we conclude that the
Bjorken limit and the naive commutator in our models
differ in second-order perturbation theory.

To make contact with our previous work and with
our fourth-order results, it is useful to write out two
special cases of Eq. (7). We consider the commutator
of two vector currents, taking y(1)

——y„V, y(2) =y„X~. In
the vector-gluon case we find

1 ~ ~ ~ 1 in the scalar-gluon case, iy5 ~ iy5 in the pseudo-
scalar-gluon case, and ( —7,) ~ ~ 7& in the vector-
gluon case. Some details of the calculation leading to
Eq. (7) are given in Appendix A.

The second class diagrams (Fig. 2) have been cal-
culated by Johnson and Low. ' In our model, which has
only SU3-singlet gluons, these diagrams contribute
only to the SU3-singlet part of the commutator. Taking
the Bjorken limit, and comparing with the bubble
diagram contributions to I'(C; p, p ) illustrated in
Fig. 4, Johnson and Low find

lim 7 (i)(» "'"'(Pi P i q)
qp~ioo;q, p, yI fixed

= ~n)(2)"""g(p, P', q)+»m &(i)(2)"""'(P P', q)
qp-+i&a

trisng(p pi q) +q —1/fi(C p pi) bubb)e+Qtriangj

+o(qp '»qp). (g)

We will not exhibit the detailed form of 6"""&,but only
remark that ~e aO cases lV"'"I' vanishes when the three-
momenta q and q'= q+p —p' associated with the
currents J(1) and J(2) vanish,

lim T(i)(»* ' '(p, p', q)
qp-&ioa;q, y, y~ fixed

&(i)(» ' '(P P q)
qp~io();q, y, y~ fixed

=q. '7 (C; P, P')+~™"3+O(qp'lnq. ),
LF' &2= (g„2/322r2) {1n(X'/~ qp ~') p

—
7&i)Vp YVp YVpV(2)

+ 2 Yvrv(1)vpv(2)7 Y

27(l)VPYvrv(2)7 Y 2 Yvt'7(i)7 YVPV(»l

—qp(1)po Y'Yo Y'Yo'Y(2) & Y&0&(1)pop(2)70Y

+7(i)vp Yvpv(2)vp Y+Yvpv(i)vp Yvpv(2)

—4+(1)+OY+rg(2)P Y
—

4 Ygrg(1)P Y+0+(2)

(7b)

"-"=(g'/ ') { (g —
g pgp)VpD

+2(VVpV. —V,VpV.) {~,)'}}, (1o)

in agreement with the result which we have reported in
Ref. 6. In the scalar- and pseudoscalar-gluon cases we
find

~"-"=(g.'/16~') {(g"—g.pg.p) vpD

——', (V,VoV„—V„VoV„) {V,Z'}/In() 2/~ q, ~2) —1g}. (11)

B.Fourth Order

To fourth order in g„ the number of diagrams con-
tributing to T(1)(2) is so large that a direct calculation

+a YLVtv(1)7 7(2)vp+7 pv(i)7~7(2) Y jY
—(1)~(2) } (7c)

In Eq. (7), the notation Y ~ Y is a shorthand for

Fro. 3. Second-order correction to the
vertex of the naive commutator C.



3 JORKEN LIMIT IN P ERTURB ATION THEORY

of the Bjorken limit, in analogy with our treatment of
the second-order case, is prohibitively complicated.
However, unitarity implies that the part of 6 pro-
portional to P,', Xo), and independent of the three-
momenta q, q', y, and p' and of the fermion mass m,
is related to an integral over the longitudinal current-
fermion inelastic total cross section. Applying this
connection to the commutator of vector currents in the
scalar- and pseudoscalar-gluon cases, we have cal-
culated the leading logarithmic contribution to the
P.', Xo) term in fourth order, with the result

A= (g"—g.og.o)VoP, 1')L(g.'/16 ')+7(g.'/16 ')'
Xln(~ qo ~') +-g,'X const]+ (terms symmetric in u, h)

+ (terms proportional to q, q', p, p', and m) . (12)

Details of the unitarity relation and of the total cross-
section calculation are outlined in Appendix B.

III. DISCUSSION

We proceed next to discuss a number of features of
our results of Eqs. (7) and (10)—(12) .

1. We begin by noting that to second order in g„',
contains terms ln(&t'/) qo ~') which diverge

logarithmically both in the Bjorken limit qo~i~ and
in the infinite-cutoff limit A—+~. It is easy to see that
the Ink' divergences result from a mismatch be-
tween the multiplicative factors needed to make
2'ft& f2&*c' nt (P, P', q) and I' (C; P, P') finite (i.e.,
lnlts independent) . As we recall, the refMrmalised
quantities Tft&fs&*c' nt(p, p', q) and I'(C; p, p') are
obtained from Tft&fs&*c' nt(p, p', q) and I'(C; p, p') by
multiplying by the wave fuftctioft refMrmalisatiort Z2 and
taking the limit X~~, keeping any residual ink'
dependence. On the other hand, the firfite quantities

ocomPt(P Pf q)
finite and P(c. P PI) finite

tained by multiplying by appropriate vertex and
propagator renormalization factors which completely
remove the ln)P dependence,

p (C ~

p pf) f inite —Z(c) p (C ~ p p~)

2'ft&(2&*"""(p p' q) ""'"=Z(Vff&)Z(Vis&) Z2 ' (13)

X+f1&i2& (p) p ) q).
In general, the vertex renormalizations Z(C), Z(Vft&),
and Z(7&2&) are not equal to each other or to Z2. If we
write

z(c) = IyA(c),
Z2= 1+f4, (14)

then we find, to second order, that
2Compt(p pf q)

—2' aCompt(p p& q)
finite

+L2f4 —A(Vit&) —A(7(2&)] (15)
1 1

X 7(1& 7(2&+7(2&,Vif&
'Y'P 7 q 7'P 'Y'q

I'(C. p p') =I'(C p p')'"'~+LA, —A(c)]c.
9 F. J. Gilman, Phys. Rev. 167', 1365 (1968).

FIG. 4. Self-energy diagram which
makes a second-order correction to the
SU3-singlet part of C.

2 it&is&(p~ p ) q)
, p(pi p r q~ qo )

qo )
qo qo

' This was first noted by A. I. Vainshtein and B. L. IoGe,
Zh. Eksperim. i Teor. Fiz. Pis ma v Redaktsiyu 6, 917 (1967)
LSoviet Phys. JETP Letters 6, 341 i19671).These authors con-
jectured that when the renormalization factors match, the
Bjorken limit and naive commutator agree. Our calculations show
that this conjecture is invalid.

Using the fact that finite quantities on the left- and
right-hand sides of Eq. (7b) must match up, we see
that

6 ™'=Lf4+A(C) —fit(Vf») —A(Vf2&) )C+finite, (16)

confirming that the ln)' dependence in lE' I" results
from a mismatch between the multiplicative renormali-
zation factors on the left- and right-hand sides of Eq.
(7b). To check Eq. (16) directly, we note from Eq.
(A10) that

A(c) C= (g '/322i')-'YV, CV'Y ln'A'

A27o= (g,2/32frs) -', YV,VoV'Y lnlt2, (17)

which allows us to rewrite the square bracket in Eq.
(16) in the form

(g'/32~')»lt'IVf1&2 Y7 727 YV(2& 7(2&2 YV YOV YV(f&

+ 2 YVrt-7(t&727(2& Vis&VoV(t&)7 Y

2 YV~Vft& Y YVOV(2&+Vis& Yo'2 YVeV(1&7 Y

—
Vit&Vo2 YV,V(2&7 Y+-2 YV,Vi2&7'YVoV(1& I, (Ig)

with the four lines coming from f4, A(C), —&(7&1&),
and —A(Vf2&), respectively Alittl. e algebra then shows
that Eq. (18) is indeed identical with the ln)P part of
Eq. (7c).

The presence of terms which diverge as ln I qo I' in
Eq. (7c) indicates that, ift the gefteral case, the Bj orheft
limit does ftot exist The fact. that the ln

I qo ~2 and
1nX2 terms occur in the combination 1n(112/) q, (2)

means that, to second order, the existeftce of the Bj orherf
limit is directly connected with the matchiftg of refMrmali
satioft factors oft the left and right ha-nd sides of E-q.

(7b): When the renormalization factors match, the
Bjorken limit exists; when the factors do not match, the
Bjorken limit diverges. " Unfortunately, we shall see
that this simple connection does not hold in higher
orders of perturbation theory.

To interpret the divergence of the Bjorken limit, we
note that the renormalized T product can be written as'
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TABLE I. Cases involving vector (V) and axial-vector (A) octet
currents with finite Bjorken limit in second order.

Model
Current

J(I)
Current

J(2)

Piece of
current &tC&t

Vector gluon

Scalar or pseudo-
scalar gluon

UorA

V
V
A

VorA

V
A

U

V orA

V
A

A

where the spectral function p is defined by

u(p)t (P, P', q, vs)u(P')

= (2~) 2 2 (P I ~i&& I &)P I ~(2&
I
P')~4(V+P &)—

N

—(2~)'2 (P I ~(2& I
&)O'I ~u& I

P')~'(v+& P'). —

"This pathological case is discussed in detail by R. Brandt and
J. Sucher, Phys. Rev. Letters 20, 1131 (1968).

(20)

Provided that the spectral function does not oscillate
an infinite number of times" (and it cannot have this
kind of pathological behavior in perturbation theory),
when the Bjorken limit of To&&2&(p, p, q) exists it is
equal to the integral

2(2) f ~r'r(r, t', rr, r')~(r'&

=(2 )'Z (p I ~(i I &)y I~(& I
P')~2(q+p —N)

—(2 )'Z(p I~i& I &)&&I~(& Ip'»'(q+& —p'),

(21)

which is just the usual sum-over-intermediate-states
definition of the commutator. Conversely, in the cases
in which the Bjorken limit diverges logarithmically,
the integral and sum in Eq. (21) must diverge logarith-
mically.

2. There are a number of interesting cases in which
the renormalization factors do match, and hence the
Bjorken limit exists in second order. We have enumer-
ated in Table I all examples of this type in which all of
the currents involved, Jo&, J'&2&, and IPCIIr, are either
vector or axial-vector octet currents. Specific formulas
for Q ' I" in the case when Jg) and J(2) are vector
currents were given in Eqs. (10) and (11) above.
(To obtain the corresponding formulas when J'o&

and/or J&2& are axial-vector currents, in the vector-
gluon case, one simply multiplies from the left or right
by yb according to the scheme shown in Table II.)

The remarkable result that emerges from these
examples is that, ever whee the Bjorkee limit exists ie
second order, it does rot agree with the eaive commutator
(that is, hc' v' is finite but nonzero) . According to our

TABLE II. Substitutions to get axial-vector current results in

the vector-gluon case.

Current

J(I)
Current

J(2) Change in Eq. (10)

V none

A

+Compt~ +5+Compt

+Compt~+Compt+

+Compt~ +&+Compt+5

"See Ref. 2, pp. 257-260, for a discussion of soft divergences.
'There is one exception to this statement, which arises when

Ward identity anomalies are present. See S. L. Adler, Phys. Rev.
177, 2426 (1969);J. S. Bell and R. Jackiw, Nuovo Cimento 60,
47 (1969); R. Jackiw and K. Johnson, Phys. Rev. 182, 1459
(1969); S. L. Adler and W. A. Bardeen, ibid. 182, 1517 (1969).

previous discussion, this means that the Bjorken limit
agrees with the spectral function integral of Eq. (21),
but the naive commutator does not. Most of the prin-
cipal applications of the Bjorken limit technique for
space-component —space-component commutators as-
sume the identity of the Bjorken limit and naive com-
mutator, and therefore, according to our results, break
down in perturbation theory. Further details of this
breakdown are given in Ref. 6.

3. From an inspection of Eq. (10) and Table II,
we see that in the vector-gluon case, for all commu-
tators involving vector and axial-vector currents,
Qc' I"vanishes when either p =0 or p =0. This result can
be deduced directly from the Ward identity' satisfied
by To&&2&*o' v'(p, p', q), which, in the case when

J(i) and J(2) are both vector currents, states that

~ (1&i2& (Pr P r g) IV(r&=Q"Vrrx V(2&=ViX

=r(I)., ) bg~„p p'). (22)

Multiplying by qo
' and taking the limit qo~i~ gives

immediately

iim i (1&(2&* (Pr P r I) Iv(r&=VO v(2&=vr1'
QQ~QGO

=ALII
11'(p' Xbjy„p p')+O(ItII 21nqII) (23)

confirming our explicit calculation. A similar derivation
holds in the cases involving axial-vector currents, pro-
vided that the divergence of the axial-vector current
is "soft, '"' as it is in the vector-gluon case. We thus see
that the breakdown of the Bjorken limit which we
have found is consistent with the constraints imposed
by Ward identities. Therefore all of the results of the
Gell-Mann time-component algebra, which are derived
directly from the Ward identities, remain valid. "

4. We turn next to the order g,4 result of Eq. (12),
which gives the VV—&V commutator in the scalar- and
pseudoscalar-gluon models (the second line in Table
I). We see that et&erb though the relormalisatiorb factors
match, the Bj orher4 limit irb this case diverges irb fourth
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order. Ke note, however, that the divergence behaves
as g,4 ln

~ qo ~', whereas in fourth order, terms behaving
like g,'(ln ~ qo ~')' could in principle be present. On the
basis of this behavior and our second-order results, we
make the following coejectm're. ' lVhee the reeormatiMHoe
factors rieeded to make T(I)(0)*(p, p', q) and I'(C; p, p')
f(,nite are the same, the Bjorken timit ie order 2' of per
turbation theory coritails No terms g,'"(ln

) qo (')", bit
begims ie general with terms g,'"(ln

~ qo ~') " '.
We have only calculated results for the scalar- and

pseudoscalar-gluon models because these models have
the simple property that, when the unitarity method of
Appendix B is used, each individual intermediate state
makes a contribution behaving at worst as g„ ln I qp I'.
The situation in the vector-gluon model is more compli-
cated, since here the individual intermediate states
contain terms behaving as g„'(ln

~ qo ~')', as well as
terms g„'ln

~
qO ~'. If our conjecture is correct, the

g„4(ln
~ qo ~')' terms from the various intermediate

states in the vector-gluon case must add up to zero.
We have not checked whether this happens; it would
clearly be worth doing.

5. As mentioned in Sec. I, one can try to save
asymptotic sum rules by postulating that nonpertur-
bative effects conspire to make asymptotic sum rules
valid when all orders of perturbation theory are
summed. A simple way that this could happen would
be if our order g,.

' terms in 6 ' &' were the lowest-order
terms in an expression

A expt —Bg,' ln
~ qo ~'j, B)0 (24)

2

'+exp 7 ln qp
' 0 g,', 25

which blows up exponentially rather than damping.
In other words, the simple damping mechanism of Eq.
(24) cannot be correct, although our fourth-order
calculation obviously cannot rule out more complicated
damping mechanisms.

6. In Eqs. (A14) and (A15) of Appendix A, we

indicate that when the Bjorken limit qp~ioo is taken
before letting the regulator mass X go to infinity, one
obtains just the naive commutator. Thus, it is tempting
to try to "save" asymptotic sum rules by prescribing
that, instead of using renormalized perturbation theory
(limit X~00 taken first), one should always work with
the unrenormalized quantities, with X very large but
finite. " We will now argue, however, that this is a
spurious resolution of the difhculty. Let us consider the

which damps to zero as qp~i~. However, examination
of our fourth-order result in Eq. (12) shows that
exponentiation gives

g"
7

g l 2-g

sum rule, derived in Appendix B, connecting the

P.', XO) term in Eq. (11) with an integral over the
longitudinal current-nucleon cross section L (q', 00),
with (0= —q'/P. q. In the renormalized (X~00) theory,
where there is Bjorken-limit breakdown, we Gnd to

second order that

11II1 T(i)(0) 0 =
qO p.

qpm &co

X $7p707v+7v707p+ 2 (gyu gpOgv0) 70fj
+(term symmetric in a, b)+0(qo ' lnqo) &

(26)
2

f= lim 2 des L„~, (q', 00), (27)
g ~oQ Q

where the subscript ri+g is a reminder that «second
order we need only retain the single neutron plus
gluon intermediate-state contribution in calculating I .
Our explicit calculation shows that

f=g„'/167r',

(28)lim L„~O (q', 0)) =-(g„'/64r0)(0,
Q ~OQ

in agreement with Eq. (27). As we noted in Ref. 6,
Eq. (27) indicates that the breakdown of the Bjorken
limit in Eq. (26) is essentially the same phenomenon
as the breakdown of the Callan-Gross relation, "which
states that

lim L„+, (q', 00) =0.—
@2~Qo

(29)

0= lim 2
q ~co p

(ko I,.;(q', ~);

with

lim Lt,.0 (q', 0)) =0,
g2

(31)

Lto& (q (0) = L + (q (0) L + (q ) I
' ~'

As expected, in the regulated theory the Bjorken limit
is normal and the Callan-Gross relation is satished.
However, a disturbing problem arises when we examine
in detail exactly how the Bjorken limit is satisfied. Let
us suppose that the regulator mass X is much larger than

Let us now consider the analogs of Eqs. (26) —(29) in
the regulated (X-finite) theory. Since, in order g„0,

matrix elements are always linear in the gluon propa-
gator, to obtain the regulated matrix element in order
g„2 we simply subtract from the renormalized matrix
element the corresponding expression with the gluon
mass p' replaced by the regulator mass X'. Since f in
Eq. (28) is independent of ti', we find that Eqs. (26)-
(28) become

lim T(1)(2) q0 Op &
~ j(7y707u+7~707y)

QQ~$00

+ (term symmetric in a, b) +O(qo ' lnqo), (30)

"This point of view has been advocated by C. R. Hagen,
Phys. Rev. 188, 2416 (1969).

"C. G. Callan and D. J. Gross, Phys. Rev. Letters 22, 156
(1969).
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the fermion mass m and the gluon riiass p,
l(2))m2 l&.2&))u2 (33)

and let us consider, for fixed co, two ranges of values of

range 1: p2, m'(( —q2($/(2o)-' —1),
range 2: $/(2(p —1)(—

q g= (P,+m) 2—m2.

(34)
The dividing point between the two ranges is just the
threshold for regulator particle production. For
—q2($/(2&) '—1), we have (q+ p) 2( ()(+m) 2 and
regulator particle production is forbidden. Thus, in
range 1, the second term in Eq. (32) vanishes,

(»)
while the first term has its asymptotic value

L,„+p (q', o)) (-g„s/642r2) o), (36)
and the Callan-Gross limit is not satisfied. In range 2,
we have (q+p)2&(l(+m)', and regulator production
is allowed; for —q2» l&2/(2pp '—1), the second term in

Eq. (32) attains the same asymptotic value as Eq.
(36), and the Callan-Gross limit is satisfied. Thus, we
see that ie the regulator theory, the Callun-Gross limit is
satisfied only in a region in which —q' is big on a scale
determined by l(2, and then only by virtle of the Nn

physical, negative contribution of regllator production to

the tota/ loegitld&sal cross section. We conclude that the
regulator theory does not afford a satisfactory resolu-
tion of the breakdown of the Bjorken limit in perturba-
tion theory.
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where 8 and I' are the renormalized propagator and
vertex functions and where B(~)(2) denotes the sum of the
two box diagrams on the fifth line of Fig. 1. We shall
calculate T(~) (2)* ' I'" in the limit go~i ~ and isolate the
coefFicient of the qo

' term. This is to be compared with
the matrix element of the naive commutator between
fermion states, given by I'(C; p, p').

The renormalized vertex function 1 for the current
it V(»&P is given, to second order in g, by

f'(v(», p, P') =z2P(v(» P, P') =zsv«)+A(v(» P P )

(A2)

with Z2 the fermion wave-function renorrnalization and
with A(v(», p, p') the usual unrenormalized second-
order vertex part (arising from diagrams on the second
and fourth lines of Fig. 1). Note that I' is obtained by
multiplying the unrenormalized vertex function by the
wave-function renormalization, with no further sub-

tractions or rescalieg. The renormalized propagator is
given, to second order in g„, by the usual expression"

8(p)-'=Z2S(p) '=Z, (v p —mp) —Z(p), (A3)

with Z(p) the unrenormalized proper fermion self-

energy part (arising from the diagrams on the third line
of Fig. 1) and with mp ——m+8m the fermion bare mass.
Denoting the lowest-order current-fermion amplitude
by T(&)(2) "", we see that the first two lines on the
right-hand side of Eq (A1) may be rewritten as

z2T(»(2) ""+LA(v(&) '
P P+q) h"P+v'q™)'v(»

+v«) h"p+v q m) '(bm+&—(P+q) )

X(V P+V q m) 'V(2)+V(—i)(V P+V q m) '—
Xh. (v(2), p+q, p')+((1)~(2), q~ —q')$. (A4)

According to Eq. (A2), the matrix element of the naive
commutator is

APPENDIX A. CALCULATION OF AeomI'e zsc+A(c; p, p'). (A5)
In this appendix we outline the calculation leading

to Eq. (7) in the text. We recall that T(»(»*o' P' is
defined as the contribution to the current-fermion
scattering amplitude of,the diagrams shown in Fig. 1,
consisting of the lowest-order current-fermion diagrams
and the second-order diagrams obtained from the
lowest-order ones by insertion of a single virtual gluon.
We may write

T(»(2)* (P, P, q) = P (vp» P, P+q) S(P+q)
XI'(v(),' p+q, p')+I'(v(), p, p —q') S(p—q')

XP(v(&)l P q ~ P )+&(»(2)(p) P i q)~ (A1)

It is easy to see that, as go~i~, the qo
' term of

Z2T(i)(2) ""is precisely Z2C. Our task is therefore re-
duced to comparing the qo

' term of

LA(V() P P+q)(V P+V q m) 'V(2)+ "—
+ ( ( 1)~(2) q~ q )$+B((2)»(p p q) (A6)

with A(C; p, p').
The unrenormalized self-energy and vertex parts 5

and A are calculated by the usual technique of in-

troducing a meson regulator of mass X, giving

g
2 1 g(1 g) ( p2+m2) +gl 2+ (1 g) 2m2

Z(p) = "
dg y(gv p+m) in'

16~2 g(1—g) (—p'+m )+gt 'y(1 —*) m
(A7)

"In this equation, S(p) denotes the unrenorn&alized propagator in the presence of all interactions.
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and

g
2 1

(7&»i p& p ) 16 s
71

Q

sX'—C(p, p', x, y)
2 Y7r7&»7 Y n

s g p

+YL(1 *)7—p y7 —p'+~3~&»[(1 y)7—p' g7—p+~lY
C(p, p', x, y) —sp' C(p, p', x, y) —sX'

where
s= 1—x—

p)

C(p, p', x, y) =x(1—x) p'+y(1 —y) p"—2xyp p' —(x+y) m'. (A9)

g2 1

llmA(7&», ' p, p ) = dg
g-+Oo 7I

Q Q

1—x 82
dy s Y77&»7'Y»

In order to obtain the renormalized propagator and vertex from Eqs. (A2) and (A3), we must calculate the
X~~ limit of the unrenormalized self-energy and vertex parts, dropping all terms which vanish in this limit but
retaining powers of ln) . [Note that the X~~ limits of Z and A. are not the same as the remormalised self-energy and
vertex parts Z and A, which are defined, in the X~~ limit, by Z&(7 P—mo) —Z(P) =7 P—nz —Z(P), Zo7&»

+A(7&», p, p') =7&»+A(7&»', p, p') .$ Taking the X~oo limit in Eqs. (A7) —(A9), we find

g2 1 x'A2

lima(P) = "
dx Y(x7 P+m) Y ln

16+2 g(1—g) (—Po+ygs) /gas+ (1—x) sago

+Y[(1—x)7 p —y7.p'+mj7&»[(1 —y)7.p' —x7 p+m)Y, . (A10)
C(p, p', x, y) —sp, '

Finally, taking infinite-momentum limits of these expressions, we 6nd

lim limZ(p) = (—g,'/16s') Y7,Ypo[-', 1n(X'/I po I') +sf+0(lnpo),

lim limA(7&», p, p') = (g,'/16'') {—4 Y7,7&»7'Y[ln() '/I po I')+s j+s Y7o7&»7o Y+O(lnpo/po) f,
PQ~ jao g~oo

»m»mA(7&», p, p') = (g,'/16~') {——:Y7,7&»7 Y[ln() '/I po' I')+-', g+s Y7o7&»7o Y+O(inpo'/po') I ~

pQ&—& joo ),moo

(A11)

The box diagram is convergent even without regu-
larization. In the regulator theory, B(1)(2) is the dif-
ference of two terms calculated with meson masses p
and X, respectively, but the term with mass X does not
contribute in the limit, X~oo. [The situation is similar
to the second term on the right-hand side of Eq.
(AS) .j A little care must be exercised in computing the
Bjorken limit of B(1)(2). The reason is that, because of
infrared singularities, the limit q()~i ~ cannot be
naively taken under the integrals over the Feynman
parameters. '~ A detailed study yields

lim llmB&»&oi(p, p, g) = go A(C; p, p )
qQ~ioo X~oa

+(g /16s') &to '{kY7 7&»7o7&oi7'Y»(~'/I &7o I')

+ s Y[7.7&»7'7&n7o+7o7&»7 7&n7'3 Y

—
~ Y7o7&»7o7&oi7o Y

—L(1)~(2)$I+O(in' /8') . (A12)

"The problem which one encounters here can be illustrated by a
simple example. Consider the integral fo'dx (Ax'q'+8)/(xq'+ C)',
with A, 8, and-C constants. In the limit q'—& —cc, both terms in
the numerator behave as (q') ', although at first glance one
might expect the second term to behave like (q~) ' and to
be negligible compared to the first.

Note that, according to Eqs. (3) and (A11), the
ink' dependence of A(C; p, p') precisely cuitcels the
In)&' in the curly bracket in Eq. (A12), as required by
the absence of lnX2 dependence on the left-hand side.
Substituting Eqs. (A11) and (A12) into Eq. (A6), we
obtain, finally,

lim T&i&&si* (p, p, q) = (1/go)

y [f'(C; p, p') +6 ' &'j+O(g -' in@)), (A13)

with 6 ' &" as given by Eq. (7c) of the text.
To conclude this appendix we remark that if, starting

from the regulated quantities of Eqs. (A7) and (AS)
and the regulated box-diagram part B(1)(2), one took the
33orken limit &7o

—&ioo before letting the regulator mass
X go to infinity, one would obtain

lim Z (p) =O(1/po),
PQ~QOO

lirn A. (7&», P, P') = O(1/P, ),
pQ~soo (A14)
lim A. (7&», p, p') = O(1/p, '),

PQ-& $00

»m ~&»&o) (p, p', 9) = (1/8) A(C; p, p')+O(1/&').



S. L. ADLER AND W. -K. TUNG

TABLE III. Regions of phase space where denominators in

Eq. (2.19) vanish as p,'—+0. n', g1', ~ ~ ~ denote the spatial compo-
nents (s=1,2, 3) ofn, g1, ~ ~ ~ .

Phase-space region Denominators which vanish

(1) I'=0

(2)

(3) g2'=o

(4) g(' ll p'

(~) g~'
l l

p'

(6) g('ll p'andgq'll p'

(7) a' ll
a'

(3) g~' ll
a'

(n+g2)', (a+g&)'

(a+gal)' (p—gi)'

(a+g2)' (p—g~)'

(p—g() '

(p —g~)
'

(p-g()', (p-g~)', (p-gi-g~)'

(I+g()'

(a+g2)'

APPENDIX 3: FOURTH-ORDER CALCULATION

In this appendix we consider an extension of our
previous results to order d{,,4. Unfortunately, repeating
the general calculation of Appendix A in the next order
of perturbation theory would require a prohibitive
amount of work, and therefore will not be attempted.
Rather, we will content ourselves with the calculation of
one special case, which is made tractable by a combin-
ation of tricks. The special case is the SV3-antisym-

As a consequence, one Ands

lim T(,)(, *o' '——(1/q, ) 1'(C p p')+O(1/q, '); (A15)
Qp~ sco

that is, the Bjorken limit in the case of finite regulator
mass agrees with the naive commutator. This result is
expected for the regulator theory since the anomalous
term 0 ' p' is independent of the gluon mass and is
canceled by exactly the same term (with opposite sign)
which must be present when the regulator mass is kept
finite.

metric piece of the vector-vector commutator, in the
scalar- and pseudoscalar-gluon models. There are two
further restrictions. We consider only the leading
logarithmic behavior in the Bjorken limit, and we limit
ourselves to the part of the commutator which, like
lPo~)", is independent of the three-momenta rl, q', p,
and p' and of the fermion mass m. This second restric-
tion means that we can set q=q'=y=y'=0 at the
outset, so that we are dealing with the forward Compton
scattering amplitude, and that we can take the limit
m-+0 wherever lnm divergences do not appear. (We
will verify that there are no lnm factors in the leading
ln

~ q() ~' term. ) The restrictions allow us to employ the
following two tricks, which make the calculation
tractable: (i) We exploit a connection, provided by
unitarity, between the Bjorken limit of the forward
Compton amplitude and current-fermion cross sections.
This connection becomes especially simple in the m—+0
limit. (ii) For dimensional reasons, ln

~ qo ~
terms in the

current-fermion cross section (at m=0) must be
accompanied by —lnp' terms, where p is the gluon
mass, so we can study the large-~ q() ~' behavior by
studying the small-p, ' singularities. The latter arise from
readily identi6able regions of phase space, and are
much more easily evaluated than the complete current-
fermion cross section itself.

We begin by reviewing the unitarity connection''
between the current-fermion cross sections and the
forward Compton amplitude. Since we are only in-
terested in the commutator of two vector currents, we
set y(g) =y„'A, y(2) =y„'A, J(g)=J„', and J(2)=J„.It will
further be convenient to restrict u and b to lie in the
isospin SUs subspace of SVs (u, 9= 1, 2); this has no
effect on the part of the commutator antisymmetric
in a and b, and has the virtue of making the charge
structure of our problem identical to the familiar case
of pion-nucleon scattering. Denoting o)= —qs/P q, we

may write for the spin-averaged, forward-scattering
current-"proton" amplitude, "

7'p+ z
4Tr T(»(»*(p, p, q) = polynomial+

2m SI 1~(u)
d'xe"'(p

~
T(J„(x)J„'(0))

~ p)

T X —y„kb+y„)).»
y p+j ~

q
—nz

1

p p p. q nz——

+&"(v', )(—c.,+ "," l+~ "(v', ) ).—,v. ).—,v.) (»)

On the third and fourth lines, we have explicitly separated off the Born approximation and made use of the vector
Ward identities for T(»(s) (p, p, q), which imply that the non-Born part is divergenceless. The isospin structure
of the non-Born amplitudes may be written in the form

Ty s~&(q~ o)) = 2' (+) (q& o)) 1{))P )(&}+2'y (—) (q& o))
)

{ )) ~ )(&j (B2)

The standard forward dispersion relations analysis for pion-nucleon scattering" may now be taken over to show

8 Here "proton" means the p-type quark, and similarly "neutron" means the e-type quark. The actual matrix element is
obtained by sandwiching Eq. (31) between "proton" isospinors.

"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Na)nbn, Phys. Rev. 106, 1337 (1937).
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that the amplitudes T&,2~+) satisfy the following dispersion relations:
2

Ti'+ (q' (p) = Ti+ (q', ~) — dhp PWi- (q' (p')+Wi+(q', (p') $P((p' —~)-'+ (~'+~) '),

Ti(—~(q', (d) =— d(p'
t Wi (q', (p') —Wi+(q', (p') ft (op' —(p)-' —((p'+op)-'i,

AD
Tp&+&(q', o) = —oi —,t Wp- (q', (p')+W,+(q', (p') ]t ((p' —(p)-' —(~'+~)-'],

p GO

ko
T,(-~(q', (p) = —(p, t W; (q', (p') —Wp+(q', o~') jL((p' —~)-'+ ((p'+~) 'j,

o

with absorptive parts given by

—(2~)'-,' p p (p )
2-'I'(J'WiJ')

( E)(X
~

2-'('(J'&is')
~
p)b'(p+q E)—

spin(u) ~

(83)

=2p"(q', )(—g..+, l+2~'(q', ) s. , v' (.—,u) —(p4)qvqv) O'q O'q

g

In writing Eq. (83), we have assumed one subtraction
each for Ti(+& t'the subtraction constant Ti( &(q', oo)
vanishes by crossing symmetry' and no subtraction for
T2~+). To second order in g,2 we have explicitly checked
the validity of these assumptions. Since the asymptotic
behavior as ~0 of higher orders of perturbation theory
will differ from second order only by powers of incr,
and not by powers of co, we expect these assumptions to
be true to arbitrary order, and in particular, to order

4

Let us now set (l=p=O, p, =v=1 in Eq. (81) and
take the limit qp~ipp. Using Eqs. (82) and (83),
we find that the right-hand side of Eq. (81) becomes

2

X 1—lim 2m d~' Sy q', co' —S'y+ q', m'

q~oo p

+ (term symmetric in a, b) +0(qp ' lnqp) . (35)

We know that the Bjorken limit of T(ii(pi*(P, P, q)
must have the general form

llm T(n(pi = qp pP. , A j
qO~&oo' q.=p=O

Xtv,vov, +v,vov, +2(g . gg.o)vf(q'/—I', '/~')7

+ (term symmetric in a, b) +O(qp ' Inqp), (36)
with f the difference between the Bjorken limit and the
naive commutator. Setting p= v= 1 in Eq. (86),
substituting for the left-hand side of Eq. (81), and
comparing with Eq. (35), we get a sum rule for f,

2

f(q'/y', nz'/p') = lim 2m d(p'
q ~00 Q

X )Wi- (q', (p') —W,+(q', ~') ]. (87)

Equation (87) can be rewritten in a more useful form
by recalling that the usual 6xed-q2 sum rule, following

from the Gell-Mann time-component algebra, is

dco0= „$Wp (q', (p') —Wp+(q', (d') g, (38)
p CO

and is valid to all orders in perturbation theory in our
models. Multiplying Eq. (38) by 2mq' and adding to
Eq. (87), we get the modified sum rule

f(q'/p' nz'/p') = lim 2
0

xLL-(q' ') —L+(q' ')$ (89)
with

L+(q' (p) =2mLWP(q' op)+(q'/(p')WP(q' op)7 (810)

the total longitudinal cross section for current-fermion
scattering. The great virtue of Eq. (89) is that, in the
limit m~0, the longitudinal cross sections are given
by the simple formula'

I.+= —(nun'/q') (2s.) '

x-,' p p ~ (p ~ p -'(z, ~is ')
) x) ~'b'(p+q x)—

spin(y) N

(811)
as may be readily verified by comparison of Eqs. (811)
and (84). We will see that the factor p' in Eq. (811)
enormously simpli6es the subsequent calculation.

We are now ready to proceed with the calculation of

f to order g„'. Before doing this, however, let us illustrate
the procedure and check the arithmetic done so far by
using Eqs. (39) and (811) to recalculate the order
g„' result contained in Eq. (11) of the text. To second
order, the intermediate states which may contribute
are the single "neutron, ""g=e, and the "neutron"
plus gluon, X=e+g (Fig. 5). Neither of these con-
tributes to I.+, and the single "neutron" contribution
to I. vanishes to order g„2, because the zeroth-order

'o%c wish to thank D. J. Gross for pointing this out to us.
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p+q

Fro. 5. Diagrams of order g„contributing to the "neutron" plus
gluon intermedia(c state.

part of (p ~
p'(J, '+iJ,')

j n) is proportional to
u(p)p pu(e) =0. So we have

L+=0)

SkO
(2~) 4 Z Z

spin(p) spin(n)

(b)

nz d'g 1—,8'(p+q —e—g) i
OR i' (812)

1
OR=g„u(n) y P+7 P l~(p),7'p+7'0 vP

with the factors y p in OR a result of the factor p'
multiplying the current in Eq. (811)." The factor
(p p+y q)

—'= (y p+y q)/Lp q(2 —cu) 1 in the first
term in 5K would, if it survived, lead to a divergence in
Eq. (89) at the end point co=2, but it vanishes on
account of the y p in the numerator. The second
term in OR is also simplified by the presence of y p,
since it can be written as

g "(")t.—2P gl(~' —2P g) 3~(p),

which approaches the finite quantity g,u(e)u(p) in
the limit of vanishing gluon Inass p,'. As a result,
L remains finite in the limit as p,

'—:0and, by the di-
mensional argument stated above, we expect L to be
finite in the limit q'~ —ao. This reasoning can be con-
firmed by direct evaluation of Eq. (812), which gives

»m ~ (q' ~) =(g'/64~')~ (813)
q2~ oo

substituting into Eq. (89) then gives

FIG. 7. Diagrams of order g„' contributing to the "neutron"
plus gluon intermediate state.

g2 .g(

p+q

n p+q-g (
= n+g 2

I
p+q/.

n p+q-g2
=p+g

can be accomplished by isolating the part of f which

diverges like lnp, ' as p,
'—+0. There are four intermediate

states which contribute in fourth order: (i) single

"neutron", E=e (Fig. 6); (ii) "neutron" plus one

gluon, 1V=e+g (Fig. 7); (iii) "neutron" plus two

gluons, E= ii+gi+ g2 (Fig. 8); (iv) trident, E=
e+p+ p, e+I+n, or p+ p+n (Fig. 9) . The first

three contribute only to L, while the trident inter-

mediate state contributes to both L+ and L . We

consider the cases in turn.

(i) Single "neutron. " The second-order part of

(I
~

p'(J' —iJ')
~ p) is proportional to u(e)A(y p;

lim f= g„'/16''
Q ~—ao~m~o

(814)

in agreement with the $X', X~) term in Eq. (11).
To order g„4, we will not try to calculate the finite

part of f, but only the part which diverges logarithmic-
ally as q'—+—. By our dimensional argument, this n p+q-g, It p-g&

= n+g2

q ga

hagi

]
/I

p n p+q-g, P p-g,
=n+ g)

P

n
FIG. 6. Diagram of order g„2

contributing to the one "neutron"
intermediate state.

g2

"As we noted, the fermion mass m is zero. The factor m' in
front of Eq. (812) and subsequent equations just cancels a
corresponding factor m ' coming from our choice of spinor normal-
ization.

n p p-g;g, p-g, p n p p-g;g, p-g,

FIG. 8. Diagrams of order g„~ contributing to the "neutron" plus
two gluon intermediate state.
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TA))x,E IV. Phase-space regions and pieces of
I
sit

I
which actually- make divergent contributions to Kq. (2.18).

I', g&', ~ ~ ~ denote the spatial components (s = 1, 2, 3) of )r, gi, ~ ~ ~ .

Phase-space
region Piece of I 0)t I'

(4)

(5)

(7)

(8)

gi' ll P'

gs' ll P'

g, ~
II N~

g2' ll a'

I g'u(~) IV PLII(7 P ~gi—~ g2) 3D/h" P Vgi—) j}I(P) I'

I g.&(a) Iv Pl fl(v P hagi —~ gs) ED/(v P vg2)—3}~(P) I'

I g'72(N) }D/(v I+v gi))v Pl tl(v P vgs) —j}7((P) I'

I g.'7g(N) IC&l(V a+V gs)3V PDI(V P Vgi)3—}ri(P) I'

g q

g ~g g

(~),(~)

9,
g~

gf

p

9,
9,
g

}f' P9, 9,
(~)

77, P)u(P), where A is the renormalized vertex part.
Using the fact that p'=0, one sees from Eq. (AS)
that A(y p; I, p) contains only a piece proportional to
y p and a piece proportional to (y rr) (y p) (y I),
both of which vanish when sandwiched between the
spinors. So the single- "neutron" contribution is zero.

(ii) "Neutron" plus one gluon. The "neutron"-
plus- one- gluon contribution, in fourth order, arises
from the interference of the first-order diagrams in
Fig. 5 with the third-order diagrams in Fig. 7. The
third-order diagrams are clearly of the same structure
as the diagrams in Fig. 1, which we have already
evaluated in our general treatment of the order —g„2

case. We note first that, because of the factor y p, the
contributions of Figs. 7(a) and 7(b) vanish. Thus,
just as in the case of the first-order matrix element, the
terms containing (y p+y. (t) 'cc (2—o)) ' vanish, and

as a result the integral over o)' in Eq. (39) converges,
even for vanishing gluon mass p2. This means that any
1n)((' singularities in f must result from in'' singularities
in L itself.

To evaluate the contribution of Figs. 7(c)—7( f), we
calculate the memorialized self-energy and vertex parts
Z and A, by performing the usual mass and wave-
function renormalizations on the unrenormalized quan-
tities of Eqs. (A10) . Note that the renormalized
quantities contain no dependence on the cutoff X,
guaranteeing the validity of our dimensional argu-
ments. In the treatment of the gluon vertex correction
in Fig. 7(f), a subtlety arises. Instead of subtracting
the vertex part at g2= p2, as required by the Watson-
I.epore22 convention, we subtract at g'=0. The dif-
ference between the two methods of subtraction makes
a contribution to L which is proportional to ln(777'/)a'),
but which, for fixed co, is independent of q' and therefore
can be dropped. This is the only place in the entire
calculation where we encounter lnm2 terms and where
the presence of a in@2 term does not indicate the
presence of a term —lnq2. When the gluon vertex part
is subtracted at g2= 0, the m~0 limit is finite, and our
usual dimensional argument applies. On substituting
the expressions for Z and A. into the third-order matrix
element, we find that the integration over the inter-
mediate state (n+g) variables is always convergent,
so that in@2 terms in L can owly arise from the explicit
lnp, 2 dependence of Z and A. We then find for the con-
tributions of the various diagrams to L,

q
I~P9 9~

~Ct
((P- ,

-9,9)

limL7(, ) =finite,
~2~Q

limL7(s) ——(g„'/47r) '(o)/647r') 1ntu'+finite,
p2~Q

limL7(, )
= —(g,'/47r) '((d/647r') lnp, '+finite,

~2~Q

lim L7(r) = —2(g, '/47r) '(o)/647r') 1n)(('+finite.
~2~Q

g
Pg 9'

g

P

FIG. 9. Diagrams of order g„contributing to the trident inter-
mediate states.

Next, we must examine the contribution of the box
diagrams of Figs. 7(g) and 7(h). We deal with these
diagrams by writing them in Feynman parametrized
form and substituting into the expression for L . For
example, the contribution of Fig. 7(g) to L is pro-

22 K. M. Watson and J. V. Lepore, Phys. Rev. 76, 1157 (1949).
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portional to

gdg sds
0 0

&& I (1/D.')»[(1—s+ys) v —ysvX(1

+2xs(1—y) v)+ (2/D, ) [vt 1—2x(1—s+ys) )
+2xyzv ]I, (816)

D.= „2L&—1+~~ys(1—s) g+-x(1—x) (1—z) (P+q) '
—~'{1—y) zL2(1 —a+a) v —2ysr —(1—s) (p+g) '$,

v= p'5 v=p g.

For general values of q p and q', a singularity of Eq.

(316) at y'=0 can only arise from the integration
end points v=0, x=0, x=1, ~ ~, y=1." A careful
analysis of the behavior of Eq. (316) at these end
points in all possible combinations shows that there is
no lnp2 term as p2~0. A similar analysis yields the
same result for Fig. 7(h), so we get, 6nally,

1imL7(vi =limL7iI, ) =finite. (317)
y2-+p p2-&p

This completes our analysis of the "neutron" plus
one gluon intermediate state.

(iii) "Neutron" plus two gluons. The "neutron"
plus two gluon contribution arises from the square of
the second-order matrix element corresponding to the
diagrams in Fig. 8. We have

with

5$Q) d S 5$ 1 d gy 1 d g2"' ' ~i i ~i.i (2-) - 2 (2-) 2g, (2-) 2g" "+' " ' "~
~ ~' (318)

1
oR= g,'u(e)

i

&y e Y.gg

1 1 . 1

& ++& gi &'p 7'g &'p 'Y'gi 7'g27'p 7'gi

+7' p M(p). (819)
& ' p 'Y ' gi 7 '

g2 7 ' p 'Y '
g2

Only four terms appear in 5K because the contributions
of the two diagrams on the 6rst line of Fig. 8 are pro-
portional to (y p+p q) 'y pu(p), and therefore vanish.
Just as before, this means that the integral over ar'

in Eq. (89) converges, and any in'' behavior in

f2,i„,„must originate in L2,i„, itself. Possible diverg-
ences in L2-,~„,„as @2~0 arise from the eight regions
of three-particle phase space listed in Table III, where
denominators in the matrix element of Eq. (319)
vanish. To extract the divergent part, we make a
careful study of the behavior of the integral of Eq.
(318) in each of the eight regions. In this connection,
the following simple inequality is very useful: I.et p be
a null vector and let Q(=gi, g2, gi+g2) be timelike
with p )0 and Q )0. Then we may write

('p) ('e) =p e+-,...T-,
T~P =pres pPQ~- (320)

with the following simple bounds on T &:

[
T"~ [([4p'Q'p eO'I', A, 8, = 1, 2, 3

I

T"
1,
& C~(p Q)'+4p'Q'p Ql'" (321)

In other words, for small p Q, the y-matrix product
(y p) (y Q) is always bounded by (p Q)'I'. Applica-
tion of this inequality shows that many of the po-
tentially divergent phase-space regions actually make
a finite contribution to Eq. (818), and that the only
divergent contributions come from the phase-space
regions and pieces of

~

OR }' shown in Table IV. Evalu-
ation of the spin sums and phase-space integrals show

that regions (4) and (5) each make a contribution to
of

—-'(g '/4~) '(~/64~') inp, '

giving a total of

limL, gizmo~=
—(g,'/4ir)'((u/647r') Lln(i2(g)+(2/~)

p 2~p

(323)

X in@2+finite. (324)
(iv) Trident. The three trident contributions arise

from the squares of the second-order matrix elements
corresponding to the diagrams of Fig. 9. In Table V
we list the momentum labeling for each of the three
states and indicate to which L it contributes. The

TABLE V. Four-momentum labeling for trident production.

Trident state
Four-momentum label
gI g2 g3 Contributes to

(2)

(3)

"T.Kinoshita, J. Math. Phys. 3, 650 (1952).

—
q (g,'/47r) '(~/64vr') Lln(2~) + (2/u&) —1j in@2+finite,

(322)
while regions (7) and (8) each make a contribution of
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TABLE VI. Phase-space regions and pieces of I
OR&&'2& I' which actually make divergent contributions to

Eq. (3.25) . g&', gs', and gs' denote the spatial components (s = I, 2, 3) of g&, g2, and gs.

Phase-space
region

g&' ll gs'

Piece of
I

OR I'

I g.'u(g&)v PLI/(v p —v gs
—v ga)]u(p)LI/((gm+ga)' —&")]u(gi)s(ga) I'

I g,'u(g&)v PD/(v p v—g, v—ga)]u(p) [1/((g, +ga)' —p')]u(g&)e(g, ) [s

Occurs in

I
oRoi l2

I
oR&2) lm

l
OR&'& l'

matrix element for state ( j) ( j=1, 2, 3) receives contributions from only those diagrams in Fig. 9 which
are labeled below with (j). We find Lthe factors of s in Eq. (826) are statistical7

I'M d gy 52 d g2 t8 d g3 5$
(2~)'-: Z Z, —, , —, , —,S'(P+q —

g
—

gs
—

gs) I

O)I+ I', (325)
q spin&@) spin&g&, gu, g3& (2s ) gi (2ir) gs (2ir) gs

with
(826)I

o)I-
I

=
I

D)I&» I'+-'
I

o)I&'& ['
I
o)I+ ['= -'

I
mU'& I'

O)I&»=g.'Iu(gi)v P(v P —v a —v gs) 'u(p)I:(g+gs)' —~'7 'u(g)~(gs)

+u(gs)u(p)L(p —gs)' —~'7 'u(gi)L —1/(v P—v gi
—v gs)7v pe(gs)

+u(gs) u(p) I:(P g)' I"7—'u(g—)v p(v p vgs v—gs)-"—(gs) I,
O)I" =g,'Iu(gi) v p(v p-v g.—v gs)-'u(p)L(as+as)' —p'7'u(gs)n(gs)

+u(gs)v P(v P vai —v g—s) 'u(p)L(a&+as)' —~'7 'u(g&)s(gs) I, (827)

o)I"'=g.'Iu(g ) u(p) I:(P—a )'—~'7 'u(g ) L
—1/(v P vgi vg—) 7v P—e(gs)

+u(g )u(p) L(p —gs)' —~'7 'u(gi)I —I/(v P —v a v. a)7v P—~(gs)

+u(g&) u(p) I:(P ai)' ~'7'—u(g )v—sP(v P vgi vgs—) "(gs—)

+u(g)u(p) L(P —
g )'—P'7'u(gi)v P(v P —v gs

—v gs) 'e(gs) I.

The two diagrams on the first line of Fig. 9 make no
contribution to the matrix elements since they contain
the factor (v p+v q) 'v pu(p) =0, and as before,
this means that divergences in f&»q, ~& must originate in
L+&„q,„~ themselves. Potential divergences in L+t,„d,„&

are associated with special regions of three-body phase
space where denominators in Eq. (827) vanish. In
studying the actual behavior of Eq. (825) in these
regions, we use the inequality of Eq. (821) and the
estimates

I (g..) (P) I "(g,'P)"'
I u(g, ,)o(gs) I (gt, s gs)"' a gi, s as~0 (82g)

We find that most of the dangerous phase-space regions
actually give finite results in the p2~0 limit, with
logarithmic divergences coming from the regions of
phase space and pieces of

I
DR&' " I' shown in Table VI.

Evaluation of the spin sums and phase-space integrals
gives the result

limL+„„~,„„——finite,
@2~p

limL i„s,„„———4(g,s/4ir) s(oi/64irs) luau&'+finite, (829)
p2~p

with ~3 of this result coming from the phase-space region
gs' [I gs' and s from the region g,' [I gs'.

limL (q &d) = —(g,'/4ir) '(oi/64ir')
p2~p

)& Lln(s&0) + (2/~) +~s7 inly'+finite&

(830)

which, by our dimensional argument, implies that

lim L+(q' o~) =finite,
Q ~ Qc

lirn L- (q', &d) = (g,'/4ir) '(o~/64m')
Q ~00

&& Dn (see) + (2/oi) +, 7 ln (q'/p, ') +finite.

(831)

Substituting this result into Eqs. (86) and (89)
yields the fourth-order Bjorken limit quoted in Eq.
(12) of the text. '»

'4A fourth-order calculation of the longitudinal cross section
in the inequivalent limit in which

l
q~

l
and co & simultaneously

become large has been given recently by H. Cheng and T. T. Wu,
Phys. Rev. Letters 22, 1409 (1969).

This completes our analysis of intermediate states
which contribute in order g„4. Adding up the contribu-
tions from Eqs. (815), (824), and (829), we find, for
the total fourth-order contribution,

limI+(q', co) =finite,
~2~p


