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An SU(3) XSU(3) effective Lagrangian, generated by a massive vector field, has been formulated with
the aid of the group-geometrical method employed in our earlier papers. This formalism is manifestly
invariant under nonlinear transformations, and permits an exact and compact treatment of the non-
linearities. Our SU(3) && SU(3) treatment incorporates only thos» minimal departures from SU(2) && SU(2)
that are required to secure a reasonable model, and the new Lagrangian contains no free parameters not
already present in the SU(2) )& SU(2) model. These parameters are determined by fitting the linearized
theory to the pion-nucleon system. Results for other members of the octets, such as the Callan-Treiman
formula, are then in satisfactory agreement with experiment or with the current algebra. It is hoped that
the formalism will permit the treatment of the nonlinearities to be extended beyond the discussion of the
tree diagrams.

I. INTRODUCTION

r iHE generation of effective Lagrangians by gauge
Gelds has been extensively studied. ' ' According to

the fundamental physical assumption in this approach,
there is a local gauge group and it is therefore not
possible to compare currents at distinct space-time
points without introducing a displacement field. In the
Yang-Mills version this displacement field is a vector
field which permits currents to be related at di6'erent

points by parallel transfer. The displacement Geld may
therefore be regarded as a localized displacement
operator that corresponds to the momentum operator
in the Poincare algebra. Similarly, in the theory to be
described, 4 the pseudoscalar field may be regarded as a
localization of the 7' reQection operation. Furthermore,
the pseudoscalar and vector Gelds are not independent,
but are parts of a larger complex which may transform
into each other under changes of gauge. In this respect

* Supported in part by the National Science Foundation.
$ NDEA Fellow.
'R. Finkelstein and L. Staunton, Physica (to be published),

hereafter called A. Notice the difference in notation between A
and the present paper: There vector gauge is denoted by '; here
it is denoted by an overbar.

'A. Salam and J. C. Ward, Phys. Rev. 136, 763 (1964); J.
Schwinger, Phys. Letters 24B, 473 (1967); S. Weinberg, ibid. 18,
188 (1967); J. A. Cronin, Phys. Rev. 161, 1483 (1967); H. S.
Mani, Y. Tomozawa, and Y. P. Yao, Phys. Rev. Letters 18,
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1507 (1968); W. A. Bardeen and B. W. Lee, ibid. 177, 2389
(1969);S. Weinberg, ibid 177, 2COS (1969). .' C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954). More
general displacement fields have been discussed in R. Finkelstein
and W. Ramsay t Ann. Phys. (N.Y.) 21, 408 (1963)g and earlier
papers referenced there.

4R. Finkelstein and L. Staunton, Ann. Phys. (N.Y.) 54, 97
(1969);and also A.

j.

the theory to be described resembles SU(6), which
combines the vector and pseudoscalar particles into
the regular representation. '

The existence of rest mass is foreign to these ideas and
in our approach forces us to introduce two privileged
gauges. In the first gauge the vector mass is specihed,
while in the second the fermion mass is given. The gauge
transformation connecting these privileged gauges in
turn defines the pseudoscalar field. -Therefore the local
gauge is specified by the local pseudoscalar Geld. The
resulting theory is no longer locally gauge invariant,
but it is still invariant under constant gauge transforma-
tion s.

These ideas may be formally implemented by choos-
ing the components of the pseudoscalar octet to be the
local parameters of the gauge group. Then the eight
pseudoscalar variables provide a coordinate system on
the local group space. ' " The arbitrariness in the choice
of such a coordinate system corresponds to the possi-
bility of point transformations on the pseudoscalar
fields. By making use of the group geometry, such a
theory may be simply formulated in a manner which is
manifestly invariant under nonlinear transformations
of the pseudoscalar fields.

We have repeated for SU(3) our earlier work on
SU(2).' Accordingly, the Lagrangian model which is
presented below incorporates only those minimal
departures from the SU(2) theory that are necessary to

'F. GCirsey and L. A. Radicati, Phys. Rev. Letters 13, 173
(1964); A. Pais, ibid. 13, 175 (1964).' R. Finkelstein, Physica 44, 260 (1969). This paper is based
on a method which had been used elsewhere: R. Finkelstein and
D. Levy, J. Math. Phys. 8, 2147 (1967); and earlier papers
referenced there.' C. G. Callan, S. Coleman, J.Wess, and B.Zumino, Phys. Rev.
17'?, 2247 (1969); K. Meetz (unpublished report); C. J. Isham,
Nuovo Cimento SQA, 356 (1969); D. V. Volkov, report, 1968
(unpublished). All of these papers parametrize the group space
with the components of the meson 6eld.
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II. $U(2) MODEL

A local gauge group implies a vector displacement
field, say, P'„, and a corresponding curvature or tensor
Geld:

P„,=V'„P„—V'„P„,

V'„=8„+P„.
Under a local gauge transformation,

P„=UP„U '+UB„U ',

P„„=UP„„U',

(2.1')

(2.2)

(2.3)

(24)

where U is unitary and the fields are anti-Hermitian.
We make the parity decomposition

P„=V„+p'A„ (2.5)

assure a reasonable physical system, namely, SU(3)
symmetry breaking in the vector and fermion mass
terms. The parameters of the theory are evaluated in
the SU(2) subspace consisting of the pion, nucleon, and

p meson. The new SU(3) relations which include the
Callan-Treiman relation, ' for example, are then found
to be in satisfactory agreement either with experiments
or with current algebra (when these are different). In
these new relations the couplings of the pseudoscalars
depend in a fundamental way on the masses of the
associated vector mesons.

Just as in our earlier work, the agreement with
experiment depends on only the linearized form of the
theory. However, we believe that the main interest of
the present work is the group-geometrical formulation
of the nonlinear theory. Although it has been shown
possible to obtain the linear results with a less elaborate
formalism, ' the possibility of making further progress
along these lines may depend upon the preservation of
the exact nonlinear structure in a tractable form.

4=UP, P=PU (2.10)

However, the second term is not similarly invariant and
must be given in a special gauge (up to a constant gauge
transformation) . Therefore, the vector mass term
defines a special gauge which has been denoted by
(P„,P) . Now we express the last two terms in a second
special gauge (P„,N), where N is so chosen that the
fermion bilinear becomes a mass term. Then the total
Lagrangian becomes

L= —
~
—TrP„PI'"+'M' TrP„P-"

iNyI" (8„+—P„)N+rNNN, (2.11)

where U is so chosen that

M'= @AU'. (2.12)

We have now introduced two special gauges which
are defined by the vector and nucleon mass terms, and
which may be called the vector and nucleon gauges. '
The gauge transformation connecting these two special
gauges we associate with the pseudoscalar field. These
special gauges are, however, defined only up to a
constant gauge transformation, and the Lagrangian
remains invariant under these constant gauge transfor-
mations. Furthermore, we may distinguish dynamically
between V„and A„without losing any of the foregoing
symmetry by adding the terms

gM2 TrA„A" ieÃy"p5A„N, — (2.13)

f to P„ through the Lagrangian

L—= —
~ TrP„PI'"+ 'M' -TrP„PI'

&7'—v"(~u+P.)/+PM%' (2.9)

The Grst term is invariant under local gauge transforma-
tions, as is the third term if we assume that P obeys the
usual chiral transformation law

and the chiral decomposition

U= U(l)a(l)+U(r)a(r)
in terms of the projection operators

(2.6)

where A„ is the axial vector in the nucleon gauge and K

and e are free parameters. Similar terms in V„would not
remain invariant under the full group. Some further
justification of these terms has been given in A.

The total Lagrangian is then
a(l) =

2 (1+y'), a(r) = ~~ (1—ys), (2.7)

and where U(l) and U(r) are unitary and independent
of y'.

We assume that U is chiral, namely,

It follows that V„and A„undergo different gauge
transformations.

We consider the minimal coupling of a fermion Geld

' C. G. Callan and S. T. Treiman, Phys. Rev. Letters 16, 153
(1966}.' See, for instance, B. W. Lee, Phys. Rev. 170, 1359 (1968};
Phys. Rev. Letters 20, 617 (1968};and other papers in Ref. 2.

L= ——' TrP„„P—&" iNq" (8„+P„)N—+mNN

+—',M' TrP„P&+KM' TrA„A& i&&~'A„N. (2.1—4)

The first three terms would describe a massless vector
which is minimally coupled to a massive fermion just
as in electrodynamics. The total Lagrangian, which is
expressed partly in the vector and partly in the fermion
gauge, describes a massive vector interacting with a
massive fermion field. This Lagrangian does not
explicitly contain pseudoscalar fields; on the other
hand, since it is expressed in a mixed gauge (partly
vector and partly nucleon), pseudoscalar fields are
implied.
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Alternatively, one may write (2.14) entirely in the
nucleon gauge:

I.=——4 TrP„„E&"—-,'M' Tr(V'„U) t(V'"U)

iN—y~V'„N+ AN+ ~M' TrA„A~ idly—~q'A„N,

(2.15)

where a formal kinetic energy replaces the vector mass
term. It was shown in A that this kinetic energy term
does indeed describe pseudoscalar mesons. If the last
two terms in (2.14) and (2.15) are dropped, it is still
possible to describe (a) massive vectors without
pseudoscalars according to the so-truncated (2.14),
or (b) massless vectors minimally coupled to pseudo-
scalars according to the similarly truncated (2.15).
To describe massive vectors and pseudoscalars to-
gether, however, at least the I~: term is needed; and,
furthermore, this term is independently required as
soon as the fermions are assumed to be massive. Then,
as shown in A, all the usual low-energy results also
follow, namely, the Feynman —Gell-Mann currents, "
the Goldberger-Treiman" and the Adler-Weisberger
results, " the Weinberg formula for the mass of the
axial-vector meson, "and the KSRF relation. '

In A, the gauge group was assumed to be SU(2)
and S was identified with the two-component nucleon,
but the discussion there was largely independent of this
assumption. There is consequently no formal obstacle
to extending the previous discussion to SU(3) by
simply replacing the two-rowed E by a three-rowed
quark basis or an eight-rowed baryon basis. Although
we shall finally specialize to the octet basis to make
physical application, it will be convenient to begin our
discussion by regarding (2.14) or (2.15) as a SU(3) &&

SU(3) effective Lagrangian without specializing to
either the fundamental (quark) or regular (baryon)
basis. In interpreting (2.14), one should substitute
3)&3 matrices for the bosons everywhere if the spinor
belongs to the quark basis. On the other hand, if the
spinor belongs to the octet basis, then the boson matrices
are 3&(3 in the trace terms but 8)&8 in the spinor terms.

Of course, SU(3) is also distinguished from SU(2)
by large mass splittings of the regular representation
and by the existence of a Di/F ratio. It will be necessary
to take these facts into account to give a realistic
discussion, but the necessary modifications of (2.15)
will be postponed until Sec.. VI.

'0 R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).

"M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958).» S. L. Adler, Phys. Rev. 140, 3736 (1965); W. I. Weisberger,
ibid. 143, 1302 (1966).

18 S. Weinberg, Phys. Rev. Letters 18, 507 (1967).
' K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,

255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

III. INVARIANCE GROUP

P ~ &ina(&)P &
—ina(l)

It p

P & esna(r)P &
—dna(r)

p p

U2~ ~ina(r) U2~—ina(E)

Po& —
tt,oe—in'(l)

)

U2~ gina(l) U2~—ina(r)

(3.2)

The n in these equations is a generator of the symmetry
group, which is here SU(3). The transformations (I)
and (II) belong to commuting groups which separately
preserve the invariance of the Lagrangian as well as the
chirality of U' (and therefore of U). The invaria, nce
groups are defined on U2 because of (2.12).

Let 0 be any tensor of mixed parity:

Then
Q =Q (I)a(l) +Q(r) a(r) . (3.3)

e' "Qe ' '&'& = [e' Q (s) e '"$a (s) +Q (t) a (t),
e' "'Qe ' '"=[e' Q(s)fa(s)+[Q(t)e ' 7a(t),

where s=l, r; t=l, r; s/t.

(3.4)

(3 5)

Now let 0= O'. Then U and 0 are both chiral, or

Q(t) =Q(r) t.

Then by (3.1) and (3.5),
Q(l) '=Q(l) e-'-

Q(r)'=e' Q(r).

(3.6)

(3.7a)

(3.7b)

By (3.6) and (3.7),

Q(l) '= [e' Q(t) "gt

= [Q(~) 'j' (3.8)
"F. Gursey, Nuovo Cimento 16, 1254 (1960); Ann. Phys.

(N.Y.) 12, 91 (1961);P. Chang arid F. Giirsey, Phys. Rev. 164,
1752 (1967).

We shall now discuss the invariance group of the
Lagrangians just introduced. Although most of the
discussion in this section and in Sec. IV holds for a
general unitary group, we are interested only in SU(3) .

It has been assumed that the fermion gauge is
connected with the vector gauge by a chiral trans-
formation according to (2.8). Then the local pseudo-
scalar fields correspond to a point in the group space of
either U(t) or U(r), since these are not independent.
For definiteness, we shall choose U(l): The coordinates
of a point in the group space of U(l) are then the
independent pseudoscalar fields. In the SU(3) case,
there are eight such fields.

The invariance group of the theory consists of all
transformations which leave the Lagrangian invariant
and preserve the chirality of U. These are the left and
right invariance groups of (2.9) and have been formu-
lated as follows by Gursey":

(I) $0& —eiaa(o$0 $0& —foe ina(r)—
(3.1)
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Therefore, 0' is also chiral. Similarly, under (3.2)

Q(l) '= e' Q(l), (3.9a)

(3.9b)Q(r) '=D(r) e-'~.

The corresponding transformations of I'„ follow from
(3 4).

The effect of (3.1) and (3.2) on the space of Q(l)
alone may be expressed as follows: Define

IV. GROUP GEOMETRY

responding terms depending on V„would not be in-
variant. It follows that the complete Lagrangian (2.14)
is invariant under the chiral group (I) )& (II) .

Further discussion is facilitated by the introduction
of group-geometrical methods.

n(l) '=n(l) e-'-

=e' Q(l)

«i (I)
for (II). (3.10b) a=l, r; k=1, . . . , 8 (4.1)

(3 10a) Ut, (&, a) = &i(c)U+'(a) /et& "jU+'(a),

Therefore, (I) and (II) induce group multiplication on
the right and left. Then the invariance group of the
theory consists of all motions of the group space into
itself; it is thus the product of the right and left param-
eter groups, or GXG if the gauge group is G.

The infinitesimal form of (I) in the vector gauge is

where U belongs to a fundamental representation.
Then n-uples of (real) parallel vector fields ugt, (&, a)
on the group space may be introduced as follows:

RpUp(a, a) = cu~t, (a, a) X~ (4.2a)

= 2cugt, (a, a) F~, (4.2b)

5P =ia(1) paP, gp = i@8—aa (r), and the relation between left and right fields is

&P„=ia(l) (Sa, P„), Sn(t) = in(1) Sa.

(3.11) Ut, (a, r) = —Ut, (w, i),

upi(a, r) = ugt,—(W, l).
(4.3a)

(4.3b)
(II) is obtained by interchanging l and r. The 8a
appearing in these equations is position independent.
Therefore the invariance operations expressed in the
vector gauge are independent of the pseudoscalar 6eld
but do depend on the pseudoscalar element y'.

To express the same transformations in the fermion
gauge, we need the relations

Trig) ~= 26~~ (4 4)

and the commutation relations"

Here Eo is the radius of curvature of the group space
and c is a normalization constant. The F~ are generators
of a fundamental representation. The )& satisfy the
normalization condition

One then 6nds

A=UP,

P„=UP„U '+UB„U '

0B=6BCB,

~P„= (~Se, P„) —a„(&X),

(3.12)

(3.13)

(3.14)

(3.15)

(Xg, XIt) =2ifgechc,

I) ~, Xtt}~= ;4e1+2dg—eo)c

The metric of the group space is then"

yt t = u~t, (~, a) u~t(~, a)

(4.5a)

(4.5b)

(4.6a)

where, for instance,

5K'"=ia(l) Usa'U '/ "pUU ' (3.16)

= (Rp'/2c') TrUg(a, a) Ut(a, a). (4.6b)

We de6.ne the "rotation" matrix

8V„= (NC, V„)—ct„(8K),

sA„= (see, A„).

(3.17)

(3.18)

Therefore the terms (2.13) are invariant, while cor-

Again (II) is obtained by replacing l by r.
It will be shown in Sec. V that 63'. is independent of

y'. On the other hand, NC does depend on the pseudo-
scalar 6eld and therefore on position.

One may say that the symmetry operators @re
realized linearly in the vector gauge and nonlinearly
in the fermion gauge. The situation may also be
described by saying that 7' linearizes the symmetry
transformations.

The fact that bK is, in fact, independent of y' has
the following important consequences. By (3.15) one
6nds

Rye(a) =ups(+, a) u"tt( —,a), (4.7)

R~tt (a) ) tt U'(a) X~U(a), ——

Reg(a)hn= U(a))~U '(a).

(4.8a)

(4.8b)

Here R(a) is the element of the regular (adjoint)
representation corresponding to U(a).

"M. Gell-Mann and Y. Ne'eman, The Eightfold Way (Ben-
jamin, New York, 1964).

'7 Throughout this paper, symbols which refer to left or right,
such as n in this case, are not summed over when repeated.

where u"&(—,a) is obtained from u»( —,a) by raising
the index in the usual way with the aid of the metric
tensor of the group space. Then
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By differentiating (4.8), one obtains

(Rp/c) $8RAB (n)/ay" j= 2f/cnRAc(n) un', ( ,—n) (4.9a)

Near the identity —',x—+1, and the hz themselves may
be chosen as a coordinate system, since they become
real. Then, to lowest order,

=2fABaRcB(n)uno(+, n). (4 9b)
hA CAN

Now we define the analog of (4.1) in the regular
representation

—.[uA. (+)+uA. (—)j=—4o,

(4.10)
o [uAo(+) —uAo( —) g = (c/—Ro)fAoB4 B,

Ro(W, n) = ai[BR+'(n)/cjoy"jR+'(n) .
'Ql ~kl)

RAB (t) ~AB+ (2c/Ro)fABcpc
Then, using (4.9), we obtain

(Rp/c) [Ro(&& n) jAB ——2zfADBuDo(+) n) (4.11)

(4.20)

(4.21a)

(4.21b)

(4.21c)

(4.21d)

or
RoRg, (a, n) = 2cuAo (a, n) FA, (4.12)

TrFAFB = 2~AB)

while
Tr~&I'a =34m (4.13b)

in order that the commutation relations be the same:

where F~ is a generator of the regular representation.
Equations (4.2) and (4.12) express the same relation

in the fundamental and regular representations,
respectively. In SU(3), (4.2) is a3&(3 matrix relation,
while (4.12) is an 8&&8 matrix relation. The coefficients

uAo(&, n) are, of course, the same for (4.2) and (4.12).
Let us also note that F~ and Ii~ are differently

normalized. Thus,
(4.13a)

V. GEOMETRY OF INVARIANCE GROUP

The left and right invariance groups induce, according
to (3.7) and (3.9), the transformations

Sn(t) = —in(t) Sni,

80(r) = —iQ(r) bn".

An equivalent form of (5.1b) is

Sn(t) =An»n(t),

(5.1a)

(5.1b)

(5.1c)

as pointed out in (3.10).
These equations may be expressed in geometrical

form via the introduction of the coordinates go and the
matrix vector fields

Therefore,

(FA) FB) =zfABcFo,

(FA ) FB) zfABOFc.
These fields are related to 0 in the same way that Uk

and Ek are related to U and E, respectively. Here again
we have the left-right relation

(4 ]4b)

n, (a, n) =~a[an(n)+/ay"jn(n) + n=t, r (5.2. )
(4.14a)

uAo(~) =uAo(~, t). (4.16)

In a fundamental representation, one may write

uAg, (+, n) = (Rp/c) TrUo(+, n)FA (4.15a)

= (Rp/6c) TrRo(&, n) FA. (4.15b)

Let us next calculate the coefficients uAo(%, n).
Because of the relationship between the right and left
I-uples (4.3), we shall work only with the left parallel
fields and, therefore, define the short notation

no(r, a) = —Qo(t, W). (5 3)

Without specifying the representation, let us intro-
duce I'& satisfying

TrI'gI'a =&4m, (5.4)

where S=2' for the fundamental representation and
E=3 for the regular representation.

Let 0 be given in either the fundamental (quark) or
regular (octet) representation. Now define MAo(~, n)
and Fk& by the following equations:

where

U(l) =-',x+ (./R, ) gh, X, (4.17)
RpQo (a, n) = (1/QE) ooAo(a, n) FA,

I'oi=~Ao(~, n)~Ai(~, n)

(5.5)

(5.6)

=Roz Trio(a, n) Qi(~, n) . (5.7)

According to (4.2), (4.12), and (5.5), the expansions
of Uk, Ek, and Qk are normalized in the same way ifNAk NAk

=
o «[(~X/~4") hA* X*(~hA/—~4') ]
—(c/Rp) dABc Im[(BhB/8$") hp*), (4.19a)

g NAk

= —(c/Rp) fABc Re[(8hB/Bp") ho*j (4..19b)

In Appendix A these vectors are given in a particular
coordinate system.

(5 8)2c= 1/QcV.

If 0 is chosen in the regular representation, c=&3/6.
In the quark representation, c=1/v2. It may then be
shown that

~Ao (+,n) =RAB(n) [uBo (+,n)+uBo (—,n) $, (5.9a)

ooAo( —
) n) =RBA(n) [uBo(+, n)+uBo( —

) n) ). (5.9b)

and, therefore,

Making use of (4.5) and the reality of the uA&(&),
we find
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We shall also introduce dP' according to

grill gk

The y' part is

(5.10) HAB'&'& = -', RBA (l)
Then

&"'pea(+, n) ppBi(~, n) = bAB,

PiAi(~) n)PiAm(~, n) =b m

One may now express (5.1a) as

(b'y')

Lan(l)/asap)

= —in(t) bni.

Introducing I'& by (5.7), one finds

(5.11)

(5.12)

(5.13)
=0. (5.24)

Therefore, II~~~ is independent of ys, and one has
simply

—', (-uBp(+, t)+uBp( —,l) ]tt '"piA„( ,—t). (5.23)

But, by (5.9) and (5.11),
HAB'i'i =-', RBA (l) —-', RBc(t) 6'"picp (—,l) piA~ (—,l)

Now put

Then

p (bigs) Rpp Try ( l)bai

60! =Fg8cL~ (5.15)

HAB pRBA(t) pLuBk(+ t) +uBk(+, «) ]A""~A ( t)

(5.25a)
and

I'g,„(by"/bnAr) =RpP TrQ„(—,l) FA

= (Rp/2c) piA„( —,l),

Similarly,

HAB" ——-,'RBA (r)

pLuBp (+ l) +uBp (+, «) ]A""piA (—,r) . (5.25b)

The following relations may also be established:

bp p/bnArr = (Rp/2c) 6""ppA„(—,r) . (5.16b) HAB'+HAB" = bAB, (5.26)

a(l) Ubni U '= a(l) RBA(l) FBbaAi. (5.18)

One also finds

ibU U—'= LUi (+, l) a(l)+ Ui, (+, r) a(r) )
X (b4 "/bnA') bnA'. (5.19)

By (5.17), (5.18), and (5.19) it then follows that

8K =sag E~8n~, (5.20)
where

Equations (5.16) are equivalent to (5.1).
We may now complete the geometric transcription

of b3'. which appears in (3.16), namely,

Q(&i =ia(t) UbniU —i+bU' U—i (5 17)

This equation is true in every representation (U does
not refer solely to the fundamental representation
here). By (5.15)

a(l) Uba'U '=a(l) U(l) bn'U '(l)
=a(l) U(l) FA U '(l) bnA'

~k~4~k l. (5.29)
Therefore, by (4.21),

bX~' "~~-',~fbABW (c/Rp) fABcy )FBbnA" '" (5 30)

where c= 1/V2 and c= 1/2&3 for the fundamental and
regular representations, respectively, as the fermions
are chosen to be quarks or baryons.

VI. EFFECTIVE LAGRANGIAN

We shall study the following Lagrangian:

I.= ,' TrP„„P—~"+,' —Tr—P„P~Q+~ TrA„A~Q(-+)

iBq&V„B+B~B—iBq&q'A„AB. (6—.1)

HAB HAB A LuAm(+ ) t) +uAm( ) t) )
XL~»(+, l) —u»( —,l)). (5.27)

Therefore also

bK(' i z) =
p iLbAB&A'"(uAp (+, t) +uAi ( , l) )—

X(uB„(+,l) uB„(—, t) )—)FBbnA&"'& (5.28.)

In the weak-field limit, by (4.21), (5.6), and (5.9),

HAB' ——a (l) RBA (l) —(2c/Rp)

X(uBg, (+, l) a(l) +uBp(+, r) a(r) )bP "/bnA . (S.21a)

Here

where

~.=b.+P.' (6.2a)

Similarly,

HAB' =a(r) RBA (r) —(2c/Rp)

XLuBp(+, l) a(l)+uB&(+, r) a(r) ]bQ"/bnA", (5.21b)

with bP/bnA given by (5.16). These equations may also
be written in terms of l vectors only by (4.3) .Therefore,

H» ——a(t) RB,(l) —LuB, (+, l) a(l)
—»p( —,l) a(r) )LV"ppA„( —,l). (5.22)

and

P„f=P„BFB=(V„B+P'A„B)FB

A„"=A„g"Dg.

(6.2b)

(6.3)

Equation (6.1) reduces to (2.14) if one puts B=X,
Q =Q (+) =M', DR =mi, and A„B" pA„B. On the other——
hand, (6.1) has more structure than (2.14) because of
these differences and, in particular, because of the
existence of D as well as Ii couplings. One consequence
is that the Lagrangian (2.14) is exactly invariant under



2838 FINK EL STEIN, STA UNTON, AND HIL GE VOOR D

Q=3P1+p,9s,

5K = rrz1+zzz Fs+zrz+Ds

(6.4)

(6.5)

in order to obtain the usual octet mass formulas. Here
) 8 is 3)&3, while F8 and Ds are 8)&8 if 8 is an eight-rowed
basis, or the appropriate 3X3 versions if the quark
model is under consideration.

In (6.4) the parameters 3P and zz' are fixed by the
masses of the p and E*. The eighth mass then lies
between the masses of the P and the ~; however, the
fact that @ and e0 do not satisfy the octet mass formula
is not important for the applications discussed in this
paper.

The mass operator Q(+) and the associated Q( —)
are defined as follows:

where
Q(~) = ll Q(I) +Q(r) j,

Q(n) = U(a) QU(n) ', n = I, r.

(6.6a)

(6.6b)

While Q might appear to be the first choice for the ~

term, it turns out that Q(+) leads to a simpler non-
linear structure as well as to the same results as Q in
lowest order (see Sec. VII). At this point let us also
note the relations

Q(a) =M'1+ p'Evs (a)Xv, (6.7)

the chiral group G)&G but (6.1) is not, because of the
mass operators given below.

In A the structure (2.14) was studied under the
assumption that the symmetry group is SU(2). This
assumption implies that the electromagnetic mass
differences are neglected. If we now attempted to study
(6.1) in an analogous fashion, it would be necessary to
neglect octet (or quark) mass differences. Since such an
assumption would not be suSciently realistic, the mass
operators Q, Q(+), and 5K have been introduced.

Like (2.14), Eq. (6.1) is written in a mixed gauge.
The kinetic energy terms are of course gauge invariant.
However, the second term is expressed in the vector
gauge, while all other terms are written in the fermion
gauge.

The boson fields, as well as their mass operators,
Q and Q(+), appear as 3&&3 matrices in the trace
terms. However, if 8 is an eight-rowed basis, then
V'„, 5K, and A„" in the last term are 8&(8 matrices.
A„ in the ~ term is, of course, expressed in its 3X3 form.
(The superscripts f and d are needed only in the regular
representation. )

We assume the mass operators

VII. ANALYSIS OF VECTOR LAGRANGIAN

The analysis of (6.1) follows almost exactly the
SU(2) analysis of (2.14). Introduce the following
Hermitian, dimensional fields:

where

so that

P„=i (g/V2) (v„+a„p')

= zg(vpA+asA'Y ) FA&

vga
=V2 vs' F~)

ap —C2 aug F/ )

Tr& &"=& A&"a4a,

Tra„af"= a„~af"~)~~.

(7.1a)

(7.1b)

('7.2a)

(7.2b)

(7.3a)

(7.3b)

We then rescale the Lagrangian so that

L= —
4 Tr(v„gv&"+a„waar")+-', Tr(v„a&+a„a")Q

+~ Tra„a"Q(+)+iB7"(8„+igv„~Fz

+zga„gF~Y +zega„gDgy') B BORB) (7.4a)—

pure F, although it would be possible for a D part to
enter here. The reason for this choice depends on the
fact that a change in gauge adds to the connection J. „
an inhomogeneous term which is pure F. Therefore a
P„which is pure F will remain so under a gauge trans-
formation. For this reason it appears natural to adopt
(6.2). This is the exact analog of our procedure for
SU(2).

It is finally necessary to decide the F or D character
of the e term. It is not possible to settle this question
within the nucleon subspace because Fs and Dq (k=
1, 2, 3,) both behave like —2rs in this subspace.

The e term is required to renormalize g~/gr and
therefore should contain a D part. It appears possible
and simplest to assume that this term, like the ~ term,
is exclusively D, and we have therefore adopted (6.3).
However, we also assume

(6.9)

According to this assumption, the D components are
not dynamically independent of the F components and
therefore are not associated with independent particles.

Notice that g~/gr ———1 corresponds to e=1. It will
be shown in Sec. X that the observed value of g~/gr
corresponds to ~—~3.

Finally, just as in the SU(2) case, the e term does not
break the symmetry of the Lagrangian.

Q(+) =~ 1+» L &s(i)++»(r) juris ( a) where we have introduced the decomposition

Q( —) =-',p'LEvs(i) —Zvs(r) j),ii. (6.8b) (&&/zg) P.), =v.x+a,i,V'. (7.4b)

The boson matrices are three dimensional as just
expressed. If the eight-dimensional basis were adopted,
these matrices would be pure D.

We have assumed in (6.2) that P„appearing in V'„ is

We now focus on the partial Lagrangian

L = :TrLP.(i)P"(i)+P.(-r)P"(r) jQ+ T«,~Q(+),
(7 5)
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where, for convenience, we de.ne the Hermitian fields

P„(/l) = v„+a„,

I'„(r) = v„—a„.

(7.6a)

(7.6b)

Then, in order to express (7.4) entirely in one gauge,
we make the substitution

~.( )=U '( )&.( )U( )+A.(—
where

kinetic energy of the pseudoscalar field,

Lo ——Lc'QAB (+ )/2g'R, '(1+2K) j
X (~A") (~"4™")L(1+4 ) ( (+) -(+)

+uAs ( )—uB„( )—) 2—uA&( )—uB„(+)g, (7.21)

where we have expressed L~ entirely in the 1 space with
the aid of (4.3) and where we have also introduced the
notation

QAB(~) =-'. »f) A, ) Bl+Q(~) (7.22)

(7.23)

(7 8)A„(—,n) = (v2/ig) U '(n) r/ U(n) .

One then finds
&=L.+L.+LA+L—

Here,

2L„= TrLv„v"+srf v„, Al'(l)+AI'(r) I+N(+), (7.10)

2L.= TrD1+2K) a„a~+ ', I a„, A-~(l) —A~(r) I+)Q(+),
(7.11)

2LA = s Tr(A„(1)A" (/) Q(l) +A„(r) A" (r) Q(r) j, (7.12)

2L-= TII ., "I.+lI., A (&)-A"()I.
+-', ( ., A (&)+~ ()I.N(-), (7»)

L«o ( c/gRO) vpAc/ O' I juBs(+) uBk( ) $QAB(+)

+I:2K/(1+2K) jLuBs(+)+uBs( —) 3QAB( —) } (7 24)

We next compute the weak-field limits. Then to
lowest order, from (4.21) and (6.8),

Q(+) =Ms1+u9s=Q, (7.25a)

Q( —) = 2/J, (c/Ro—)fsBck'ha (7 25b)

uA/, (a) =uAs(+, l).
(7 9) The interaction energy between the vector and pseudo-

scalar fields is

where

A„(n) =6„(+,n) = U(n) A„(-,n) U-'(n) (7.14)

and Q(&) has been defined in (6.6) .
The simplification of L, in (7.11) effected by the

introduction of Q(+) in (6.1) is now apparent. Just as
in the SU(2) case, L, contains a term linear in a„which
must be eliminated by the following displacement":

(7.15)
where

A.= lL1/(1+2 ) )LA.( ) —A.(1)j (7 16)

Then the partial Lagrangian I may be rewritten in
terms of the physical fields v„and d„as follows:

L= s Trt(v„vt'+ (1+2K)a„al'3Q(+)+Lo+Li oo+L )

and"

where

QAB(+) Q(A)~AB)

QAB( —) = 2/r'(c/R—o) dABcfscBA &

(7.26a)

(7.26b)

QA ~ +// d(A)AS. (7.27)

Then in this limit, according to (4.21), and using the
properties of the f and d tensors of SU(3),

Lq~[4K/(1+2K) j(c'/gsRos) QAr/„QA(/"(IiA, (7.28)

L«o~(2c'/gRo') v.A(~"4')0'
X I fABCQA 54K/(1+2K) 7p (dsAB f&Bc+dsBBf&Ac) ).

(7.29)

Now we normalize the pseudoscalar fields so that

where
(7.17) Q(A 1/syA —~CIA (7.30)

8(1+2K)Lo = TrI (1+4K) (A„(r)h&(r)+h„(l) A&(l))

+ f~.(&) A"(1) I+N(+), (7 18)

L«~= TrLfv. A"(~)+~"(r) I+Q(+)+(2K/(1+2K))

Xf",~"(&)-~"()I.Q(-) j, (7»)
2L-= T Lf@, "I++-', f&., ~"(1)+~()f,

+( /(1+2 ))(~.(~) A"(~) —A. ( ) A"( ))N( —)

(7.20)

All boson matrices appearing in L are 3)&3. There-
fore, to introduce components of the displacement A„,
we make use of (4.2) . The reduction of L may then be
carried out in a straightforward way. We And for L~, the

' See, for example, J. Wess agd B. lumino, Ref. 2.

where C" are the physical pseudoscalar fields and p is a
renormalization constant which is the same for all of
the pseudoscalars. Then

LK~L4K/(1+2K) j(c'7/'/g'Ro') c/ cAa~c" (7.31)

Lvco~L2c'r/'/gRo'(QBQc) "5v A (~"@B)C'c

X I fABcQA L4K/(1+2K) )v'(dsAB fz&Bc+dsB&fi)Ac) j.
(7.32)

It is next necessary to formulate "vector univer-
sality. '" This may be done by going back to the
degenerate multiplets in which the eight vectors, as well

"The parenthesis is introduced to prevent a summation.
Compare (7.26) with (7.28)."J.J. Sakurai, Ann. Phys. (N.Y.) 11, 1 (1960).
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as the eight pseudoscalars, are not distinguishable.
Then p=0 and Q~ ——M', where M is the mass of the
degenerate multiplet. The corresponding interaction is

L«cc)—&(2c 'g /gRp )fABcvt)A~"@A'C.

Vector universality then becomes

AC C gVBB g
or

2c'g'/gR '= g

(7.33)

(7.34)

(7.35)

= —Qg 'IPF~()„Cg. (7.40b)

The Lagrangian (7.4) then becomes, in a mixed
notation,

L= —~~ Tr(v„vt'"+c a)'")+ipMg'v gvt'~

+ p (2M~') c,~c"~+', (&,C ~) (&"C'~)-

+gvp~ (~"@'a)@'cf»c(Ma/Mc)+ L +La, (7.41)-

where the pseudoscalar terms are shown only in lowest
order, L is not shown explicitly, and L& is the part of
L which depends on the baryon field if 8 is assigned
to the octet. Here, M~'=Q~ is the mass of the vector
particle A. Of course, owing to the form of Q~, Mi ——

M~=Ma=mass of the p meson, and M4 ——M5 ——M6 ——

Mv mass of the E* meson. Interpreted as an effective
Lagrangian, (7.41) implies an entire series of Weinberg
relations" between the masses of the axial vectors and
those of the associated vectors:

M,g =%2M,g =v2Qg'i' A=1, . . . , 8. (742)
These relations are a direct consequence of the hypo-
thesis of vector universality (7.34) . Notice also that the
physical pseudoscalar fields are normalized to the masses
of the associated vector mesons, from (7.30) with
MA A ~

yA. ~C)A.

VIII. BARYON COUPLINGS

(7.43)

If, as we now assume, 8 belongs to the baryon basis,
then the baryon part of (7.41) is, exclusive~of the mass

Of course, we must also require that the kinetic energies
of the pseudoscalar fields approach the correct weak-
6eld limits; that is,

L4x/(1+2'~) ](c'vP /g' R'p) =—' (7.36)

From (7.35) and (7.36),

(7.37)
Then (7.32) becomes

Lvec~gv, ~(&"@'s)@ctf»c(Qa/Qc) "'], (7.38)

and, from (7.16), the displacement of the axial vector is

6„=(1/242g) LU7, (+, l) +Up( —,l) ]a„y" (7.39a)
= (c/&2gR, ) [u (+)+u ( )]B„y F— (7.39b).

In the limit
A„~—(v2c/gRp) Fg8„yg (7.40a)

term,

Ls =zB'r"P))+ igvt)AF)i+zgc))A (FA+ pDA) 'Y ]B
gB—y"p'(Fg+ pDg) BA„g) (8.1)

where

~. =(/2gRo)l (+)+ (—)]~A'
and F& and D& are the usual 8&(8 matrices. By choosing
the appropriate three-dimensional matrices, Eq. (8.1)
can also be interpreted as a quark Lagrangian.

According to (8.1) there are direct pseudoscalar-
baryon couplings in addition to fundamental vector-
baryon couplings. These result from the displacement
of the axial-vector field (7.15) and in the lowest order
give rise to the gradient couplings

(c«1/RpM~) LBy~y'(Fg+ pDg) B]a„Cg (8.3)

according to (8.2) and (7.40). Here (F~+pD~)/M&~&
ineasures the p-wave coupling of the pseudoscalar A
in terms of the mass M~ of the associated vector.

On the other hand, there are no direct s-wave cou-
plings. These are mediated by the vector mesons
through the following lowest-order partial Lagrangian":

gBy)'v„~F—gB+gv„g (8)'C r)) C cf»c (Mii/Mc) . (8.4)

The resulting direct s-wave pseudoscalar-baryon cou-
plings are

(g'/M~') (Bv"F~B)f»c(~.~s) @c(M~/Mc) (8.5)

We may also rewrite the p-wave term (8.3) making use
of (7.35):

(g/&2M~) By~y'(F~+ pD~) Ba„4~. (8.6)

The ratios of s- and p-wave terms for all the members
of the pseudoscalar octet are then determined by the
structure of the group (F and D matrices), by the
masses of the various associated vector mesons, and

by the parameter e.
Also, from (8.6) above, the ratios of the various

pseudoscalar-baryon coupling constants to g &~, the
pion-nucleon coupling constant, depend not only on

p, the D/F ratio (which will be fixed in Sec. X), but
also on the masses of the vector mesons.

IX. PARTIAL CURRENTS

The contribution of the fermions and of the pseudo-
scalars to the right chiral current is

J~"=i'„(8B/dna") +LBL/pj (8)'C ")](bc "/Snab"),

(9.1)

where the constant parameters og' belong to the right
chiral group.

According to (3.14), (5.16), and (5.20),

J~"—— By„H»"FsB+(RpM p—/2cq)

&& L~L/~(~"~')]~""~~ (—«) (9 2)

The preceding expression is exact and already depends
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bB/80(g '~pzFgB,

according to (3.14) and (5.30).
Then the current in this approximation is

J ( "= ',Bv,F~—B+-4'„y'(F~+ pD~) B

(9.5)

+ (M(A)Rp/4cr&) 8„4~ (Mc/2M—B)f~BcC B(B„Cc) . (9.6)

By construction the preceding currents characterize
the symmetry of the strong interactions. According to
SU(2) theory, however, the weak current is itself
proportional to J~„".Then, in going on to SU(3), one
must introduce the»=AQ selection rule as well as
the Cabibbo angle. "We shall introduce these features
in just the usual way, and shaB write the matrix
element

(I J»"(weak)
I
)=Fp(», ~Q) ( I

2J»"
I )

(9.7)

where Fp(AS, EQ) contains the selection rules and the
Cabibbo angle 0. (We have also assumed that 8~ and
8r are equal. )

X. APPLICATIONS

The main consequences of the preceding work may
be investigated by relating the strong pseudoscalar-
baryon Lagrangian to the renormalized weak currents.
By (9.6) the relevant expressions are, to lowest order,

on the particular form of the kinetic energy of the
fermions. The dependence of I. on the pseudoscalar
velocity is more complicated. However, in this section
we shall keep only the leading terms, according to
(7.41) and (8.3), as follows:

(&L/B(()pC )~B„4B+(cr&/RpM(B)) Bpp'p (FB+pDB) B.

(9 3)

We shall also replace the exact variations by the follow-
ing expressions:

8C /ba~ "~(M(»Rp/4') $8~B+ (2cr&/RpM(c)) f~BcC oj,
(9.4)

according to (4.21), (5.16), and (5.29), and

Therefore,
p (1+p) = —g~/gr —1.231. (10.9)

octet and the gradient coupling constant a. By (7.35),

a=2c—ri/RpM =kg/M. (10.5)

Finally the f&Bc are structure constants modified by
the mass spectrum in the following way:

f~Bo (M——'M(B)/M'(~)M(c)) f~Bc. (10.6)

The vector current is pure Ii, while the axial-vector
current is mostly D since e will be shown to be nearly
—,'. Therefore, according to (10.2), the s-wave interaction
is pure F, while the p-wave interaction is mixed with
D/F=

These results also differ from the SU(2) results
because they are modified by the mass spectrum. If the
mass splitting is ignored, then M/M(~) +1 an-d f~Bc-+
f~Bc, and (10.1) and (10.2) reduce to the form which
holds for SU(2), although the f~Bo of course refer to
SU(3).

The free parameters of the SU(2) theory are the
mass M and coupling constant g of the p meson, and the
somewhat mysterious e. The corresponding parameters
of the SU(3) theory are the masses of the vector mesons
(or M and )jl) and again the universal coupling constant

g as well as p, which is now the D/F ratio. These
parameters may be fixed by either the weak or the
strong processes.

Let us next consider (10.1) and (10.2) in the SU(2)
pion-nucleon subspace. Then, since D~ and Jig both
reduce to -', r~ (A = 1, 2, 3), we have

J» (weak) ~ cos8 [ pNy„r~N+—
p (1+p) pNy„yPrzN

+ (M,/v2g) a„~g—pgBc~Ba„~gj, (10.7)

and, evaluating the f tensor in (10.6) also in this sub-
space, we obtain

LBBp~L~~N = t g/(&2Mp) ],'(1+p) (Nyp-y'r~N) ()„pry

+La/(&~M. ) j'(Nv" N) (~. ) (1o 8)

These are just the SU(2) expressions and therefore the
various SU(2) results still hold. In particular(' from
(10.7)

2J»"———j»+k»+a '(M(~)/M)()„C'~ e = 1.462——,'. (10.10)

and

LBB4 ~(M/MA) ~ A(l @'A+ p'a J AfABc() @'B@c (10.2)

(10.3)

(10.4)&,~ = pBv,vs(F~+ pD~) B.
We have introduced the mass M of the degenerate

"N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).

Here j» and k» are the vector and axial-vector cur-
rents associated with the fermions, namely,

j» ~pp~A~y

Also, from (10.8), we obtain the KSRF relation"

g /2M = (g/%2M, ) (—g„/g ). (10.11)

Once the parameters of the theory have been fixed
in this way by the pion-nucleon system, one may go on
to calculate the interesting quantities for the full
octets. The effective pseudoscalar-baryon coupling
constants may be read off from the axial-vector cou-
plings in (10.2), and are presented in Table I. Also, the
ratios —gz/gr for the various baryon leptonic weak
decays may be read off from (10.1), and are sum-

"Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
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TAnLE I. Pseudoscalar baryon coupling constants, gpseP/4e. = (factor) 'X [(3fe+Ms ) '/(22Ilpr) sJgeN1P/41r.

Type I actor Value
Comparison

values

7rN1V

&4~
m.llZ
~ZZ
Elias
E h.

EEZ
EgZ
gSÃ

MM

qh. h.

gZZ

(1—e) /(1+e)
2e/VS(1+e)
2/(1+e)

—[(3+e)/~(1+e) J(3E p/3E»)

[(3—e) /v3 (1+e)J(iVp/M»~)
—[(1—e) /(1+e) J(Mp/3f»e)
—1 (Mp/1II»e)

[(3 e) /v3—(1+e)J (Mp/3l„s)
—[(3+e)/~(1+e) J(~p/~-e)
—[2e/v3 (1+e)$ (Mp/3E„e)

[2e/&3(1+e) J (Mp/3E„s)

14.3 (input)
1.004

10.288
15.420
14.031
2.337
0.486

19.121
1.274

21.086
6.490
7.418

14.5
1.82b

10.2b

9b

16.0~2.50

0 3~0 50

a We have used the values e =1.462, M~ =765 MeV, M„, =931 MeV.
S. Matsuda, S. Oneda, and P. Desai, Phys. Rev. 178, 2129 (1969).

J. K. Kim, Phys. Rev. Letters 19, 1079 (1967).

m+~n +e++p
E+prrs+ e++p.

(10.14a)

(10.14b)

The relevant partial currents are

Jp(1 i2) =i —cos8 L&2 (~'8„~+—m.+8„m')+ ~ ~ j, (10.15a)

J„(4—i5) =i sin8 l (1/V2) $(M»e/Mp)~s8„E+'
—(Mp/M»e) E+8„7rs7+ ~ ~ ~

I (10.15b)

The corresponding matrix elements are

&~s
I ~.(1—i2)

I
~+)=(p-+p-). ( f+)-

)& expl —i(p. —p. )~j (10.16a)
and

&- l~.(4-'5) IE )=~(p-+p. ).(f,)-
+(p»+ pe)„(f )»j expl ——i(p»+ —p e)xj, (10.16b)
2'S. L. Glashow, H. Schnitzer, and S. Weinberg, Phys. Rev.

Letters 19, 139 (1967).
'4S. L. Glashow and S. %einberg, Phys. Rev. Letters 20, 224

(1968).

marized in Table II. Notice that the pseudoscalar
coupling constants in Table I depend on the masses of
the associated vector mesons in a significant way.

From the gradient (chiral) term in the current, one
recovers the Goldberger-Treiman relation for the pion"

fe= (M~/ge~~) ( gg/gy) co—s8 (10.12)

and the corresponding relation for the kaon. It follows
from these relations and more directly from the gradient
term of (10.1) that

f»/f = ( M»/ M)ptang —1.165 tan8. (10.13a)

This result agrees with the spectral function relation"

f»/f =1.16 tan8 (10.13b)

and is close to the current-algebra result. '4

From the final (isotopic) term in the current, one
may determine the rates of the reactions

where

(f+) =42 cos8, (10.12)

( f+)» 4v2 sin8 ——(M»*/Mp+Mp/M»*), (10.18)

(f )» ,'v2 sin8 (——M—»e/Mp Mp/M»—*). (10.19)

By adding (10.18) and (10.19) and substituting
(10.13) one finds the Callan-Treiman relation~

( f+)»+ (f )» = (1/V2) sin8 (M»~/M p)

= (1/V2) cos8 f»/f . (10.20)

XI. REMARKS

The underlying physical picture is a version of
SU(3) XSU(3) characterized by Goldstone bosons
rather than by the doubling of the usual SU(3)

"S. Weinberg, Phys. Rev. Letters 17, 616 {1966);18, 188
(1967)."Y. Tomazawa, Nuovo Cimento 46, 803 {1967); A. P.
Balachandran, G. M. Gundzik, and F. Nicodemi, ibid. 44A, 1257
(1966); P. Roy, Phys. Rev. 162, 1644 (1967).

'7 S. Goldhaber e1 a/. , Phys. Rev. Letters 9, 135 (1962); V. J.
Stenger et al. , Phys. Rev. 134, 81111 (1964).

2'See, for instance, H. Sugawara and F. Von Hippel, Phys.
Rev. 145, 1331 (1966); J. Schechter, Y. Ueda, and G. Venturi,
ibid. 177, 2311 (1969).

The agreement up to this point with experiment is
satisfactory.

On the other hand, while the vector coupling in
(10.2) is known to yield reasonable agreement for the
pion-nucleon s-wave scattering lengths, " the kaon-
nucleon s-wave scattering lengths calculated from the
same term yield values close to the usual current-
algebra results" which are known to disagree with
experimental values. '7 The model needs to be modi6ed
at this point to put the full nonet of vectors into proper
correspondence with the pseudoscalar multiplet. "
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multiplets. ""The chiral SU(3) symmetry is broken
in such a way that the next approximation is not SU(3)
but chiral SU(2), as can be seen by noting that all
currents are exactly conserved in the nucleon-pion
subspace. Therefore, while no pseudoscalar masses
appear in our Lagrangian, the theory behaves like a
partially conserved. axial-vector current (PCAC)
model in which nz =0 but vs~/0.

Our model corresponds to case (1) of Dashen and
Weinstein, "namely, exact conservation of axial-vector
current, m =0, and an exact Goldberger-Treiman rela-
tion. It resembles the model of Gell-Mann, Oakes, and
RennerP' in that chiral SU(3) is broken down to chiral
SU(2) by the mass-splitting operator.

Although these physical assumptions are not new,
their implementation and, in particular, the introduc-
tion of the pseudoscalar fields are treated rather
differently. The fundamental formal objects are now
the local gauge group and the associated displacement
field. Since there are two mass terms, however, one is
forced to introduce two privileged gauges (baryon and
vector) . Although the introduction of privileged
gauges implies that the Lagrangian is no longer in-
variant under local gauge transformations, the local
gauge group does not lose its significance —the local
parameters of this group (describing the transforma-
tion connecting the baryon and vector gauges) are just
the various components of the pseudoscalar 6eld and,
in fact, the nonlinearity of the Lagrangian is expressed
entirely in terms of geometrical invariants on the local
group space.

The formalism unifies the vector and pseudoscalar
fields into parts of a single complex which mix under
gauge transformations. In particular, one and the same
term appears either as a vector mass term (in the vector
gauge) or as a minimally coupled pseudoscalar kinetic
energy term (in the baryon gauge). The dual inter-
pretation of this particular key term implies the rela-
tions [(7.30) and (7.36)]

&lC.=M„P., 4~=-', (1+2~) (g'R '/c'&l').

In this form universality relates g (=gvBB) to the
radius (Rp) of curvature of the local group space, which
in turn Axes the scale of the pseudoscalar couplings.

All of the usual relations now follow, namely,
.-&&, "™;l»'$:~

"R.Dashen and M. Weinstein, Phys. Rev. 183, 1261 (1969).
'0 M. Gell-Mann, R. J. Qakes, and B. Renner, Phys. Rev. 175,

2195 (1968).

The first relation states that every pseudoscalar field
is renormalized by the mass of the corresponding vector
field and has the consequence that vector masses
appear in our equations in a characteristic way.

The second relation may be fixed by imposing univer-
sality as follows (7.35):

gRp =v2c&l.

TABx,z II. Baryon leptonic vector —axial-vector ratios
for octet decays.

Decay Ratio Formula Value Kxpt. (Ref. 22)

Z ~e
~ o~g+
M—~go

gA/gv k (I+&)
g~/gv —

p (3+~)
gv/g~

gv/gA

g~/gv 2 (p —I)
g~/gv ——,

' (1+a)
g~/gr —

p (I+~)
g~/gr ——:(3—~)

—1.231~
—0.744

0
0

+0.231
—1.231

1.231
—0.256

—1.231&0.010
—o 97-0.n~'4

0.3+0.3
+0.28a0. 16

Input gives e =1.462.

M~ ——v2M, KSRF, the p- and s-wave scattering lengths
of pseudoscalars against baryons, and also the weak
currents, implying, for example, generalized Adler-
Weisberger, Goldberger-Treiman, and Callan-Treiman
relations. The final effective Lagrangian depends on
two parameters: the vector coupling constant g'/4m. —3
and e= 1.46, which fixes D/F.

The usual SU(3) &(SU(3) current algebra is satisfied
in lowest order. We plan to discuss the field algebra
elsewhere.

Compared to other effective Lagrangians the present
formulation is, in our opinion, conceptually simple and
its structure is relatively strongly determined.

APPENDIX A: ugp(&) AND yy, i IN A PARTICULAR
COORDINATE SYSTEM

Then with

X'= (c'/4RpP) &f&g&t g,

F= (c /Rp ) ttABC@AQBQC&

iVA = (c /Rp ) ABc4 B&t&c&.
Z= 1+X'+—,', iI'.

(A2)

(A3)

(A4)

(A5)

~i[a U+'(i) /8@"$U+'(I) = (c/R, ) N~p (a)) ~& (A6)

' A. J. Macfarlane, A. Sudbery, and P. Weisz, Cambridge
University Report No. DAMTP 69/16 (unpublished).

For completeness, we exhibit below the parallel fields
n~p(+) and the metric tensor ypi in one particular
coordinate system.

The problem of exhibiting a parametrization suitable
for calculating the N~p(&) in a closed form is con-
siderably more diKcult for SU(3) than for SU(2),
and has but recently been solved by Macfarlane,
Sudbery, and Weisz." In our notation, their result is

U(i) = (~'~*) "'
&&[1 ,X' i i7—+—i(c—/R )Q 'X~ X~X~), —(—A1)

where
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Z*Z = 1+2X'+X'+ (1/144) &' (AS)

we have

zzAk (~) = —(z z) 'C (1+0 x') 4k+ 0 (c'/Ro') 4 keA

~ (c/Ro) fAkBAB dAkB+B+ 0+A+k q 2 (c/Ro) dAkBAB F'

', (c/R-o) fABCdkBD4DNC), (A7)

where

and

yk~= (Z*Z)—'I (Z*Z) (1+'X-') 8kz —', (—c/Ro)'

XC-,'X'—(1/144) I"]/kg( ——', [1+2X'—(4/9) X'

+ (1/144) F']dk(AÃA jii, (1+6X'+X4)EkX(

',—(c-/Rp) dkiAyAX'I' (—1/72) (c/Rp)

X (1+X')&(@%+4~&k) j (A9)

First, from (7.4a) we have

APPENDIX B: COMPLETE CURRENTS

v„,=B„v„B„—v„+ (ig/v2) (v„, v„) —(ig/v2) (a„,a„),
a„„=a„a„—a,a„+ (ig/v2) (v a„) —(ig/v2) (v. a )-.

(B1a)

(B1b)

Then, because of (7.15) and (7.39), (B1) becomes

v"=~.v.—~.v.+ (zg/v2) (v., v.)——(zg/v2) (&, a.)-+4z(a. , LUk(+)+ U. (—)7)-~ 0

—A'z (&., LUk(+)+ Uk( —) ])-&.4'+ (z/@~g)

x (CUk(+)+Uk( —) 7, CU. (+)+U.(—) 7) aA "a,y", (B2a)

a„„=B„d,„B„d„+(ig—/V2) (v„, d, ) —(ig/V2) (v„, d,„)
+-'(., CU.(+)+U (—)])-~.4' —-''(., LU (+)+U (—)])-~.4'

—(z/2&2g) L(U (+) U-(+) )-—(U (—), U (—) )-]~,4k~.4" (B2b)

The currents depend on only the velocity-dependent parts of the Lagrangian, namely,

L= —
A Tr(v„,v""+a„.a&")+ (c'/g'Ro') QBc(+) (&Bk&c +2rBkrc~) 8~4 kB"4

+ (2c /g R0 )QBc( )($Bk&cm) ~pe &—"0 (2c/gRO) &pB(&ckQBc(+)+pkckQBc( ) ]&"4
—(2c/gRo)&. L~c Q c(—) 7~"4k+zIIV.~"&—(c/Ro)&V.Vp(~ +pD )&$ &"4k,

where we have written I in a more convenient form with the de6nitions

4k= 0[NAk(+, 1)+NAk( —,1)],
~Ak=p[zzAk(+, 1) —zzAk( —,1)7.

(B4a)

(B4b)

The vectors $ and r determine the chiral and isotopic generators in U space and appear quadratically in the
above expressions that hold in the U' space. '

The full right current obtained in the usual way is, then,

$pk
JvA"= —Tr v~~ I

—A'z(a" CUI, (+)+Uk( —)7)II II

+ ~- (CU (+)+U (—)7, CU-(+)+U-( —)7)-~"4"
syk l

S&2g &~A"i

I' 8d," yak-- (",LU.(+)+U.(-)])
&8o.g bag"

[(U (+) U-(+))-- (U (-) U-(-))-]8'4- "„ + ',
R

X ICQBc(+) (PB kc +2zBkvc )+QBc( ) ($Bkvc +&Bkfc )]~pl'

—(gRp/c) vpB[vckQBc(+) +0gckQBc( —)]—(gRp/c) ailBL~ckQBc( ) ]I
Bg" . "08 c yak„+iBy„„——By„y0(FB+pDB) B/Bk „. (B5)

Sot,'~ 8A~ E.p bn~"
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Now, however, from (7.15) and (7.39),

~4=~~,+(z/2&g)L(U'. (+), ~-(+))-—(~ (—), ~-(—) )-]~A-W'
- (1/2~~g) ~.{(~.(+)+~.(-))~~ I, (B6)

and (BS) becomes

8a" 4c 8P"
J„g"———Tr v„„+~i(a", w„,) —

&ap Fa
~&AII

' ~0 ~aAII

8a" . 4c 8pp
+pv rr +pz(& I +pv ) )ak rr Fa

$(xg Ep 8A&

1 (4c 8&" ) 2c'

X {$Qac(+)()akkcm+~&aÃcm!+Qac( ) ($ak~cm+&ak)c ) jojp4'

(gRo/c) &pag~cpQac(+)+pkcpgac( —)j—(gRo/c) &pa{ zcpQac( —))I
8P" . pB c pyk

X — „+.zBp„„——Bp„po(Ra+ pea) 8)» „, (B7)
8&g 8&~ Eo 8n~

where, from (3.14), (3.17), (3.18), (5.16), and (5.20),
88 =zHgg" FgB,

Qv 2=z(H~a"Fa, p") ——~"(H~a"Fa), (B8b)

and

88" = z(Hying'Fa, u"),
8&g

(B8c)

by' Rp gee~ ( z)
Ba~ 2c

Finally, from the analog of (5.23), and from (5.25), we have

R,
)ah RAal

4c

(B8d)

(B9a)

8y" Rp= ——L2H~a" —R~a j,

where
R~a Rga(l) =Raj, (r). ——

Then the current is

J ~II= —;Tr{L(ztv, ) H~arr (~v ~ „)R +(V2z/g)v gvH„arrjF

(B9b)

(B10)

i Tr {L(a", a„„)Hga" ——', (p", c,„„)Rpa (i/2v2g) a„„B-"Rpa—]FaI
—(c/2g'Ro) {Qac(+)P4akc„+2(2H~a" R~a)rc~]—

yQ, (—) LR r, + (2H„,»—R )~,„]Ia„y"

+ (1/2g) Io„aD2Hxc RAc)Qac(+)+zRACQac( ) ]+c,„a(2HAc ' RAc)Qac( ) I

By„H&a"FaB+4B—p„y'(Fa+ pDa) RgaB. (B11)


