
ELECTROPRODUCTION STRUCTURE FUNCTIONS

(A25)

Because of causality, the limit in (A17) is the light- of (A1) and the behavior (3.58) of A. These give
cone limit x'= 4ak —x'—4. It indeed follows from (A14)
and (A17) that n.W(», X)~b(s) L(X)

srW(s, X) b(s)-', e('A) j(X) (A23)

for s 0. We therefore have determined the leading
singularity of W on the light cone and, by (A20), the
large-X behavior of its coefficient. The behavior of W
near the light cone can also be determined from the
conhguration-space form

nW (x', xs) = ,'if—d—ttdb o (a, b) exp( ib—xs) h(x; u+bs)

(A24)

for s 0, where

L(g) = —Lie(X) jar]jdadb tr(tt, b) exp( —ibX). (A26)

Equations (A6) and (A9) give

L(X): 2-—~'ice(X) I
)t

I
. (A27)

In view of (A22), Eqs. (A25) and (A27) are in perfect
agreement with (A23) and (A20).
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A relativistic quasipotential equation is derived from the conventional Hamiltonian formalism and
old-fashioned "noncovariant" oG-energy-shell perturbation theory in a similar way to that by which the
four-dimensional Bethe-Salpeter equation is obtained from the off-mass-shell Feynman rules. The three-
dimensional equation for the (off-energy-shell) scattering amplitude appears as a straightforward generaliza-
tion of the nonrelativistic Lippmann-Schwinger equation. The corresponding homogeneous equation for
the bound-state wave function and the normalization condition for its solutions are derived from the equation
for the complete four-point Green s function. In order to obtain a solvable model, we consider a simplified
version of the quasipotential equation which still reproduces correctly the on-shell scattering amplitude
and is consistent with the elastic unitarity condition. It involves a "local" approximation to the potential
V(p —q) which defines the kernel of our integral equation (the integration being carried over a two-sheeted
hyperboloid in the energy-momentum space) . It is shown that for the scalar Coulomb potential V(P —q) =
u/(p —g)', our model equation is equivalent to a simple infinite-component wave equation of the type
considered by Nambu, Barut, and Fronsdal. The energy eigenvalues for the bound-state problem are
calculated explicitly in this case and are found to be O(4) degenerate (just as in the nonrelativistic Coulomb
problem and in Wick and Cutkosky s treatment of the Bethe-Salpeter equation in the same approximation) .

I. INTRODUCTION

f 1HE purpose of this paper is to show the relation-
ship between a modification of the quasipotential

approach to the relativistic two-body problem developed
in Refs. 1—3 and the infinite-component wave equations

*Work supported by the National Science Foundation. On
leave from DPhT-CEN Saclay, BP No. 2, 91, Gif-sur-Yvette,
France.

t On leave from Joint Institute for Nuclear Research, Dubna,
USSR, and from Physical Instituie of the Bulgarian Academy of
Sciences, Sofia, Bulgaria.' V. G. Kadyshevsky, Nucl. Phys. B6, 125 (1968); V. G.
Kadyshevsky and N. D. Mattev, Nuovo Cimento SSA, 275
(1968).' V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B.Skachkov,
Nuovo Cimento SSA, 233 (1968).

3M. D. Mateev, R. M. Mir-Kasimov, M. Freeman, Joint
Institute for Nuclear Research, Dubna, USSR, Report No.
P2-4107, 1968 (unpublished).

for the "r|',lativistic hydrogen atom" of the type con-
sidered in Refs. 4-6.

A three-dimensional relativistic quasipotential equa-
tion for the two-particle scattering amplitude and for
the bound-state wave function was first proposed by
Logunov and Tavkhelidze. ~ It was derived in the frame-
work of the Bethe-Salpeter equation using the non-
uniqueness of the o6-shell extrapolation of the scattering
amplitude.

' Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppl. 3'7-38, 368
(1966); Phys. Rev. 160, 1171 (1967).' C. Fronsdal, Phys. Rev. 156, 1665 (1967).

A. O. Barut and H. Kleinert, Phys. Rev. 1S'7, 1180 (1967);
160, 1149 (1967); H. Kleinert, Fortschr. Physik 16, 1 (1968);
A. O. Barut and A. Baiquni, Phys. Rev. 184, 1342 (1969).

7 A. A. I ogunov and A. N. Tavkhelidze, Nuovo Cimento 29,
380 (1963);A. A. Logunov et al. , Nuovo Cimento 30, 134 (1963).
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FIG. 1. (a) Second-order Feynman

diagram; (b) and (c) the two corresponding
diagrams of old-fashioned perturbation

qp theory.

Kp

We consider here a different type of quasipotential
equation closely related to the Hamiltonian formalism
(cf. Ref. 1).The paper consists of two logically distinct
parts.

In the first part we review the derivation of the quasi-
potential equation from a given local Hamiltonian
(Sec. II). The kernel of the equation (i.e., the "quasi-
potential" ) is defined as a series of irreducible graphs,
analogous to the series for the kernel of the Bethe-
Salpeter equation. The equation obtained has a number
of attractive features (including a straightforward non-
relativistic limit). However, it looks quite complicated
and does not allow an exact solution even in the lowest
approximation for the potential and for zero-mass
exchange.

Therefore, in the second part, following the general
idea of Refs. 7 and 2, we use the nonuniqueness of the
off-energy-shell extrapolation of the scattering ampli-
tude in order to obtain (Sec. III) a simpler equation
which can be solved exactly at least in a special case.
In doing that we modify both the free Green's function
and the second-order potential. We only treat the equal-
mass case. (We do not attempt to fit into the present
scheme the approach to the unequal-mass case proposed
in Ref. 8, since it is affecting the on-shell behavior of the
amplitude. ) In accordance with Ref. 7, our simplified
equation still reproduces the correct on-shell scattering
amplitude in perturbation theory. The second-order
approximation in the model equation is compared with
the exact Feynman amplitude for the box diagram. It
is important to note that our modified equation involves
integration over the two-sheeted hyperboloid k'=m',
thus exhibiting the symmetry between positive and
negative frequencies. This property allows us to trans-
form it, in the case of zero-mass exchange, into a form
similar to the nonrelativistic Schrodinger equation for
the Coulomb problem, and to find the energy eigen-
values. In Sec. IV we "algebraize" the equation for the
scalar Coulomb problem, reducing it to a infinite-
component wave equation of the type considered in
Refs. 4—6. In this way, we find the same energy eigen-
values by just using the properties of the generators of
a familiar representation of the conformal group
SO(4, 2).

V. G. Kadyshevsky, M. D. Mateev, and R. M. Mir-Kasimov,
Joint Institute for Nuclear Research, Dubna, USSR, Report No.
E2-4030, 1968 (unpublished) .

R(Kle K2) +H(K1 K2) + H(K1 K)2'

1
&& . R(K, K2)dK=O, (2.1)

~—io

where H(K) is the Fourier transform of the interaction
Hamiltonian H(r)

H( ) = f H(e)d, 'e, H(e) = H( ) eep( —ee )de
SP=T

(2.2)

The direction of the time axis will be specified later.
The operator E is related to the scattering operator
S=S(~, —~) by

S(r, —eo) =1+(1/22r) JR(K, 0) t exp(iKr)/(K —ip))dK

(2.3)
or

S= S(0e, —eo) = 1+iR(0, 0).

I We have used the id.entity

(2.4)

(1/22ri) lim I exp(iKr)/(K —i0) (=5(K) for r~+~
7~+00

=0 for r +~.I-
A diagram technique was developed in Refs. 9 and 1

for the calculation of the matrix elements of E.. In the
case of a theory of spinless particles, it can be sum-
marized in the following way. To any ordinary Feynman
diagram we let correspond a set of new graphs with all
possible numeration of the vertices 1, . . ., E. Every
internal line is oriented toward the vertex with smaller
number. Furthermore we let a spurion (dashed) line
enter the vertex 1, connect 1 with 2, 2 with 3, and so on

9 V. G. Kadyshevsky, Zh. Eksperim. i Teor. Fiz. 46, 654
(1963) 46, 872 (1963) /Soviet Phys. JETP 19, 443 (1964);
19, 59 (1964)j; Dokl. Akad. Nauk SSSR 160, 573 (1965)
LSoviet Phys. Doklady 10, 46 (1965)j.

II. DERIVATION OF RELATIVISTIC
QUASIPOTENTIAL EQUATION

A. Review of Noncovariant Perturbation Theory

Following Ref. 1, we start with the equation for the
operator-valued function R(K1 K2):
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(1/22r) L1/ (K—iO) j. (2.6)

These rules give rise to the old-fashioned ("noncovar-
iant") perturbation expansion for the scattering ampli-
tude. If we start with a local interaction Hamiltonian
H(x), the on-shell amplitude (for Ki ——K2-—-0) does not
depend on the choice.of the direction of the time axis.
For instance, the contribution from the diagrams on
Figs. 1(b) and 1(c) is

&plp2 I
+ (Kly K2) I qiq2) = LI/(2~) '3

&&8(P,+P2—q,—q, +(K2 K])22)T&'&,

where

Z (a)
2

40ua-qi Kl+qi pi +~nz —qz

1
(2.7)

ooy2 q2 Kl+q2 p2 +40@2 qq 20

—(~2+ Ir2) I/2 (2 g)

For Ki ——K2 ——0, qi
—pi= p2

—
q2, Eq. (2.7) reduces to the

covariant Feynman rule for the on-shell amplitude T:

(always oriented toward the vertex with larger num-

ber), and finally go out of the vertex E. LFor instance,
to the second-order Feynman graph of Fig. 1(a) corre-
spond the two diagrams of Figs. 1(b) and 1(c).7 The
conservation law in each vertex of the new diagrams
takes into account the energies of the dashed lines. For
instance, to vertex 1 of the graph shown in Fig. 1(b)
corresponds the factor

—Lg/(22r) '"]8(qi+k —pi+ (Ki—K) 22),

where m is a four-dimensional unit vector in the direc-
tion of the time axis. To a solid line with mass p and
momentum k, we let correspond the "on-mass-shell
propagator"

S„+(k)=0(k,) ~(k' —&2). (2 ~)

To an internal dashed line with "energy" ~ we let
correspond the propagator

product). Our aim will be to write an equation for the
(off-shell) iPif2-elastic scattering amplitude. /It is
known that, in contrast with the electromagnetic inter-
action via a vector field A„, the scalar interaction (2.10)
of two equally charged particles is attractive. )

First of all, following Ref. 1, we remark that Eq.
(2.1) may be written in a more compact symbolic form

R+H+HG0R =0. (2.11)

If we introduce the quasiparticle states
I K) normalized

by

and put
(Ki

I
K2) =8(K,—K2),

(Ki I
E

I K2) =R(Kil K2) 1

(Ki I
H

I K2) =8(Ki- K,),
(Ki I

Gp
I K2) =5(K]—K2)/22r(Ki —20),

(2.12)

(2.13)

and define the "matrix" multiplication as an integral
over K, then Eq. (2.1) is "obtained" from (2.11) by
taking the matrix element between ~~ and ~2. Iterating
once Eq. (2.11),we get

H+HGo—H+HG0HGpR. (2.14)

We take the matrix element of both sides of (2.14)
between two fip2-particle states (pip2 I

and
I q,q, ).

I We use the covariant normalization,

(p I
q)=».~(p —q), &.=(~'+p')'", (2.»)

for one-particle states of momenta P and q and mass 222.]
Observing that for the interaction Hamiltonian (2.10)

&pip2 I
H

I qiq2) = o (2.16)

n)2

and separating the contribution of the intermediate
pgp2-particle state, we obtain

&pip2 I
~

I qiq2) = &pip2 I IIG~
I qiq2)

+f(p.p2 I
HGoH

I kik2)G0&kik2
I
~

I qiq2)(dki) (dk2)

+ Q fd0„(ki, . . . , k.) (pip2 I
HG0H

I ki, . . . , k„)

2) —g2/I M
2 (p 0

q 0)2 20

= g'/I:~' —(pi —qi)
'—iOj

XG0&ki, . . ., k„ I
R

I q,q, ), (2.17)

(dk) =8 +(k)d4k
(2 9) where

All ultraviolate divergences in higher-order diagrams
can be reduced to divergences in the integration over
the variables ~, and renormalization can be carried out
in a way similar to the subtraction procedure in dis-
persion integrals (for more details see Ref. 9) .

and do„(ki, . . . , k„) is the corresponding
measure for the 22-particle intermediate state. (We men-
tion that the matrix elements of the type (p,p2 I

E
I qiq, )

are still considered as operators in the space of the
spurion energies K.) Our aim is to define a kernel E
which incorporates the contribution from the e-particle
states (22) 2) in order to obtain a linear equation for
the two-particle amplitude. Let II2 be the projection
operator on the subspace of two-particle states con-
taining one iPi and one $2 particle. We define the kernel
Eby

B.Two-Particle Quasipotential Equation

We consider the model of interaction of two charged
scalar fields Pi and i' of mass 224 with a real scalar field

y of mass p, with interaction Hamiltonian

X=HG,HI 1/$1 —G (1—II,)HGj7)I
=HGpH+HGpHG0(1 II2)HG01I+ ~ .. (2—.18)

H(x) = I.(x) = —g(:P,*(x)P—i(x) o (x):
+ $2 (x)$2(x)o (x) ~ ) (2.10)

(the symbol:: stands, as usual, for the Wick normal
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tion law at each vertex we have

FxG. 2. Reducible diagram of nonconvariant perturbation theory.

Then Eq. (2.12) can be rewritten in the form

&plp2 I
~

I qlq2&= &plp2 I
&

I qzq2&+f &pips I
it

I
klk2&

XGp(klk2
I
E

I qlq2)(dkz) (dk2) (2.19)

Lwe have taken into account that II2 commutes with Gp

so tllat Gp(1 II2) = (1 II2) Gp(1 II2) 7.
Let us define the connected scattering amplitude E'

as the sum of all "solid-line-connected" graphs (i.e.,
graphs which remain connected when the dashed lines
carrying momenta »22 are removed) . Then an equation
identical to (2.19) holds true for E' with a modified
Green's function (to be defined later) instead of Gp and
with (p,p, I

a
I kzk2) «placed by the sum (p,p, I

E'
I
k,k, )

of all (two-particle) irreducible diagrams, which are
defined in the following way: A (connected) diagram
of the fztP2 scattering amplitude is called irreducible if
it cannot be split into two graphs of the same process
which are linked by a zPz and a lP2 line oriented in the
direction of the external lines (say, from right to left)
and one dashed line oriented in the opposite direction
(see Fig. 2) .

In order to take the energy-momentum conservation
explicitly into account, we put

&plp2I (»1I &'I »2)
I qlq2&

=8(pl+ p2 ql q2 ( Kl K2) Zz)Trzr2(plpoi qlq2) )

&pips I
(Kl I

&'
I »2)

I qlq2&

8 (pl+ p2 ql q2 (Kl »2) 22) Vr zr2 (plp2 j qlq2)

(2.20)

This allows us to rewrite Eq. (2.19) in the form

(plp2 qlq2) +V (plp2 qlq2)

+f ~ fb(pl+ps —kl —k2 —(»1—K) 22) V.„(plp2, klk2)

XG.(kl, k2) T..2(kzksi q,q2) (dk, ) (dk2) d»=0. (2.21)

Here G„(kz k2) is defined through the free two-particle
Green's function (» I

Gp(klks' kl k2 ) I
K ) (equal to the

sum of all solid-line disconnected diagrams of the com-
plete lPz|P2 four-point Green's function) by

(K I Go(klksi kz k2) I
K') =4»z»23(lrz Irz )

X8(k2—k2') 8(K—K') G.(kl, k2) . (2.22)

I We have made use of the one-particle normalization
condition (2.15) .7 To see that the free Green's function
has indeed the diagonal form (2.22), we observe that a
typical contribution to it comes from a graph of the
type shown on Fig. 3.As a consequence of the conserva-

where

+, 2.23a,)
/F(»n, kl) F(»rz, k2) )

20 2klo

(X+K) (ko2+X') +2Xkp'

(X'—kp')'
I (X+K—20) '—ko'7'

xo ——xp(k) =
I (m+zz) 2+k'7'z' (2.23b)

kp ——ke k'=- kp' —k'= m') 0 )

and f is defined by the phase-space integral

(1/2) f8~+(k —q) 8„+(q)d'q= 8(ko) 8(k' —(212+@)')f(k')

f(s) = (1/») Lss —2(~2+~') s+(~'—~')'7"' (2.23c)

The term G„(kl, k2) in Eq. (2.21) corresponds to the
product 62'(kl) 62'(k2) of complete Feynman propaga-
tors in the Bethe-Salpeter equation (see, e.g., Ref. 10
and references cited there) . It can be shown that in the
nonrelativistic limit V„„,Lsee Eq. (2.20) 7 goes into the
nonrelativistic potential. We shall see this later in the
special case of the scalar Coulomb interaction.

kp=

u EEEEEEEEEPi=
I l

t I l

gl l K'p
t l

I t 1

kp

FIG. 3. Typical diagram of the two-particle propagator.

"N. Nakanishi, Progr. Theoret. Phys. (Kyoto) Szzppl. 43, 1
(1969).

k2 k2 (»1 »2+' ' '+»2r —1 »2r)22.

Since both k2 and k2' lie on the mass shell I the expres-
sion for (K

I
Gp

I
K') being always accompanied by the

factor g, z'8 +(k,)3 +(k,')7, the vector k2 —k2' is
spacelike. It could be proportional to the timelike
vector e only if each side of the equality vanishes
separately. Thus, we have k2

——k2, Kl —K2+' ~ +Kpr
I(&„——0. The over-all energy-momentum conservation
then gives

kl —kl' ——(K—K') 22.

Repeating the above argument once more, we see that
kl= kl', K——K', which justifies Eq. (2.22). The first two
terms in the perturbation expansion for G„have the
form

G. ol+G„(k, k,) =- / g
2

2x z—i0 (2x
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C. Center-of-Mass Variables and Equation for
Wave Function

In what follows we shall treat Eq. (2.21) in the
center-of-mass frame and will assume that the unit
vector n, which de6nes the time axis, is collinear to
P&+Po (and hence to q~+q, ) . t If we were interested in
the t-channel behavior of the scattering amplitude (for
timelike p~

—q~), it would have been advantageous to
choose e along p~

—q~.$ In this frame we put

Since Pz, (q) are linearly independent, this implies the
following homogeneous equation for each of the wave
functions Q~(p):

GB (p)p&(p) +fV&(p, k) p, (k) (dk) = 0. (2.30)

In order to obtain the normalization condition for the
wave function, we apply to both sides of Eq. (2.28) the
integral operator

1&= P&= P)

P& P~ P ~

qy= —q2= Q, n=0

(2 24)

Jb~(p, p')G~ '(p') (dp').

This leads to the following nonlinear equation for gz.

po= E,= (~'+p') '", po —p~~= qo
—

p ~o—=E;
T..., (P~, Pp; mqp) =T~(P q),

V 1 o(P4 P&i q4 q2) V&(P) q) & (2.25)

G„(kg, kp) = Gp(p~E) (kp1 k, kpl —lr) —= 2kpGs (k) .

In these variables, Eq. (2.21) can be written in the form

fQ(p, k)Gs—'(k)g~(k, q) (dk)+f f/'(P, kg) V~(kg, kp)

Xg~(kp, q) (dk, ) (dk, ) =ps(p, q). (2.31)

Inserting (2.29) in (2.31) and comparing the residues
at the pole E=8 on both sides, we obtain the following
orthonormalization condition (cf. Refs. 12 and 13):

TJ (p, q) +Vz(p, q) +fVz(p, k) G~(k) T~(k, q) (dk) = 0. V~fjy~, (k ) [—(8/pj's) LG~
—'(k )2'„8(k,—kp)

(2.26)

The corresponding equation for the complete two-
particle Green's function

B~(P; q) = G~(p) (po+qo) ~(p —q)

+Gg(P) T~(p, q)Gg(q) (2.22)
is

gz (p, q) +Gz (p) f Vs (p, k) gs (k, q) (dk)

= (po+qo) ~(p —q) G~(p) (2 28)

Let there exist an r-fold degenerate (r) 1) bound
state of mass 2B in the /gap system. Assume that in
analogy with the Bethe-Salpeter equation (cf. Ref. 10)
and with the nonrelativistic Lippmann-Schwinger
equation that the Green's function g&(p, q) has a simple
pole for E=B and in the neighborhood of this pole can
be written in the form"

Q(P q) =&~ Z L4~ (p)4~.(q)/(~ E +)j——
a=1

+(regular terms for E~B), (2.29)

where P~, (p) will be interpreted as the wave function
of the bound state of mass 28 and other quantum
numbers specified by u, and E& is a normalization factor.
Inserting (2.29) in Eq. (2.28) and comparing the
residues at the pole E=B, we obtain

r

Z B~.(P)+G~(P) JV~(P, k)4~. (k) (dk) 34~.(q) =0

'~The form of the singular term in (2.29} is consistent with
the noncovariant perturbation rules described in Sec. II A if
we assume the existence of r particles of mass 2B coupled to $1
and P2.

Gs '(k) ~8prEp(Ep —E) (2.33)

Choosing the normalization factor 1V~——1/4m. , we reduce
Eq. (2.32) in this case to the normalization condition
for the nonrelativistic Schrodinger wave function

(2.34)

We stress that Eq. (2.30) does not have the well-known
defects'4 of the four-dimensional Bethe-Salpeter equa-
tion related to the presence of the nonphysical variable
of relative energy (or relative time) . (The most serious
defect of the Bethe-Salpeter equation is the existence of
extra nonphysical solutions. ) In contrast to the Bethe-
Salpeter equation, the three-dimensional equation
(2.30) admits an unambiguous nonrelativistic limit.
However, we pay a certain price for the nice features of
the quasipotential equation. If we replace the potential
V& by its second-order approximation, then the known
analytic properties of the scattering amplitude will be
distorted by the iterative solution of Eq. (2.26) (which
is not the case for the corresponding Bethe-Salpeter
equation) .

'~ C. H. Llewellyn Smith, Nuovo Cimento 60A, 348 (1969);
V. A. Matveev, Joint Institute for Nuclear Research, Dubna,
USSR, Report No. P2-4327, 1968 (unpublished)."R. N. Paustov and A. A. Helashvili, Joint Institute for
Nuclear Research, Dubna, USSR, Report No. P2-4345, 1969
(unpublished) ."G. C. Wick, Phys. Rev. 96, 1124 (1954).

+Va(kx, kp) j)yap(kp) (dkg) (dkp) =8,o. (2.32)

Consider the special case when V~(p, q) does not
depend on E and 6„ is replaced by the first term in the
expansion (2.23), so that, according to (2.25),
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III. SIMPLIFIED VERSION OF QUASIPOTENTIAL
: EQUATION CONSISTENT WITH

ELASTIC UNITARITY

T~.(p, q) = V~, (p, q)+ — V~.(p, &)

Ts, (k, q) d'k

Ep' —(Ep+i0) ' 2'
differs from our Eq. (2.26) both in the Green's function
(i.e., the energy denominator) and the potential, " their
choice of the second-order off-shell amplitude and
potential being

T~,'"(p q) = V~,"'(p q) =g'/L~'+(p —q)'j

Both Eqs. (2.26) and (3.2) belong to a large family
of linear equations of the type

T+V+VGT=O, (3.3)

which have the following property in common: For real
V in the physical region they lead automatically (at
least formally) to the elastic unitarity condition.

To describe the whole class of equations of the type
(3.3) with this property, we write the solution of (3.3)
as

T= —L1/ (1+VG)) V= —VI 1/(1+GV) 3. (3.4)

I~ In analogy with the nonrelativistic Schrodinger equation we
call a potential V(p, q) "local" if it depends only on the difference

P "R.E. Cutkosky, Phys. Rev. 96, 1135 (1954).
» The difference in the sign convention is not important. Our

choice fits the nonrelativistic limit of the potential.

A. Nonuniqueness of 08-Shell Extrapolation of
Scattering Amplitude and of Corresponding

Quasiyotential Equation

In spite of the attractive general properties of the
quasipotential equation (2.26) for (2.30)] discussed at
the end of Sec. II C, it has one defect: It is too com-
plicated to provide exactly soluble problems in any
reasonable approximation. Indeed, already in lowest
order in perturbation theory the potential V&&'~ evalu-
ated from the second-order graphs in Fig. 1 has the
"nonlocal'"' form

V~"'(P v) =I g'/~ .(2E Po 8—~.—.+iO) j—, (31)
where pi~, =I p'+(p —q)')"' and the corresponding
quasipotential equation cannot be solved exactly even
in the liinit of zero-mass exchange (p=O) (the Bethe-
Salpeter equation has been treated exactly in this
particular case in Refs. 14 and 16) .

However, it is known that one can write different
three-dimensional (quasipotential) equations that give
rise to the same perturbation expansion for the on-shell

amplitude. For instance, the original quasipotential
equation of Logunov and Tavkhelidze7

= T(G—G*)T*. (3.3)

In order to make Eq. (3.5) identical with the ela, stic
unitarity condition

T(p, V)
—T*(p, V)

= ('/4E) fT(p, k)

XT*(k, q) 8(Ep' —E') d'k (3.6)

t'where, for the on-shell amplitude T(p, g), p, = gp= Ej,
we have to specify accordingly the discontinuity of the
Green's function. It is readily verified that for both
Green's functions

and
G~(kp) =

I 1/g~E, (kp —E—io) j
G '(E.) = Il/4-LE. '—(E+ o)'3}

t corresponding to Eqs. (2.26) and (3.2), respectivelyf,
the discontinuity is the same:

G~ G~*= Gs—'—Gs'*= (i/4E) 6(Ei,—E), (3.7)

and it leads to (3.6) (we use in both cases the invariant
volume element d'k/2E& on the upper hyperboloid) .

We will exploit the freedom in the off-shell extrap-
olation of the scattering amplitude in order to write
a simpler equation consistent with (3.7) (i.e., with the
elastic unitarity condition). The potential in any such
modified quasipotential equation is calculated from a
definite off-shell extrapolation of the perturbation ex-
pansion of the amplitude T (see Ref. 7). We require,
for instance, that in the lowest order V&@=—T&2), where
T&'& coincides on shell with (2.9). (An example of a
quasipotential equation in which this latter requirement
is not fulfilled is considered in Refs. 3 and 18.)

B.Model Quasiliotential Equation

We will consider the model equation of the type (3.3)

T-(p, ~)+V-(P, ~)+(»g-E)
XfVE(P, g) Lp(kp)/(k, —E—iO) j

XTs(k q)8(k' —nP) d4k=O, (3.g)
where

p(kp) = sgnkp= 8(kp) 8( kp),

and the corresponding homogeneous equation

(E Pp)4~(P) = (I/g«—)fV~(P, k)

X4'&(k) p(kp) ~(k' —iii') d'k= o (3 9)

It is readily checked that the Green's function

Gs (k) =
I p(kp) /SirE(kp —E—i0) $

ISC. Itzykson and I. T. Todorov, in ProceeCings of the First
Coral Gables Conference on Fundamenta/ Interactions at High
Energy, University of Miami, 1969, edited by T. Gudehus et al.
(Gordon and Breach, New York, 1969).

If the potential is Hermitian, V= V*, then the discon-
tinuity of T in the s channel is given by

T—T*=
I
—1/(1+ VG) 3V+t 1/(1+ VG*) jV



THREE-DIMENSIONAL FORM ULATION 2829

correspondirig to these equations ful6lls the elastic
unitarity condition (3.7). This choice of Gz is among
the simplest possibilities /consistent with (3.7)], since
the operator on the left-hand side of (3.9) is a first-
degree polynomial in pq. Besides we will restrict our-

selves to the second-order approximation in the poten-
tial, choosing it as the "local" energy-independent
extrapolation

V~(p, V)
= g'/t (p V)

' —I"+—i03 (3 10)

of —T&'& LEq. (2.9)j. An important feature of Eqs.
(3.8) and (3.9) is that they involve integration over the
two-sheeted hyperboloid k'=m'. )We mention that
T~(k, q) could be interpreted for kq(0 as the amplitude
of a process with four incoming particles, which is
possible off the energy shell. f We will see in Sec. IV that
in the case of scalar Coulomb potential (i.e., for p= 0),
the presence of the lower sheet of the hyperboloid k'=
m' in the domain of integration in (3.9) is essential in

order to ensure the O(4) symmetry of the bound-state
problem.

A more complicated model, with Green's function

G~(k) =
t 1/SqrEb(kq —E—i0) ] (3.11)

(and also involving integration over a two-sheeted
hyperboloid), was considered in Refs. 18 and 19. It
leads to the same O(4) degeneracy of the energy levels.

As some justification of Eq. (3.8), we observe that
the exact expression for the fourth-order box diagram
(Fig. 4) after integration over the internal energy kq in

the center-of-mass frame can be written in the form

1
Tb (p, V)=

8 E VE(p, k)
k

os b +oiq b+oiq wq b —(E—ko)——
+q kp

bid Mq b(oiq-b+oiq b—)— —

X Vs (k q) 8(k' —m') dqk) (3.12)

where Vz is given by (3.10) .We see that this expression
contains the second iteration of Eq. (3.8) plus a term
which is regular in the physical region and, hence, does
not contribute to the imaginary part of T.

The comparison between (3.12) and the second itera-
tion of (3.8), i.e., the integral

g' 1 q(kp) 1
T2-

SqrE (p —k) '—p,
' kp —E—i0 (k —q)

'—p'

0&8(kq —m') d4k (3.13)

(for pp= gp= E), may give us a feeling of the discrepancy
of the fourth order calculated from the Bethe-Salpeter
equation in the ladder approximation and the quasi-
potential equation (3.8) (there is no a priori reason to
trust any of these approximations more than the other
one) . It is possible to evaluate explicitly both (3.12) and

"I. T. Todorov, in Proceedings of the Battelle-Seattle Eencontres
in Mathematics and Physics, 1969 (Springer-Veri ag, Berlin,
to be published).

(E+k, , k) (E,q)

(ko, k-p),
i~
(E-ko;k)(E,—p)

(ko, k-'q )

(E, -. q)

FIG. 4. Box diagram in center-of-mass variables.

(3.13) for the case of forward scattering. The result for
the box diagram is

Tb. (p p) =(d/4m')F(E)
where

iqiqr tanhx+8q cot8q —g tanhx ~

P(E) =
cosh2X+ cos28q

(3.14)

for E&m

(3.15)

x cothy —0p coth0p
~cr=

cosh 2g —cos20p
(E=m coshx). (3.17)

As is well known, the dominant high-energy terms in P
and F„cancel each other and we get

g4
Tb, +T„ iqr+ —ln —+O~ —

~16p2E2 E~ m2 ~E~)

for E~~. (3.18)

With the same notation, the forward contribution from
(3.13) for E)m is

g', i tanhx+ cot8q

4m'' cosh2x+ cos28q
(3.19)

The imaginary parts of (3.15) and (3.19) coincide as
they should. On the other hand, we saw that the term
—g tanhx in the numerator of the right-hand side of
(3.15) )which is absent in (3.19)) is canceled at high
energy (i.e., for large x) by the contribution of the
crossed box. It is remarkable that the high-energy
behavior (3.18) of the complete fourth-order term is
exactly reproduced by the second iteration of the quasi-
potential equation (2.26) with Gs and V~ given by
(2.33) and (3.1). In other words, the old-fashioned
perturbation rules of Sec. II A seem to be well suited
for calculating the high-energy behavior in a given order
in g.

(with cos8q= p/2m, coshx=E/m, x)0) and

0 cot0—0p cot0p
F(E) = for E'= m' sin'8(m'. (3.16)

cos20 —cos20p

Equation (3.15) may be considered as an analytic con-
tinuation of (3.16) for complex 8 (8=qiqr+ix). We
mention that the forward contribution of the crossed
box diagram is obtained from (3.15) by the substitution
X~qiqr+X:



2830 ITZYK SON, KAD YSHEVSKY, AND TODOROV

d'k d'k'

Ep m
~

1—k"/4m' ~'

The scalar Coulomb potential

V(p, k) =g'/(p —k)'
goes into

(4 3)

g' (4m' —p") (4m' —k")
16m4 (p' —k') '

Defining further the relativistic binding energy as 8=
2(E—m), and putting

m, ,=m'/(E+m) = 2m'/(4m+8),

A(p') = (1—p"/4m') 'e~(p),
we transform Eq. (3.10) into

V'(p', k') =—

(4 5)

pI2 p
k'—8 fp(p') = . . .d'k'. (4.6)

2m 2~(8+2m) m (y' —k') '

)We have used the fact that p(kp) = (4m' —k")/
4m' —k" ~.$ This equation is of the same form as the

nonrelativistic Schrodinger equation for the Coulomb
problem:

g p
— de (4.7)

This similarity can be used to find the energy eigen-
values for Eq. (4.6), using the known result that the

IV. SOLUTION OF SCALAR COULOMB PROBLEM
AND RELATION TO INFINITE-COMPONENT

WAVE EQUATIONS

A. Connection with Schrodinger Equation for
Hydrogen Atom

In this section we solve the equation

(E-p.)~ (p) = g' p(kp)

8mE (p —k) ', QE (k) 8 (k' —m') d'k,

(4.1)

which is obtained by inserting the potential (3.10) with
p, =0 in Eq. (3.9).

Our first step will be to map the two-sheeted hyper-
boloid p'=m' on the three-dimensional space y' using
the formulas

pp/m = (4m'+ y") / (4m' —p"),

p=
1—(p'/2m) ' ' (4 2)

p'= t 2m/(pp+m) jp
(and analogously for q~q', k~k'). Under this change
of va.riables the upper hyperboloid pp ——E~ goes into the
inside of the sphere p"(4m', while the lower hyper-
boloid pp= E~ is mappe—d onto the outside of this
sphere (p")4m'); the points at infinity (p'~~) are
transformed on the finite sphere p"= 4m'. The invari-
ant-volume element on the hyperboloid is transformed
as follows:

nonrelativistic hydrogen levels are given by
—pn'/2n, '. (4.8)

Thus, the energy eigenvalues for Eq. (4.6) are to be
determined from the equation

2' A 4m'a'
"

(2m+8„) 'e' (4m+8„) (2m+8„) 'n' '

where we have put
(4.9)

n= (7r/2m') g' (4.10)

(we mention that the coupling constant g has the
dimension of mass). The solution of (4.9) is

3I„'=4E„'= (2m+8~) '= 2m'L1+ (1—n'/tP) '"$.
(4.11)

I.et us note that (4.9) for (4.11)$ leads (in the lowest
order in n') to the correct nonrelativistic formula, for the
Coulomb energy levels 8„of a particle of reduced mass
-', m. We see that in the relativistic case the O(4)
degeneracy of the energy levels is still preserved just
as well as in the case of the Bethe-Salpeter equation
(see Refs. 14 and 16 as well as the recent discussion in
Ref. 20). This is the main qualitative distinction
between the scalar "Coulomb" interaction and the real
electromagnetic interaction (via a four-vector poten-
tial), which necessarily leads to a fine splitting of the
relativistic energy levels with respect to the total
angular momentum.

B. Algebraization of Scalar Coulomb Problem

Now we will establish a one-to-one correspondence
between the quasipotential equation

(E po) 4n(p) = (g'/8—~E)f61/(p —k) '3

X.fjp(k) p(kp)8(k' m') d4—k (4.12)

and an infinite-component wave equation written in
terms of the generators of the zero-helicity representa-
tion of the conformal group SO(4, 2) . A similar algebrai-
zation has been carried out for the Bethe-Salpeter
equation (for the same case of scalar Coulomb inter-
action) in Ref. 21.

We will make use of the well-known degenerate
representation of SO(4, 2) which can be realized on the
set of homogeneous functions on the upper light cone
up

——(uip+upp+upp+u4')"' of degree of homogeneity—2 or —1 (see, e.g., Ref. 5). It is equivalent to the
zero-helicity representation" of the conformal group
t for an explicit demonstration of the equivalence of the
two representations see Appendix of Ref. 18j. This
representation can be realized equivalently on the space
X& of functions defined on the double-sheeted hyper-
boloid p'= 1, equipped with scalar product

(~, O) = (1/ ') ff~(p) L-1/(p-q)'j
&&4 (q) ~(p' 1)~(q' 1)d'pd'q —(4 13)—

20 J. E. Mandula, Phys. Rev. 185, 1774 (1969)."E.Kyriakopoulos, Phys, Rev. 174, 1846 (1968)."G. Mack and I. Todorov, J. Math. Phys. 10, 2078 (1969).
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The (homogeneous) Lorentz group acts in Ki as a
group of argument transformations:

t U(~) O](q) =S(~-'q)
The generators I'„and I"5 of SO(4, 2) (i.e., the repre-
sentatives of the Dirac y matrices -', y„and -,'y5 in this
infinite-dimensional unitary representation) are defined

by the following nonlocal operators:

O'A 3(p) = —(2/~') J I q./L(p —
q) '3'I

&& P(q) e(qo) 8 (q' —1)d'q, (4.14)

t r,@7(p) = —(2/~') J(1/t'(p —q) '2I

place the photon by a massless scalar particle in the
scheme of Ref. 24 in order to obtain (4.20)g. This
supports the relevance of our approximate quasipoten-
tial equation and indicates that Barut's algebraic
model' is related to a more conventional dynamical
model. We mention that unlike the Barut-Baiquni
infinite-component wave equation, our Eq. (4.18) is
symmetric with respect to the two initial particles.

In conclusion, we would like to make the following
remarks:

(1) The preceding argument gives a simple prescrip-
tion for the "algebraization" of the (free) four-momen-
tum:

)&P(q) e(qo) 8(q' —1)d'q. (4.15)

Comparing (4.14) with (4.15) we see that
p„= (m/r, ) r„ (4.21)

P.4 (P) = L(1/I'5) I'.4](p) (4 16)

t It can be verified directly (see Ref. 18) that the
operators p„= (1/I'5) I'„commute between themselves
and that P„PI'= 1.7 It is also not difficult to check that
the inverse of the operator (4.15) is given by

L(1/I' )el(P) = (1/2 ')fL —1/(P —q)'3

&&y(q) e(qo) b(q' —1)d4q. (4.17)

Changing p and q in (4.16) and (4.17) to p/m and

q/m, and inserting in Eq. (4.12), we get the following
"algebraic form" of the quasipotential equation:

((m/I' ) I'o E)y = (nm—'/2EI' )P, (4.18)

where a is given by (4.10). The discrete spectrum
corresponding to Eq. (4.18) can be found by multi-
plying both sides by I"5 from the left and performing a
rotation in the (0, 5) plane (cf. Ref. 4) . The result is

$E(m' —E') "'I'0—-'nm'$y~ ——0. (4.19)

Finally we recall that the eigenvalues of Fo in the given
representation are all positive integers (see, e.g. , Ref.
18) and And

E '= -'m'L1+ (1—n'/m') '"j
in agreement with (4.11).Equation (4.18) admits also
a continuous spectrum corresponding to the two-
particle scattering states.

Equation (4.11) for the total-energy eigenvalues in
our model appears as a special case (for mi ——m& ——m) of
the equation

M„'= mi2+m22+2mim2L1 —(n/e) 'j'I' (4.20)

obtained by Barut and Baiquni in Ref. 6 Lsee Eq. (10)
of this reference7. It is interesting to note that the same
bound-state eigenvalues can be obtained from the so-
called eikonal approximation"'4 )it is suRicient to re-

"M. Levy, Phys. Rev. Letters 9, 235 (1962); H. Suura and
D. R. Yennie, ibid. 10, 69 (1963); H. D. I. Abarbanel and C.
Itzykson, ibid. 23, 53 (1969).

'4 E.Brezin, C. Itzykson, and J. Zinn-Justin, Phys. Rev. D 1,
2349 (1970).

t see (4.16)$. This prescription is independent of the
interaction under consideration.

(2) The simple algebraization of the potential based
on Eq. (4.17) is peculiar to the case of zero-mass
exchange. The potential (3.10) with p) 0 already leads
to considerable complications (see Sec. III 2 of Ref. 18) .
The reason is that the kernel in the scalar product
(4.13) in Ki is closely related to the Coulomb potential.
If, however, we adapt the scalar product in our repre-
sentation space to the potential for p&0, the simplicity
of the free Hamiltonian will be destroyed.

(3) The potential on the right-hand side of (4.18)
will coincide with the nonrelativistic attractive Coulomb
potentia, l in coordinate space ( n/r) if—we identify r
with (1/m) I'q. This observation is not accidental. It
has been argued in Ref. 2 that, in general, for spin-0
particles the relativistic generalization of s is given by
r'=m '(N' —L'), where L and N are the generators of
the homogeneous Lorentz group. In our case, N2 —L2=
I5
0 (4) The simplest evaluation of the Lamb-shift cor-
rections and of the hyperfine splitting of the hydrogen
levels due to the nucleon form factor"" is made on the
basis of the Logunov- Tavkhelidze quasipotential equa-
tion. ~ It would be interesting to carry out this more
realistic calculation on the basis of the quasipotential
equation (3.9) by extending the algebraic technique
developed here to spinor particles.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor C. Fronsdal for
helpful discussions and Professor S. B. Treirnan for a
useful suggestion. Two of the authors (C. I. and I.T.T.)
would like to thank Dr. C. Kaysen for his hospitality
at the Institute for Advanced Study.

~5 R. N. Faustov, Joq'nt Inst@etc for ÃNclear Research Inter-
nat7'onal Winter School in Theoretical Physics, 1064 Dnbna, USSR
(Joint Institute for Nuclear Research, Dubna, USSR, 1964),
Vol. 2; Nucl. Phys. 75, 669 (1966).' H. Grotch and D. R. Yennie, Rev. Mod. Phys. 41, 350 (1969).


