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The electroproduction inelastic structure functions W, (e, v) (i=1, 2; e=go= momentum transfer squared;
v=if p=energy transfer; p'=1) are studied in the Bjorken (A) limit (v-+oo, p =——v/e fixed) and in the
Regge (R) limit (v-+ ~, e fixed). Finite A limits $Fo(p) =limvWo(e, v), F, (o) =lim Wi (e, v) $ and Pomer-
anchuk-dominated R limits Lw'(e)v '=limWo, wi(e)v=limWij are assumed. These two limits are first
related by use of Deser-Gilbert-Sudarshan (DGS) representations for causal functions V, (f~:, ~) related to
the 8'; by 5"2——ff:V& and lV& =aV& —v'V2. The above A- and R-limit assumptions, together with a smoothness
assumption on the DGS spectral functions motivated by the existence of some equal-time commutators,
are shown to imply that Fo(oo) =too( —oo) =—we=const and lim, Fi(o)/p= —1im,„wo(e)s=—wi=const.
These results agree with experiment if m;&0. The properties of the spectral functions that are obtained
are used to discuss some equal-time commutators and properties of the photon structure function and the
cross section oo(v) . The empirical value of o ~( oo) is used to roughly calculate wo. It is stressed, however,
that the above assumptions do not preclude the possibility that m~ ——0. The Fourier transforms g;(x', P.x)
of the W;(I~, v) are next studied and used to again relate the A and R limits. Restrictions on the TV; imposed

by the requirements of finite A limits and correct R limits are determined and results equivalent to the
above ones are obtained. This analysis determines the configuration-space behavior corresponding to the
A and R limits for large p and &, respectively. These limits are shown to determine the behavior of the p';
near the light cone x'=0, and the results are that WorSo(x )ooo(xo) fo(xo) and orWi 3'(xo)2

( xo
~ fi(xo)

for x' 0, where wo oifdxo=fo(xo) and wi=2ipfi(oo) —fi(—~) g. Corresponding properties of the Y;
are derived, and the equivalence of this approach with the one using integral representations is established.
The light-cone behavior of each component of (p ~p J„(x), J„(0)g~ p) can be determined, and it is shown
in particular that (p ~[Jo—Jo, Jo—Jogi p)~8(xo)o(xo)g~(xo), apart from total derivatives with respect
to xo —x3. The light-cone behavior equivalent to the Fubini —Dashen —Gell-Mann sum rule is then put in a
form which can accommodate this result so well that we are led to propose a highly symmetric universal
structure for the light-cone commutator of two SU(3) currents. The universality is made precise by use
of the LSU(3) SU(3) je equal-time commutation relations. The equal-time implications of the proposal
are considered and are shown to be consistent with, and suggested by, the gluon mode. In the context of this
model, m» is numerically estimated and found to agree with the experimental value.

I. INTRODUCTION

T tHE remarkable nontrivial scaling property experi-
mentally' ' exhibited by the forward electro-

production structure function in the deep inelastic
region has led to a number of theoretical speculations
about the nature of inelastic electron-hadron scattering.
Suggestions for behavior of the observed type have
been based on "almost equal-time" commutators, '
relation to Pomeranchuk exchange, 4 ' vector-meson
dominance, 7 constituent "parton" models of the pro-
ton, ' and relation to current-algebra sum rules. '

In this paper we shall investigate and relate two
model-independent approaches to the study of the deep
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inelastic region. The Qrst approach employs an integral
representation for the scattering amplitude'0 and the
second involves the behavior of the Fourier transform
of the scattering amplitude near the light cone. In both
cases, the observed behavior is deduced by relating the
deep inelastic limit to the Pomeranchuk-dominated
ordinary Regge limit. Although the integral-representa-
tion analysis is mathematically the simplest, the light-
cone approach is more transparent physically in that
it produces a simple configuration-space description of
the experimental results. In fact, a simple algebraic
generalization" of the con6guration-space behavior
implied by current-algebraic sum rules is seen to give
an elegant and numerically accurate account of the
empirical situation.

We recall that the total electron-proton cross section
in order n' can be written""

do/dodE' = fns/4Es sin'(-'l7) g

XPW~(x, v) cos'(se)+2Wi(ic, v) sin'(-', 8) j, (1.1)

where E, E', and 8 are, respectively, the electron initial

A short account of this work is given in Ref. 5.
"A short account of this work is given in Ref. 9."S.D. Drell and J. D. Walecka, Ann. Phys. (N.Y.) 28, 18

(1968).
"For an extensive review of the kinematics, see L. S. Brown,

in Boulder Lectures in Theoretical Physics (unpublished).
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energy, 6nal energy, and scattering angle,

x =q'= —4EE' sin'(sr8) (1 2)

A consequence of (1.10) is that

Ws(0, v) =0. (1.12)

is the square of the momentum transferred to electron,
and

We refer to the Bjorken' deep inelastic limit as the
3 limit, de6ned by

v= q'p= E E.— (1 3)
A limit: v~ao

&
x—+—oo

&
p= —v/x fixed&

Throughout this paper we take the initial proton to be
at rest and to have mass 1, so that the four-momentum

is
p"= (1, 0, 0, 0) . (14)

and to the Regge limit as the E limit, de6ned by

E limit: v~~, ~&0 6xed.

The limits for large values of the 6xed parameter are
The structure functions S', can be de6ned from the

forward spin-averaged current-proton scattering ampli-
tude

2' limit:

E.' limit:

phoo, g—+—oo, p))],
p~~ ) z(&—1.

lim vW, (x, v) =F,(p),
A

lim Wr(x, v) =Fr(p) .
A

(1.14)
tv T] Ky p 15qpqv~

tc j
Bjorken' has argued that the F; are expected to be finite
so that, w'ith (1.8),by

W„„=(1/s.) ImT„„= (1/2s. )fd'x exp(iq x)

x(p I Lz„(~),s,(0)31 p)
pqy pg vl=

I p. p ——IWs(x—v)

o&F'(p) &" (1.15)

We shall assume this behavior in this paper. Nontrivial
scaling means F;&0 and this is empirically observed'
for P2, with

T..=tfd ~exp(tq *)|i(as)(p IP.(*),~.(0)3
I p)+p»y

vq„~ t' vq„l one de6nes
p„——"

II
p„——"IT,(x, v) (1.13)

Fs(p) ~ constWO.
qvqv p~ 00

In terms of as and az, , one has

(1.16)

so that
W;(x, v) = (1/s-) ImT;(x, v) .

Fr=Fr= (1/4s'n) (1—1/2p) lim vas &0
A

(1.17)

The positivity condition

W;&0 (1.8)

and

Fr,=pFs —Fr= (1/47rsa) (1—1/2p) lim vor, &0. (1.18)

follows from (1.6). The transverse and longitudinal
cross sections o-z and o-L, are related to the 8'; by

Wr ——(os/4s-sex) (v ——', I
x I),

oz rl, s —
& v

4vrsu(1+v'/I x I)
'

Equation (1.5) becomes the physical Compton ampli-
tude for ~—&0, and we have

We assume the usual Regge asymptotic be-
havior'~"

Ws -+ ws (x) v

Wr -+ wr (x)v,

where n is the 3=0 intercept of the leading appropriate
Regge trajectory. We assume that the Pomeranchuk
trajectory with n= 1 dominates, so that

Ws ~ (I ~
I
~„/4~'nv),

«-v0

where o.~ is the total photon-proton cross s
Experimentally, '4 one has

(1.10) W's ~ws(tt)v-', (1.20)

a~(v) ~ const.
Jl~ 00

ection. Wr -+ wr(tr)v.

Although a naive analysis suggests that the Pomeran-

'4 Experimental limits: DESY Bubble Chamber Group (Phys.
Letters 2'7B, 474 (1968)j give o7=116+17 pb at 3.5—5.4 GeV
and J. Ballam et al. (SLAC) LPhys. Rev. Letters 21, 1544 (1968)j
give 0~= 126+17 pb at 7.5 GeV.

"H. Harari, Phys. Rev. Letters 1'7, 1303 (1966)."J.B. Bronzan, I. S. Gerstein, B. W. Lee, and F. E. Low,
Phys. Rev. Letters 18, 32 (1966); Phys. Rev. 157, 1448 (1967).

"V. Singh, Phys. Rev. Letters 18, 36 (1967); 18, 300 (E)
(1967).

"V.De Alfaro et at. , Ann. Phys. (N.Y.) 44, 165 (1967).
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chukon does not couple to S'2 at the relevant point
t=0, it is believed' ' that a mechanism is operative
which reinstates this coupling, quite consistent with
(1.11).The specific mechanism, be it expressed in the
language of singular residues, fixed poles, kinematical
singularities, or whatever, does not concern us here.
Nor does the J-plane nature of the Pomeranchuk
singularity. We assume only the diGractive behavior
(1.20) and (1.21).

Having stated the preliminary definitions and
assumptions, we proceed to summarize the contents of
this paper. In Sec. II A, we define functions V~ and V2

which are causally related to 8'„„and which satisfy
82= KVg and 8 &

——~V&—s'V2. The V; satisfy causal
integral representations /with spectral functions
o;(a, b) ), and so we write representations for the W;.
We use some equal-time (ET) commutators in Sec.
II 8 to motivate our smoothness assumption that the
0-; decrease fast for large u. This assumption, together
with the A-limit and E;limit assumptions (1.13)—(1.15)
and (1.20) and (1.21) are shown in Sec. II C to imply
that

Fs(~) =ws( —~) =-,'ada o (a) a—=ws

and

lim Ft(p)/p= —hm ws(s) ~=ws —2jda o(a) =—ws —si)
F00

where
—(8/Bb) os(a, b) ~o (a) h-'

ot(a, b)~o (a) b
—'

for b~0 We the.n use some properties of the o;(a, b)
that have been obtained to discuss some ET commuta-
tors and also the photon amplitude. The expression for
the photon amplitude, together with a saturation
as™ption,is used to roughly calculate m» in Sec. II D.
In Sec. II E we discuss the crucial point that the above
ass™ptions do vol exclude the possibility that F2=0.

In Sec. III A we again study the A limit by relating it
to the Pomeranchuk-dominated Regge limit. This ™
we work with the Fourier transforms W;(x', p x) of the

W;(s, v). We determine restrictions on the W; imposed

by the requirements that 8& and v$2 have finite 2
limits and correct R limits and then use these restric-
tions to find the A' limits and E' limits. Results equiv-
alent to the above ones are obtained. This analysis is
shown in Sec. III 8 to have determined the configura-
tion-space behavior corresponding to the 3' and E.'

limits in momentum space. The behaviors of the W;
near the light cone x'=0 are shown to determine the

and E' limits and the results are that xW2~
~(x')se(xo)fs(xo) andmWt ~'(x')2~xo~ fr(xo) forx' 0,
where

ws= ',ifdxo fs(xo) a-nd wr=2i) fr(+~) —ft( —~)$.
"A. H. Mueller and T. L. Trueman, Phys. Rev. 160, 1296

(1967); 160, 1306 (1967).' H. D. I. Abarbanel et al. , Phys. Rev. 160, 1329 (1967).

Similar results in terms of the V; are derived in Sec.
III C and shown to be equivalent to these. In Sec. III D
the equivalence of the above approach and the previous
integral-representation approach is established.

The above results are sufficient to determine the
light-cone (LC) behavior of each component of

(p ~
pJ„(x),J„(0)]

~ p). It is shown in Sec. III E in
particular that

(p I P-(*) ~-(0)j I p)-b(*') (*)f(*o)

apart from total derivatives with respect to ~—x3,
where J —=Jo—J3. In Sec. III F the LC behavior
equivalent to the Fubini —Dashen —Gell-Mann cur-
rent-algebra sum rule is put in a form which can
accommodate this result so well that we are led to pro-
pose a highly symmetric universal structure for the LC
commutator of two SU(3) currents. The universality
is made precise by use of the (SU(3) SU(3) $s ET
commutation relations. Although our proposal suggests
an unusual algebraic structure in the E limit, the pre-
vious relations between the E.' and A' limits are main-
tained. The ET implications of our proposal are
considered in Sec. III G, and it is shown that the
proposal is consistent with, and suggested by, the gluon
model for ET commutators. In the context of this
model, we numerically es™atem» and find excellent
agreement with experiment. This supports our proposal
and suggests why m»/0.

Our conclusions are summarized in Sec. IV and in an
appendix we show how our methods can be applied
when an arbitrary Regge trajectory is relevant.

II. INTEGRAL REPRESENTATIONS

A. Derivation

We shall assume the validity of the so called Deser-
Gilbert-Sudarshan" (DGS) representation for forward
matrix elements of commutators of relatively local field .

operators. Although this representation is not a strict
consequence of the axioms of quantum field theory, it
is known to be correct in every order of perturbation
theory. " We use this representation for convenience
only and could equally well employ the rigorous Jost-
Lehmann —Dyson" representation. '4

Although W„„, as defined by (1.6), is the Fourier
transform of a causal commentator, the 8'; will not, in
general, be causal because of the 1/s factors in (1.6).
It is therefore convenient to introduce additional

' S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev.
115, 731 (1959);M. Ida, Progr. Theoret. Phys. (Kyoto) 23, 1151
(1960).

ooN. Nakanishi, Progr. Theoret. Phys. (Kyoto) 26, 337
(1961)."R. Jost and H. Lehmann, Nuovo Cimento 5, 1598 (1957);
F. J. Dyson, Phys. Rev. 110, 1460 (1958).

'4 Our calculation has been repeated using this representation
in Ref. 13.



K L E C T R 0 P R 0 D U C T I 0 N S T R U C T U R K F U N C T I 0 N S

t/t/1= ~V1—S'Vg.

The Fourier transform of (2.1) is

;, —= (1/2~) (p I Pv(x), ~.(o) 3 I p)

(2.3)

=L—&p.p.+(p ~) (p.~ +~.p ) g"(p—.~) j
&&Vg(x', p x) —(— g„„+B„B„)Vi(x', p.x), (2.4)

where

V;(~ v) =fd' expx(ig x)V;(x', p x).
Note that

(2 5)

V;(x', —p x) = —V;(x', p x). (2.6)

The V; are locally related to W„„,and it can be shown
that the V; are themselves causal. "Thus we have the
D GS representations

OQ 1

V;(K, v) = da db (r, (a, b) b(~+2bv —a) e(v+b).

(2.7)
In configuration space these become

1

V, (x', p x) = —— da dbo;(a, b)2' p —]

X exp( —ibp x) A(x; a+b'), (2.8)
where

id (x; a) = [1/(2m) ')fd'p exp( —ip x) b (p' —a) o(p')

(2.9)

is the usual mass-u'I' free-field commutator function.
We shall always take v)+1 so that o(v+b) can be
replaced by +1 in (2.7). We can now use (2.2) and
(2.3) to write representations for the W;:

00 1

W2 ——~ da db o2(a, b)b(~+2bv —a), (2.10)

da db [goi(a, b) —v'o2(a, b) j&(~+2bv —a).

functions V; delned by

IVV"= L~p.p v(—pvz. +V.p.)+g."'3V2(~, v)

—(~g„„—q„q„)Vi(~, v). (2.1)

Comparison with (1.6) gives

(2 2)

the spectral functions o;(a, b), as embodied in the
integration limits in (2.7). These constraints, specifi-
cally the boundedness of the b-integration range, will be
crucial to our analysis.

B.Smoothness Assumption

As they stand, the integral representations (2.7) are
useless for our purposes because of their generality—
they are valid in any decent causal theory. In order to
make effective use of (2.7), we must restrict the class
of spectral functions to be considered. We thus will
assume that the o, (a, b) are rapidly decreasing functions
of a so that at least the moments fdaoi(a, b) and
fda(B/Bb) o2(a, b) a exist. It is the purpose of this sub-
section to provide some justi6cation for this assumption
with reference to some KT commutation relations.

The connection between the representations (2.7)
and KT current commutation relation has been estab-
lished by Cornwall and Norton. '6 Their results, for the
electromagnetic current, show that the existence of the
time-space commutator implies the existence of
fdadb o;(a, b), the existence of the space-space com-
mutator implies the existence of fdadb o;(a, b)b, and
the existence of the (time derivative of space)-space
commutator implies the existence of fdadb o, (a, b)b2

and fdadb o;(a, b) a. Thus our smoothness assumption
should be satisfied in any reasonable theory with finite
ET commutators [J;,J„]and [J;,J;j.

The ultimate justi6cation of our assumption rests,
of course, with the reasonable and experimentally
correct nature of our results. We feel that these results
do, in fact, suggest the rapid decrease of the o;(a, b)
for a—+00. It might have been that more singular
spectral functions were required by the data, but this
seems not to be the case here.

C. Limits

Z' ~~a A l~~es

We consider first (2.10) and proceed as in Ref. 5.
For reference, we list our three basic assumptions
discussed above as (i) finite A limit, (ii) Pomeran-
chukon dominance in E limit, and (iii) rapid con-
vergence of spectral functions.

In the A limit, we 6nd

vW2-+ -', ~fda o2(a, 1/2p).
A

Thus, in order that the limit be finite, we must have

We emphasize here that the above representations
incorporate, in addition to causality, the constraints
arising from the spectrum of the allowed intermediate
states. These spectral conditions restrict the supports of

fda o2(a, 1/2p) =0.
Then (2.10) gives

vW2 ~ (1/4p) fda o2(a, 1/2p) a—=F2(p),

(2.12)

(2.13)

"J.W. Meyer and H. Suura, Phys. Rev. 160, 1366 (1967).Note
that this result depends on the Abelian nature of the electro-
magnetic current.

'6 J. M. Cornwall and R. E. Norton, Phys. Rev. 173, 1637
(1968).
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where
og(a, b) =—(8/Bb) o2(a, b).

If 02 were 6nite at b =0, we would have t/I/'g —+ —xi~ 's,
a~

(2.23)

for some (possibly vanishing) o (a) and some ri(a, b)
less singular at b~0 than b 2. Thus

whereF2(p) —+ — da o, (a, 0) a.
~~ 4p

To see if this is possible, we calculate the R limit of
(2.10):

(2.24)ZOy = 'N2 —
'Vy~

vi=2fda o(a),

Fi(p) ~ wip.

(2.25)
(2.14) and so

(2.26)

This prediction is consistent with the present rough
experimental information' on Ii j.

It is convenient to consider explicitly the combinations
(1.17) and (1.18).Fz, is determined by oi according to

M2 ~ —(~/4v') fda oq(a, —~/2v) a, v))—~))1.

vW ~ (~/2v)f da o2ta, (a—~)/2v7.

We now take v)&—~&)1 so that, since 0-2 is assumed to
vanish rapidly for large a, we can assume that —a/~((1
inside the integral. Then, using (2.12), (2.14) becomes

(2.15)

Thus, ignoring possible diKculties at b=0, wc find

Fi, (p) = (1/2p) fda oi(a, 1/2p) ~ nip. (2.27)

If v~=0, then

W2 ~ ——, da o2(a, 0)a. (2.16)
gs 4P

Since this violates (1.19), we must conclude that
0.2 is singular at b=0. It must, in fact, diverge linearly
to account for the extra power of v ' in (2.16). There-
fore we can write so that

Fr(p) ~ w2p

Fi(p) ~ 0p,

(2.28)

(2.29)

o2(a) b) =o(a)b '+rg(a) b), (2.17)

where r2(a, b) is less singular at b 0 than b '. It then
follows from (2.12) I

which implies that fda o2(a, b) =
07 that

fdao(a) =0 (2.18)

and fda r2(a, b) =0. Insertion of (2.17) into (2.15)
gives

W2 ~ (1/2v) fda o (a) a=—w2v ', v)& —~)&1. (2.19)
B~

Thus we are now consistent with (1.19) and find that
w2(~) w2 is independent of ~ for large i~.

We now return to (2.13) and use (2.17) to find

F2(p) -+ —',fda o (a) a= w2, (2.20)
p~ OO

which is the desired result (1.16). Although it is con-
ceivable that m2=0, we shall indicate below that this
is not the case. Thus (1.16) will be satisfied in any
theory obeying Bjorken behavior (1.13), Regge
behavior (1.20), and the representation (2.10) with a
rapidly decreasing spectral function.

In the same way, from (2.11), we find

Wi ~ —(1/2p) fda oi(a, 1/2p)
A

ar, /ar ~ Fl./F'r ~ o (2.30)
A pm00

This behavior is also roughly indicated experimentally. '

Coenectioe with Equal-Time Commutators

By comparing our results with the Cornwall-Norton"
expressions for KT commutators discussed in Sec. II B,
we can 6nd some restrictions imposed by the assump-
tion of a finite scaling limit. We have seen that F~(p) (
~ implies that fda a2(a, b) =0 and hence that

fdadb o.2(a, b) =fdadb o-2(a, b) b=0. (2.31)

Imposing this requirement on the Cornwall-Norton
Eqs. (2.20) gives

(plLJ'(0 x) J (0)71p)=o (2»)
and

(p I L~o(0, x), ~'(0)7 I p) "~'b(x) (233)

Conversely, (2.32) or (2.33) imply (2.31) and hence
finite scaling for vS'2. In a similar way one can obtain
the Callan-Gross'7 results from comparison of the
Cornwall-Norton representation for (p I LJ,, J;7 I p)
and our expressions (2.13) and (2.21).

E. Limit

+~f '( ' / p) = '(p)' ( ' ) We have determined the large-i~ behavior of the
and consideration of the E limit leads to the require- Regge residue functions defined in (1.20) and (1.21)
ment that

oi(a, b) =o(a)b '+r ( iba),
-(2.22) "C. Callan and D. J.Gross, Phys. Rev. Letters 22, 156 (1969).
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or, more clearly, (2.37) describes the ~ dependence of
W& so that o (a) corresponds to the singularity structure
of H/'2 in ~, we expect the p-meson intermediate state to
be the dominant one for small ~. Our assumption thus
amounts to "p dominance" of (2.37) for small ~. Since
o.(a) has no simple expression in terms of intermediate
states, however, this assumption is not on the same
footing as the usual vector-meson dominance of electro-
magnetic processes. Furthermore, since, in view of
(2.18), o.(a) is not positive definite, our assumption in
the zero-width approximation corresponds to taking
something like b'(a —ap) for o (a).

With this motivation, we proceed to approximate the
integral in (2.41) by

to be
(2.34)

(2.35)Wi(K) ~ —WiK

We can obtain an expression for wp(~) for general ~ by
integrating (2.17) to obtain

op(u, b) = —o (a) lnb+g (a, b), (2.36)

where q is less singular at 5 0 than lnb. Substitution in
(2.14), using (2.18), gives

iop(~) = —-', ~fda u(a) ln(a —~). (2.37)

This reduces the (2.34) for large ~. Similarly, we find

ioi(~) =fda L-', o (a) ln(u —~) —2o (u) ~(a—i~)-'], fdu a(u) lna fdu o (a) Pinup+ (a—up) /ap+ ' '

ap
—'fdu o (a) a,

where we have used (2.18).Thus we have

y zv2uo

(2.38)
which satisfies (2.35) .

We dehne here the photon amplitudes

(2.39)Fp(v) = —lim ~-'Wp(~, p),
«M

Fi(v) = lim Wi(a, v),
~0

and find from (2.37) and (2.38) that

so that, by (2.43),

o, (~ )~4ir'nwpap —'.

Fp(p) ~ (1/2v) fdao(u) lnu—=yp-',

Fi(v) ~ pvfda o(u) lila=yv.

Taking ap' I' to be the p mass and using o.
~ ( pp ) 120 lib, '4

(2.41) this gives wp 0.6, in rough agreement with the experi-
mental value ~0.3 in view of the uncertainties in our

(2 42) choice of ap and o.~(~).

Using (1.10), we obtain

a, (~) =4''ny (2.43)

This agrees with the experimental result (1.11) if
y~0

D. Saturation Assumption

Any of the constants zv&, m2, and y introduced above
can, in principle, vanish. In this subsection we shall
assume that m2/0 and obtain a rough estimate of it
from the experimental (nonvanishing) value of y. The
possibility that F2=0 will be considered in Sec. II K.

To relate m2 and y, we shall assume that the u integra-
tion in (2.41) is approximately saturated near some
effective squared mass a0. It is important to emphasize
that we are not making a saturation approximation for
the scattering amplitude (2.10) for any energy. The
point is that o.(a) is like a two-point spectral function
in that, according to (2.17), it describes the inter-
mediate-state spectrum for 0=0 at which point,
according to (2.10), Wp(~, v) loses its v dependence and
becomes a function of ~ alone. The b= 0 contribution to
(2.10) indeed has the form of a two-point spectral
representation in the variable ~. This single-variable
character of o(a) is also clear from (2.37). For these
reasons, we expect the saturation approximation to be
useful in (2.37) although not in the general representa-
tion (2.10) . Furthermore, since the b = 0 part of (2.10)

E. Discussion

Our derived result (2.20) is in agreement with experi-
ment only if F2&0. Although, as we saw in Sec. II D,
if m2/0, then a rough estimate of it is in reasonable
agreement with experiment, it is nevertheless theoreti-
cally possible for m2 to vanish. " We shall therefore
discuss here consequences of m»=0 and what further
assumption is necessary to guarantee that v@2&0.

All of equations above remain valid for @2=0. In
fact, our general result can be written as

limFp(p) = lim iop(~) = urp,

and m»=0 simply means that both limits vanish. Note
that the vanishing of wp=wp(po) does not contradict
the coupling of the Pomeranchukon (for finite ~). Our
assumption of Pomeranchukon dominance does pre-
clude the vanishing of iop(~) for (almost all) finite ~ and,
in particular, for ~=0 (so that y&0). According to
(2.37), we therefore must have o (a) WO.

I et us now determine the asymptotic behavior of our
functions when x»=0. More generally, we suppose that

fdao(a)a'=0 for i=O, 1, 2, ~ ~ ~, ii—1

and
fda o (a)a"WO.

~8 I thank Henry Abarbancl for emphasiz&ng. this- to me.
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Then from (2.14) and (2.36),

Wp ~ (1/2ttv «" ')1' da a (a) a

Thus

Rlld

2o =X =SO X3) 2X=—x+=—xp+xp, (3.5)

so that

Fp(~) ~ o

wp(«) ~ const«'-".

We shall also write

and

x= (x' x').

s= x'= 4o.X—x'

dx =dh'dx'.

(3.6)

(3.7)

(3.8)

Although we cannot have o.(a) —=0, it is still possible
for F&(p) to vanish identically. This happens when

fduo (pa, b)a—=0. It follows from (2.24) and (2.27)
that m~=~x2=0. The converse is not true, however,
since m2 ——~~~+~=0. In fact, in a ladder-diagram
model, "it is explicitly found that m»/0 but my=0.

Since it is consistent with our previous assumptions
for m2 to vanish, another assumption is necessary in
order to agree with experiment. Any one of the following
will sufFice:

(i) lim Fp(p) WO.
p~ OQ

(n) bmoc&(«) HO.
g~ 00

(iii) a (a) oscillates as little as possible.

(iv) ia&(«) vanishes as slowly as possible for «~pa.

Although each of these is u priori weaker than the
blatant assumption that +2&0, there is little theoretical
basis for any of them. The situation will be clarified in
Sec. III, where theoretical support for the nonvanishing
of zv2 will be adduced.

III. LIGHT-CONE COMMUTATORS

A. W; Limits

Thus
qv= (v, 0, 0, —(v' —«) '~').

g x-+2av+(a —X)/2p

(3.9)

(3.10)

Rlld

q x ~ 2av —(a —X) «/2v. (3.11)

With the choice (3.9), the exponential in (3.1) is
independent of x and so we define

f;(a, X) ='VP, (a.l~, a.+X)

de; 4o-) —x', o-

4og

ds W;(s, a.+X). (3.12)
0

In obtaining the last equality, we have used the causal-
ity property of W;:

W;(s, xp) =0 for s(0. (3 13)

Equation (3.13) follows from (3.2) and (3.3) and the
causality of the V;. This causality further implies that
(3.12) has the form

f;(a, X) =8(alw. )F;(aA, a+A). (3 14)

We fix for now the momentum transfer vector to be

(3.15)

Rndwhere

Configuration-space representation for the W, can be Using (3.12), the A and E limits of (3.1) become

ob«ined f«m (2.5) by using (2.2) and (2.3). Thus W ~2fg dl, L2' y ( y)/2 ]f ( y)

W, («, v) =fd4x exp(iq x) W;(x', p.x), (3.1)

and

Wp= —OVp

Wi ——— Vi+ (p 8)'Vp.

(3.2)

(3.3)

x&= (a+A, x, a —X). (3 4)

2'G. Altarelli and H. R. Rubinstein, Phys. Rev. 18/, 2111
{1969).

We see that the 8';, like the V;, are antisymmetric
under x—+—x. The representations (3.1) are the most
convenient ones for studying and relating the A and R
limits and so we shall use them first. We shall afterwards
consider the V;.

It is convenient to introduce new configuration-space
variables according to the identification

W, ~ 2fdadX expg2iav —i(a—X) «/2v) f;(a, X). (3.16)

Let us first consider the A limit of v$2. It follows
from the form of (3.15) and the non-negativity of
Fp(p) that the behavior of Wp in the 2 limit is con-
trolled by the behavior of f&(o, X) for a~0. Further-
more, because of the oscillatory factor exp( —iX/2p),
only bounded values of X are relevant in the A limit.
Thus the behavior of fp(o, X) for a~O and A.

. bounded,
i.e., for o-~0 and o-X—+0, determines the A limit of 8'2.
It therefore follows from the finiteness of Fp(p) that

2fp(o) X) —+ fp(X)8(a)+ L.S., (3.17)
0'-+0;o X~O

i.e., that the leading possible singularity of f& for a~0
and bounded A is proportional to 8(a.). Here L.S.
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stands for less singular terms in the specified limit.
We emphasize that (3.17) exhibits the lending possible
singularity so that perhaps fs(h) —=0. Substitution of
(3.17) into (3.15) gives (1.13) with

Fs(p) = sifdh exp( i—h/2p)fs(h). (3.18)

To obtain information about fs(h), we next consider
the R limit (3.16) of Ws. The R limit for general s is
again related to the o—&0 behavior of fs(o, h).. It is clear
from (3.16), however, that in order to determine the
R limit of Ws, we need to know fs(o, h) for large h as
well as for small o.. In fact, for arbitrary fs, (3.16) is an
essentially arbitrary function Fs(v, ~/v) of v and s/v
and therefore of s and ~.

We can nevertheless proceed because the exponen-
tials in (3.16) limit the integration regions which con-
tribute significantly in the R limit. Thus we expect the
values of o. and h such that o.(v ' and h(v/a to domi-
nate. If we take —Ir))1, i.e., consider the R' limit, then
the relevant region is 0~0 and X((0-', i.e., 0.~0 and
0%~0. We can therefore relate the R' limit to the A

limit. In view of (3.17), we obtain

Ws ~ (i/2v) fdh exp(ihtt/2v)fs(h). (3.19)
B~

It now follows from the assumed behavior (1.20) that
fs(h) is integrable and so we again get (2.34), where
now

ws
——-', ifdh fs(h). (3.20)

It is again possible that ws ——0, even if fs(h) $0. This
just means that ws(oo) =0, in which case, to obtain a
more specific large-a behavior, further terms must be
kept in (3.17). The point is simply that weaker o.

singularities, with stronger large-) behaviors, can also
give the required Regge term v ', but with a coefficient
function ws(a) which approaches zero suitably fast for
~~~ . In any case, we see from (3.18) that

(3.21)

where gs(o, h) is less singular than e(o) for o—+0 aed
O.X~O. In the limit cr—+0 with X unspeci6ed, however,

g~ can become important. For the case in hand, this can,
in fact, be explicitly seen to happen. The point is that,
as a consequence of the constraint (1.12), we have

O=vWs(0, v) =2vfdodh exp(2iov)fs(o, h). (3.23)

The behavior of fs for o—+0 controls the v~oo behavior
of (3.23), but, if wsWO, the contribution of the first

Fs(p) ~ ws,
p~ 00

the same result as (2.20). The (experimentally ob-
served) nonvanishing of ws is now seen to be the state-
ment that the large-h behavior of Ws(x', xs) is as nice
as possible.

We emphasize that the results (2.34) and (3.21)
depend on the relevance of the speci6c behavior (3.17)
to the R' limit. In general we can write

2fs(oi h) =fs(h)0(o)+gs(oi h)i (3 22)

term in (3.22) is wsg0. The second term must therefore
satisfy

fdh gs(o, h) ~ »wse(o). (3.24)

This is not inconsistent with (3.17) and (3.22), because,
owing to the absence of an oscillatory cuto8 as in
(3.16), large h's can be important in (3.23) and (3.24)
so that the limit (3.17) is not relevant. Thus the a~0
limit cannot be taken inside of the integral in (3.23)
or (3.24) . One can construct quite elementary functions

gs(o, h) with the above properties.
The same type of analysis can be used to study

Wi(a, v). Starting again from (3.15), it follows from
the finiteness of Fi(p) in (1.14) that

2fi(o, h) ~ fi(h)b(o)+ L.S.
o'M;cr'h-+0

for some (possibly vanishing) function fi(h). Then
(1.14) is satisfied with

(3.25)

Fi(p) =fdh exp( —ih/2p) fi(h),

a,nd (3.16) gives

W, -+ fdh exp(ih~/2v) fi(h).
R~

In order to satisfy (1.21), we must have

fi(h) =fie(h)+ L.S.

(3.26)

(3.27)

(3.28)

3' This is a consequence of generalized Fourier-transform theory.
Another way of stating (3.28) is that)&(+ ai) —j&(—~) =2'.

31 A relation between the A limit and the light cone has also
been noted by B.L. JoGe, Phys. Letters 30B, 123 (1969).

for some (possibly vanishing) constant fi. We mean by
(3.28) that for large h, fi(h) behaves like the sum of

fie(h) and a function gi(h) whose integral

dA, g X

diverges less strongly for A~~ than const&&A. ' We
now again obtain the result (2.35) with

wi =4zfyi (3.29)

and the result (2.26).

B.Light-Cone Ana1ysis

We saw in Sec. III A that the limit 0.—+0, 0)—+0 of
the W;(x', xs) determined the 2 and R' behavior of
the W;(~, v). Let us study this limit in more detail.
Since x'=4oX —x' and since the 9; vanish for x'(0
by causality, the above limit is precisely the limit
x'~0. Thus it is the behavior of the W; on the light
cone x'= 0 which determines the 3 arid R' limits of the
S';."We shall therefore be able to determine from the
results of Sec. III A what is the nature of the 8"; near
the light cone (LC).

We consider first Ws and return to Eq. (3.17). The
0 function in f&, which is the strongest singularity
allowed by the 6niteness of Ii2, arises naturally from
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the causality-dictated 8 function exhibited in (3.14). for s 0. The leading LC singularity of Wi is thus
Using the fact that speci6ed to be 8'(s). The large@ behavior of the co-

eKcient of this singularity was determined in Sec.
III A to be given by (3.28) .

It therefore follows from (3.12) that

wW, (s, })-8(s)es(0, ) ) (3.32)

for s 0. We mean by (3.32) that the leading singularity
of s.Ws(s, X) for s~0 and X fixed in as indicated. We do
not specify lesser singularities such as s '+' or 8(s).
Lesser singularities would not contribute to Ps(0, X)
as defined by (3.12) and (3.14).

We explicitly see from (3.32) that it is the leading
singularity of W2 on the I C which was determined in
Sec. III A and which controls the A and R' limits of
8'2. We also learned in Sec. III A that the coe%cient
of this leading singularity, Ss(0, X), is an integrable
function of P, consequences of which were the derived
behaviors (2.20) and (2.34). In the LC language, the
finiteness of Fs implies that 7rWs 8(s)ls(X) for s 0,
and then the desired Pomeranchuk behavior requires
that + be integrable so that consequently (2.20) and
(2.34) hold.

In general we can write

wWs(x', p x) =8(x')Ls(p x)+As(x', p x), (3.33)

where Rs(s, X) is less singular than 8(s) for s—+0 with
fixed X. The corresponding decomposition of H/"2 in
(3.12) is

'Ks(OA, o.+X) =8(O.X) LPs(O.X, o+X)+ps(OA, o+X) j,
(3.34)

where, for fixed I,,

(3.17) is seen to simply specify the limit of Fs(n, P) for
n—+0. We easily find

S,(0, X) =-', e(X)fs(X). (3.31)

4og

ds V;(s, o+)t), (3.40)

where we have used the causal properties of the V;.
Causality further requires the e; to have the form

e, (o, X) =8(oX) 8;(OX, o+X). (3.41)

The existence of the A limits requires the leading
possible singularities of the e; to have the forms

2es(o., X) ~ o8(o)es(X)+ L.S. (3.42)
r-+0;o X-+0

and
(3.43)2ei(o, X) —+ 8(o)ei(X)+ L.S.

a'~0'o X~O

for some (possibly vanishing) functions e;(X). This
behavior then gives the representations

Fs(p) = (1/4p) fdic exp( —iX/2p) es(X) (3.44)
alid

Fi(p) = (—i/4p) fdic exp( —iX/2p) e (Xt)+pFs(p) .

C. V; Behavior

From the above results we can determine the light-
cone behavior of the V;(x', p x) by inverting Eqs. (3.2)
and (3.3). It is most simple, however, to derive this
behavior directly from (2.5) . The assumed momentum-
space behavior follows from (1.13)—(1.15) and (2.2)
and (2.3). We use the same variables as in Sec. III B
and therefore define

e;(, X) —= f dx V;(4 X—x', +X)

&s(n, X) v —', e(X)fs(X) (3.35) (3.45)

and

a—&0

(3.36)

0=vWs(0, v) —+ 2vfdodX exp(2io. v) 8(OA) Ps+gsj.

gs(n, }t) ~ 0.
~0

The behavior (3.36) cannot be correct for unbounded
X if ws/0, however, because of the constraint (1.12),
which requires that

The assumed behavior in the R limit specifies the large-A,

behavior of the e, (X) to be

's() ) =es8()~)+ L.S., (3.46)

e,())=., ~) ~+I..S. (3.47)

for some (possibly vanishing) constants e;." These
imply again the behavior (2.34) and (2.35) with

ZV2= —gZe2 (3.48)
and

tot Ml+ to2 (3.49)

Equations (3.46) and (3.47) determine the behavior
of the 8;(n, P) in (3.41) for a~0. We obtain

8s(a, X) —+ —',ne(X) X-'es(X) (3.50)

(3.3'7)

We can determine the behavior of S~ on the I C in
the same way. It follows from (3.25) and the first
equality of (3.12) that

%](oX 0+X) + sfi (oX)
~

X
~
ft (X) . (3.38)

o~0;o X~O

The final equality of (3.12) then gives

~Wi(s, ))-8'(s)2 ~) ~f, ()~)

0;+0

"Note that (3.42) cannot hold for unbounded X since other-
wise, according to (3.46), Fz(v), defined by (2.39), would not

(3 39) exist'.
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and
e,= —fdh f, (X)

8] = y gN82.

(3.54)

(3.55)

The equivalence of (3.44) and (3.45) with (3.18) and
(3.26) requires the local identifications

fp(~) = —ep'(li) (3.56)
and

These are consistent with (3.54) and (3.55) and the
behaviors (3.46) and (3.47) . Finally, the relations
(3.2) and (3.3) can be explicitly seen to be consistent
with the leading LC singularities (3.32) and (3.39) of
Wp and Wi and those (3.52) and (3.53) of Vp and Vi
and also with the large-X behavior of the coeKcient of
these leading singularities.

D. Connection with Integral Representations

In this subsection we establish the equivalence
between the results of Sec. II and the preceding results
of Sec. III. We thus assume now the validity of the
DGS representations (2.7) and the properties of the
spectral functions determined in Sec. II. We shall show
that these imply a LC behavior for the V; in agreement
with that given in Sec. III C. We shall work directly
with the configuration-space representations (2.8) and
use the fact that

a(x; a+b') ~(1/27r) e(xp) fb(x') '(a+b') 8(x'—) )-

(3.58)
for x'—+0.

Substituting (3.58) in (2.8) with i=2, and using
(2.12), we see that

~Vp(x', X)~0(x') Ep(X) (3.59)

and
(3.51)

The LC behaviors of the V, then follow from(3. 40) to be

~V, (z, li)--,'e(z) e(X) l~-'e, (X) (3.52)
and

~V, (z, X)--',b(z) p(l~) e,() ) (3.53)

for s 0. Thus the leading singularities of the V; on the
LC have been determined.

The consistency of the above results with those of
Secs. III A and III 8 is easily established. Consider
first the relations (3.48) and (3.49). These are consis-
tent with the representations (3.20) and (3.29) pro-
vided we make the identifications

These results are in complete agreement with (3.52),
(3.46), and (3.48) .

Similarly, from (3.58) in (2.8) with i=1, we find

~Vi(x', l~)~b(x')E, (l~) (3.62)

for x'—+0) where

Ei(X) =$ ie—(X)/4zjfdadb pi(a, b) exp( —iB). (3.63)

In view of (2.22), (2.24), and (2.25), Eq. (3.63)
satisfies

Ei(X) ~ ,'isi A—=p'i(w-p wi)—X

We again obtain perfect agreement with (3.53), (3.4/),
and (3.49) .

Thus the representations (2.8) with the spectral
functions satisfying (2.12), (2.17), and (2.22) imply
the LC behaviors (3.52) and (3.53). It is easily seen
that, conversely, the behaviors (3.52) and (3.53),
with (3.46) and (3.47), imply that the spectral func-
tions do satisfy (2.12), (2.17), and (2.18). Given the
existence of the DGS representations with nice spectral
functions, the equivalence of the DGS and LC methods
is therefore established. We feel that the LC approach is
preferable, however, both because it requires fewer
assumptions and, as we shall see below, because it
suggests an appealing explanation of the nonvanishing
of zv2.

All of the considerations of Secs. III A—III D can be
carried out for an arbitrary Regge trajectory intercept
u=u(0). This is illustrated in the Appendix for a
scalar amplitude.

E. Light-Cone Commutation Relations

By using the results (3.59) and (3.62) in (2.4), we

can determine the behavior of each component of

(P ~ LJ„(x),J„(0)j ~ P) in the neighborhood of the LC.
It is convenient for this purpose to work with the com-
ponents A~, A of a general four-vector A„defined by

Ay ——Ap+Ap, A= (Ai, Ap) . (3.65)

Indices are then raised by the metric tensor g&" with
nonvanishing components g+ =g += ——',g"= ——,'g"=
—,'. Thus x'= x x —x'= x x g~"= x x~.

As an important example, we consider the com-
mutator LJ (x), J (0)].We find from (2.4) that

W (x, p) = (—Cl+28p8 ) Vp —cL'Vi. (3.66)

This can be written as

W (x, p) = F'p(x', xp)+8 Fi(x', xp)+8 '7'p(x', xp),

(3.61)

for x'—+0) where

Ep(X) = $ie(X)/16z5fdadb op(a, b) a exp( —ibX). (3.60)

Using (2.17) and (2.19), we find further that

Ep(X) ~ iwp/8X.

where

and

I'0= — Vg= W2,

I,=2a,V„

Y2= —Vg.

(3.67)

(3.68)

(3.69)

(3.70)
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W —+ (~'/4P') Vi. (3.79)

Ke de6ne the LC limits by

Y, (x', xo)~Y;(x', xo), i = 0, 1, 2 (3.71)

for x'~0, and we see from (3.33), (3.59), and (3.62)
that

n- Yo ——8 (x') Lo (xo), (3.72)

ir Yi ——4xo8(*') Eo(xo)+20(x') E'2(xo) ) (3 /3)

irY2———8 (x') Ei (xo) . (3.74)

Thus we can write

n.W (x, p) 8(x') L2(xo)+8~(x', xo) (3./5)

for x' 0. For general functions A and 8 we let A~A
mean that A~8 for x'~0 apart from terms of the form
8 C. Then (3.75) gives

irW (x, p)+-+8(x') Lo(xo). (3.76)

The Fourier transform

W (q, p) =fd4x exp(iq x) W (x, p) (3.77)

s, according to (2.1), given by

W (q, p) = (~—2pq ) Vo+q 'Vi. (3.78)

We learn from (3.77) and (3.67)—(3.74) that

behavior of the integrand in (3.82) as well as in (3.83) .
Using (3.72), the integral in (3.85) can easily be done
and, of course, gives (1.13).

F. Connection with Current Algebra

Until now our procedure has been to derive conse-
quences of the assumed existence of the A limit and
nature of the E limit. We have obtained the desired
result F&(oo) =vs&= const except for the possibility
that z~ ——0. In the language of LC commutators, this
possibility means that the function Lo(X) =So(0, X) =
—',o(X)f2(X), given by (3.76) or (3.32), satisfies w& ——

—',i fdic f&(X) =0. Our purpose now will be to provide an
argument which may explain why m»/0. We shall
depart from our past procedure, forget what we have
learned, and try to guess what the LC commutator
might be. Our guess will be based on a generalization
of the LC implication of a widely accepted current-
algebra sum rule suggested by an analogy with the
weak-interaction universality principle. The guess will

be seen to imply a I.C behavior of the form (3.76),
with an L2(X) giving w2/0 and, furthermore, giving a
numerical value for m2 in good agreement with experi-
ment.

We begin by generalizing the definitions (1.5) and
(1.6) by using the SU(3) vector currents J„',a=1, . . . ,
8, or axial-vector currents J5„.Then

This also follows from (3.78) .
Similarly, we can easily compute the other com-

ponents of W„„.For the given q LEq. (3.9)), we find in
the A limit that t/t/'po +03 and t/Vg3 are proportional
to 8",Ru= 8'u= H/oi=0, and t/Vgg= —t/t/'y.

It is convenient at this point to consider, in addition
to (3.9), the vector

k&=(i, Q(—~), 0, —u). (3.80)

k& is obtained from q& by a spatial rotation and satisfies

T„„"=ifdxexp(iq x)e(xo)

&& (P I LJ.'(x), J.'(0) P I P)+ poly.

= pup~T& (~~ &) + ' '

W„,"=(1/ir) ImT„„"
= (1/2ir) fdx exp(iq x)

&&(P I I J;( ),J.'(0) j I p&

(3.86)

k —=0, (3.81) =P„P„Wo '(~, v)+ ~ ~ . (3.87)

k'= ~, and k p= v. Replacing q by k in (1.6), and using
the fact that k =g =0, we obtain

Wo(~, i) = fd4x exp(ik x) Yo(x', xo), (3.82)

where we have used (3.67) in the. integrand. We can
now use rotational invariance to replace k by q in
(3.82):

Wo(x, i) =fd'x exp(iq x) Yo(x', xo). (3.83)

In view of (3.68), this is simply Eq. (3.1) for i=2. We
can take the A limit as before with (3.83) to get

W2(g, v) —+ fd x exp(iq x) Yo(x', xo), (3.84)
A

and then use rotational invariance again to obtain

Wo(~, v) —+ fd4x exp(ik x) Yo(x', xo). (3.85)

We thus learn that the A limit corresponds to the LC

The Gell-Mann" equal-time I SU(3) SU(3) jvo com-
mutation relations"

I Jo'(x), Jo'(0) 78(xo) = if "J '8(x)

I
Jo (x) Jho'(0) $8(xo) = if"'Joo'8(x) (3.88)

I Joo'(x) Joo'(0) )8(xo) = if"'Jo'8(x)

together with an assumption about interchanging an
infinite momentum limit with an integral or about the
validity of some unsubtracted dispersion relations,
yield the celebrated Fubini" —D ashen —Gell-Mann36 sum

"M. Gell-Mann, Physics 1, 63 (1964).
84 We use the notation of Dashen and Gell-Mann (Ref. 36)

and denote a subgroup of U (12) by using as subscripts the Dirac
matrices with which the generators commute."S.Fubini, Nuovo Cimento 43A, 475 (1966).

3' R. F. Dashen and M. Gell-Mann, in Proceedings of the Third
Coral Gables Conference on Symmetry Princi ples at High 'Energies,
University of Miami, 1966, edited by A. Perlmutter, J. Wojtaszek,
E. Sudarshan, and B. Kursunoglu (Freeman, San Francisco,
1966).
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rule

where
/de gab'(S p) fabcPc

i~'—= (p I
Jo'

I p)

(3.89)

(3.90)

',fdx+ f(-x+) =1 (3.93)

fdx+ R"(x) 8 (x ) =0. (3.94)

Equation (3.91) is clearly equivalent to (3.92)—(3.94).
Consequences of (3.92) are the symmetry properties

f(—x+) =f(x+) (3.95)
and

gab( x) gba(x) (3.96)

We now make a guess about the form of R b(x). We
shall explore some consequences of the assumption that
the form of E" is such as to give (3.92) a universal
structure maximally symmetric in f and d-typ-e octet
couplings. Thus we propose that"

I J (x), J '(0) ]~2m-'i8(x') f(2x,)
yL fabcJ c dabcSce(x )] (3 97)

Here 5' is the scalar current density given by -', (VAN in
the quark model. The quark model

I SU(3) 8SU(3) ]p
commutation relations

I
Js'(x), Jsb]b(xs) =if b'Js'b(x),

I Js (x) sb]5(xs) =if '5'8(x), (3.98)

I 5'(x), sb]5(xs) =if'"Js'8(x)
establish the scale of S relative to J0,4' and make precise

"An additional assumption (e.g., Regge theory) concerning
the high-energy behavior of absorptive parts is required.' All operator relations in this paper are written in a form valid
only for forward rest matrix elements."H. Leutwyler, Acta Phys. Austriaca Suppl. V, 320 l1968); I.
Jersak and J. Stern, Nuovo Cimento 59A, 315 (1969).

"This consists mainly of the successes of the Adler-Weisberger
and Cabibbo-Radicati sum rules. Thus (3.89) is only verified for
small rc.

'We recall that "~" means equality of leading light-cone
singularities apart from total derivatives with respect to x .
Such total derivatives must satisfy (3.94). We can allow the J
and S terms to have different functions f(x+), as long as the
normalization condition (3.93) is satisfied by each.

'2 In view of Ref. 38, J in (3.97) is equivalent to Jo.

and gab 'i (g ab grbn)

Because of the extra assumption needed to obtain
(3.89) from (3.88), Eq. (3.89) is essentially" equiv-
alent" not to the equal-time commutators (3.88) but
to the LC commutator"

-,'Jcx,
I J .(x), J b(0) ]s(x ) = if.b J s(x) s(x ).

(3.91)

Thus, since the experimental support4s for (3.89) is
really support for (3.91), we shall accept (3.91) in the
following. We write (3.91) in the more suggestive form

LJ &(x) J b(0)] 27r-rig(xs)I f~b~J ~f(2xs)+g~b(x)]

(3.92)
fol x ~oq where

the universality implicit in (3.97) in exactly the same
way" that the I SU(3) SU(3)]~b commutation rela-
tions (3.88) establish the scale of Jbs relations to Js and
make precise weak-interaction universality. We shall
see that (3.97) gives results usually taken to imply a
composite structure' for the nucleon. A more precise
discussion of the operator nature of (3.97) will be given
elsewhere.

In addition to the weak V—A universality analogy,
some motivation for (3.97) comes from the following
formalisms which have been applied in other contexts:
(a) The Cabibbo-Horwitz-Ne'eman4' proposal applied
to vector-meson —nucleon scattering gives an operator
structure similar to that of (3.97) in the LU(3) Im

U(3)]p symmetry limit if one takes all Regge trajec-
tories to cross j= 1 at t= 0. (b) Okubo~ has suggested
that the pseudoscalar-meson source commutator for
x'= 0 involves (unspecified) unitary singlets and octets.
(c) Given the presence of the first term in (3.97), its
relation to nonsense right-signature j= 1 fixed poles, "'
and its analogy with odd-signature vector-meson
Regge-pole exchange, the presence of the second term
can be inferred from a (very) generalized interpretation
of exchange degeneracy. 4'

(a)—(c) are concerned with the on-shell Regge limit,
whereas, as we have seen, the LC should only describe
the Regge limit far oG the mass shell. They also all
involve only Regge poles, whereas (3.97) involves
(perhaps only) fixed poles. Exchange degeneracy, for
example, essentially equates the odd-signature vector-
meson Regge-pole residues and trajectories with those
of the even-signature tensor-meson Regge poles. We
assume the same relation between the right-signature
Axed poles and the wrong-signature singularities
generalized by SU(3) from the combined singular
residue"" and Pomeranchuk singularity (or any other
mechanisms) which give rise to the forward coupling
of the Porneranchukon to photons.

Now the relations (3.98) do not fix the scale of Ss,
and so it is not a priori clear whether or not we should
include 5' in (3.97). In Ref. 9 we did not include S'.
Evidence from models to be discussed below, as well
as positivity requirements, "suggests that S should be
included, however, and so, in this paper, we take as
usual d'"= (Q')6'b-

In order to project out Ts and Ws from (3.86) and
(3.87), we substitute k" for q" and use T and W
We obtain

Ts" if'dx exp(ijt x)0(xs) (p I

——LJ (x), J '(0)]
I p)
(3.99)

4'N. Cabibbo, L. Horwitz, and Y. Ne'eman, Phys. Letters 22,
336 (1966).

44 S. Okubo, Physics 3, 165 (1967).
45 R. Arnold, Phys. Rev. Letters 14, 657 (1965);A. Ahmadzadeh

and C. H. Chan, Phys. Letters 22, 692 (1966).
4 If we assume (3.97} is valid with the same J'(2x0) for all

matrix elements and ignore SU(3) symmetry breaking, then
negative total cross sections can result if S is not included. I
thank A. H. Mueller for emphasizing this to me.
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vWs"(a, v) ~ps b(p),
A

where

Fs b(p) = (1 /2~) fdx~ exp( —ix+/4p) f(x+)

(3.103)

XPabcDc ie(x+)fcbcpc5 (3 1()4)

Using {3.93), we find further that

Fs b(p) b 7r 'd"'D'= ws~b. —(3.105)
p~ OQ

Thus our proposal (3.101) implies both the scaling
property (3.103) and the constant asymptotic behavior
(3.105). In view of (3.76), this is hardly surprising.
The new point here is that part of our universality
assumption implies the general nonvanishing of (3.105) .
Thus the relation (3.91) implies the normalization con-
dition (3.93) on f(x+) and our universality proposal
makes the same f(x+) relevant in (3.105) . In the same
way, the universal 6(x') in (3.97) was responsible for
the existence of the scaling limit {3.103).

Using (3.101), the R' limits of (3.99) and (3.100) are
seen to be

T ab ~ v-i ( fabcpc+idubcDc)
R~

(3.106)

Ws'b~ (harv) td b'D'.
BI

(3.107)

The first term in (3.106) corresponds to the fixed-pole
asymptotic behavior well known to be equivalent to
(3.89). The second term, however, or, equivalently,
Eq. (3.107), is not consistent with the Nsuat Regge
picture which says that only the Pomeranchuk con-
tribution (which here corresponds to De and perhaps
part of D') goes as 1/v. 47 Assuming the usual Regge
trajectory behavior, (3.107) requires, for example,
additonal fixed nonsense wrong-signature (double)

4'The Harari (Ref. 15) mass-shift analysis remains, however,
essentially unchanged.

and

Ws' ——(1/2~) fdxexp(ik x)(P I
LJ (x),J '(0)

I P).

(3.100)

Because k =0, the A and R' limits of (3.99) and
(3.100) are determined by (3.97). The proton expecta-
tion value of (3.97) is

{Pll:J-(*)J-'(0)jIP) 2 '~(')f(2 o)

XI if "F'—d "D'e(xe) j, (3.101)

where we have dined

(3.102)

Using the methods of Secs. III A and III 3, and the
result (3.85), we find from (3.100) and (3.101) that
in the A limit,

poles. ' Alternatively, our proposal can be easily
altered to be consistent with the usual Regge picture,
but then universality, as we have formulated it, would
be lost. In any case, according to (3.105) and (3.107),
(3.97) is seen to incorporate the suggestion~s that the
leading Regge contribution continues to dominate in
the A limit.

We have not yet exploited the full content of the
universality in (3.97). As we mentioned, we expect
the ET commutation relations (3.98) to fix the scale
of 5 and thus provide a ngmerica/ value for (3.105).
We shall accomplish this in Sec. III G within the con-
text of a specific model.

{P I I:J- (o, «), J-'(0) 3 I
P&= 4i~(x)f(0) d"'D'+&"

(3.109)

where H ' represents the unknown contributions of the
unspeci6ed terms.

A more precise connection between LC and ET com-
mutators can be obtained by use of the old Bjorken'
limit q,~~ for fixed q and P. One can write, in general,

fd' ~( o)(PILJ'( ) J'(o)jl P)= P-"(Po)P~P~

+p "(P )o'+F-"(P ) '~ P' (3110)

Assuming scaling, Regge asymptotics, and the validity
of the Bjorken limit, one obtains the generalized Callan-
Gross-type relation

2

d p ab(~-t) g ab(eo) (3.111)

"Double poles may not be unreasonable since there exist two
independent mechanisms Lthat of Refs. 19 and 20 and that of S.
Mandelstam and L. L. Wang, Phys. Rev. 160, 1490 (1967)g
for producing fixed single poles. If, in addition, the Pomeranchukon
really is uncoupled, then (3.106) involves only fixed poles.' We define ET limits by smearing with symmetric testing
functions k„(x(l) converging to 8(xo)."J.D. Bjoriten, Phys. Rev. 148, 1467 (1966).

G. Equal-Time Behavior

The relation (3.97) cannot be used to calculate the
ET commutator I J (x), J b(0) $b(xs) because the
terms of the form B~(x) are not specified. The func-
tion f(2xs) can, of course, be chosen so that the first
term in (3.97) contributes to the quark-model ET
corn.mutation relation

I J (x) J '(0)38(x) =if "J '8(x). (3.108)

The second term in (3.97) does not contribute to this
commutator. 4' Equation {3.97) gives even less informa-
tion about P(x) terms in the ET commutator LJ ~(x),
J '(0)$8(xs) because, in addition to the unspecified
ci~(x) terms, the unspecified nonleading LC singu-
larities can contribute. The second term in (3.97)
does, however, contribute to this commutator. We
easily find
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where a&:——K/p=p '. On the other hand, it follows
from (3.104) that )assuming that (3.104) has the
correct support)

2 d(o F2"(a& ') =4f(0)d"'D'. (3.112)

Thus we learn that

E ab(~) —4f(0) dabcDc. (3.113)

i.e., the infinite momentum limit of the $J,', j, ) ET
commutator determines the )j ', j b) LC commutator
at xo =0, and conversely. This result is obviously
generally valid and does not depend on our speci6c
assumption (3.101). Comparison with (3.109) gives
the further result that the in6nite momentum limit of
the $J, , j,b) ET commutator is that part of the

$j ', j b) ET commutator coming from the
P' ', j '] LC commutator.

These results place strong restrictions on models
which can accommodate (3.101). Thus (3.101) can
only be valid in models for which the ET commutator
PJ;, j;b] satisfies E b2(~) ~dab'D'. In the remainder
of this section we shall discuss such a model. This will

give support to our proposal (3.101) and will enable us
to calculate the asymptotic constants m» numerically.

The model we consider is the so-called gluon model in
which a quark triplet field is coupled to a SU(3)
singlet vector-meson field and the only /SU(3)
SU(3))'b symmetry breaking is in the quark-mass term
naX'+n8X'. We assume that perturbation-theoretic
difhculties are not relevant, so that the canonical com-
mutation relations can be freely applied. This model has
been shown to have desirable properties in problems
connected with radiative corrections to weak inter-
actions" and nonleptonic weak interactions 52 It also
predicts that for inelastic electroproduction a'/o' —+0,'i
in good agreement with the recent experimental results.
Finally, Brandt and Preparata~' have shown that the
model, supplemented with a Reggeized theory of sym-
metry breaking, gives a numerical value for the electro-
production integral (3.112) in excellent agreement with
experiment.

In the gluon model, E" (p'b) =E2 b is independent o—f
pa. It furthermore has the form" E '=dab'E' so that
(3.113) is suggested. With Reggeized symmetry
breaking, in fact we have E'~ D' in the model since
both octets have the same D/F ratios. "Thus f(0) can
be chosen so that (3.113) is correct in the gluon model
and so (3.101) is consistent with (and is suggested by)
the gluon model This fact supports the validity of both
(3.101) and the model.

Equation (3.101) can, in fact, be partially derived in
the gluon model. The existence of (3.111) implies

scaling and hence that (p ~

R b(x)
~ p) in (3.92) has

the form 8(x)4(xa)$'b(xa). The ET commutator then
tells us that XPb(0)~d 'D' If, further, one has
D b(xa) =h(xa) T', then in the model we must have
Tab~ dabcDc as in (3 101)

We conclude this section by estimating the constants
(3.105) in the context of the gluon model. We assume
SU(3) symmetry for tQe vertex function D' and thus
we need to know the magnitudes of D, F, and D', where

(a~ S
~

b) Dgabc+Ffabc+pg0 (+2)D]gab)ca

(3.114)

Mass-shift calculations'4 accurately give D/F= —0.31~
0.02. If the commutators (3.98) are saturated with
low-lying states, then F 1.2 and D —0.4. These
values we used in Ref. 9 without a D' term. In the
present model we must retain the D' term but we do
not assume saturation. ~ Instead, we use the fact that
D ~ E. In Ref. 53, the magnitudes of 2n and 2P, the
P and D for E, were determined and E was found to be.

-2E'4...——'+3, the subscript "free" denoting the
value in the limit of vanishing interaction between the
quarks. We therefore take D' '~D'&...=-', Q—',. The
proportionality D'~E' then requires that F=2nD /a

Z'~3/7 and D 1/7. With th—ese values, all the con-
stants (3.105) can be calculated.

For electroproduction from protons, we have

zv2—=zv2ua=n='d&@ Dc'= $6F+2D+ (12+-',)W)/9n. .

(3.115)

The above values give +2~0.30, in excellent agreement
with the experimental value. ' Values for inelastic elec-
tron, neutrino, and antineutrino scattering from any
~+ baryon target can be similarly calculated, and some
corresponding experimental results are needed to really
test (3.97). Needless to say, these precise numerical
results should not be taken too seriously. The experi-
mental nonvanishing of ze2, however, already ™plies
the nontrivial nature of R b in (3.92). Given this,
(3.97) appears to be algebraically the most appealing
possibility.

IV. CONCLUSIONS

In Sec. II we used the DGS representation with an
assumed rapidly decreasing spectral function a2(a, b)
to show that if vW2(~, v) has a finite A limit F2(p) and
the Pomeranchuk-dominated Regge behavior w2(x) p ',
then F2(~) =w'(~) —=2fdaa(a)a—=w2= const, where
—(8/Bb)a2(a, b)~a(a)b ' for b 0 In Sec. .III we
arrived at the same conclusion by relating the asymp-
totic limits to the behavior of W4(x', p x), the Fourier

"C. Callan, Phys. Rev. 169, 1175 (1968); G. Preparata and
W. I. Weisberger, ibid. 175, 1965 (1968)."S. Nussinov and G. Preparata, Phys. Rev. 175, 2180 (1968)."R. A. Brandt and G. Preparata, Phys. Rev. D 1, 2577 (1970).

'4R. Arnowitt, Nuovo Cimento 40, 985 (1965); J. Arafune
et al. , Phys. Rev. 143, 1220 (1966)."I thank Giuliano Preparata for emphasizing to me that low-
lying saturation may not be valid, so that F can be rather different
from 1.
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PW ~F(p) (~,
A

(A2)

and (iii) Regge asymptotic behavior of the form

W~ w(L) p, (A3)

with n arbitrary in the range (for simplicity)
—1(n(+1. (A4)

transform of W2(~, v), in the neighborhood of the LC
x'= 0. There we found w2 ——,'if—dxof2(xo), where
~W2(x', xo) 8(x')-', e(xo) f2(xo) for x' 0. This result
gives a coniguration-space description of the 3 limit
and of scaling behavior in momentum space. Both
approaches were shown to be equivalent, but in neither
case do we have a good reason why m»/0.

The above I.C behavior can be expressed directly in
terms of the currents as (p I p (x),J (0)) I p)~
b(x') e(xo)f2(xo), apart from total derivatives with
respect to x . This behavior is so strikingly well
accommodated by the LC behavior (3.92) equivalent
to (3.89) that we were led to propose the highly sym-
metric universal form (3.97) for the SU(3) LC com-
mutator. This commutator is consistent with, and is
suggested by, the gluon model for ET commutators.
In the context of this model, the numerical value of m2

was estimated and found to agree with the experimental
value.

The relation (3.97) is thus seen to incorporate a
considerable amount of presumably correct informa-
tion, including the general current-algebra sum rule
(3.89), the existence of the scaling limit F2(p) of vW2,
and the constant value of F&( ~ ) . It is also numerically
accurate in that it implies the Adler-Weisberger relation
for G~/Gv and suggests a good value for w2. It therefore
seems desirable to&explore further consequences of
(3.97) and related relations.
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APPENDIX

Although in the text we considered only the Pomeran-
chuk trajectory with 0.= I, our methods can be used for
any 0,. We shall illustrate this here by outlining the
analysis for a general scalar amplitude'W(~, v). Thus
we assume (i) the validity of the DGS representation

oo 1

W(x, v) = da db 0(a, b)b(~+2bv a), (A1—)
0 -1

with 0.(a, b) vanishing rapidly for large a, (ii) a finite
scaling limit

Thus
w(~) ~ w/( —~) +', (A8)

where
w=2 fdao. (a).

In the A limit, (A2) is satisfied with

F(p) =kfda ~(a 1/2p).
Thus

F(p) ~ wp+'.

We next assume a reduction representation

W(~, v) =fd'x exp(iq x) W. (x', xo),
where

(A9)

(A10)

(A11)

(A12)

W(*' x) =(P I Lj(x),j(0)j I P), (A13)

with j(x) a scalar current and
I p) a one-scalar-particle

state. We use the variables (3.4)—(3.11) and define

(using causality)

f(0, li) —= dx W(4oA —x', 0+ii.)

ds W(z, 0+X), (A14)

so that
W —p 2fdodX eXp(2iav —iA/2p)f(0, X) (A15)

W —& 2fdadX exp(2iov+ili~/2P)f(0, li). (A16)

The finiteness of F(p) dictates the leading possible
0 singularity of f(0., X):

2f(o, lb. ) ~.11(0)f(X)+L.S. (A17)
a-+0;o'X~O

for some (possibly vanishing) function f(X). Then (A2)
is satisfied with

F(p) =-', ifdX exp( —ili/2p)f(lb. ). (A18)

As argued in the text, the limit (A17) also controls
the E.' limit, so that

W ~— dX exp(il%, z/2p) f(X) . (A19)
~i 2p

Thus (A3) requires that

f(lI.) =fg I
X

I
+ L.S. (A20)

Equation (A19) then has the form (A3) with w(~)
for some (possibly vanishing) constant f and

g
'= —2(sin-', nor) I'(n+1) . (A21)

In the E limit, we have

w~ (1/2p) fda O.
I a, (a—K)/2p],

so that
o. (a& b) I

b I-'- 0(a) for b 0

Then (A3) is satisfied with

w (~) = ',fdu 0 (a) L-2/ (a—~) $~'.

(A5)

(A6)

(A7)

satisfying (4.8) provided we make the identification

w= 2 $f. (A22)

Finally, use of (A20) —(A22) in (A18) gives precisely
the asymptotic behavior (A11). We therefore obtain
complete agreement with the Q.rst analysis in terms of
the DGS representation.
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(A25)

Because of causality, the limit in (A17) is the light- of (A1) and the behavior (3.58) of A. These give
cone limit x'= 4ak —x'—4. It indeed follows from (A14)
and (A17) that n.W(», X)~b(s) L(X)

srW(s, X) b(s)-', e('A) j(X) (A23)

for s 0. We therefore have determined the leading
singularity of W on the light cone and, by (A20), the
large-X behavior of its coefficient. The behavior of W
near the light cone can also be determined from the
conhguration-space form

nW (x', xs) = ,'if—d—ttdb o (a, b) exp( ib—xs) h(x; u+bs)

(A24)

for s 0, where

L(g) = —Lie(X) jar]jdadb tr(tt, b) exp( —ibX). (A26)

Equations (A6) and (A9) give

L(X): 2-—~'ice(X) I
)t

I
. (A27)

In view of (A22), Eqs. (A25) and (A27) are in perfect
agreement with (A23) and (A20).
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A relativistic quasipotential equation is derived from the conventional Hamiltonian formalism and
old-fashioned "noncovariant" oG-energy-shell perturbation theory in a similar way to that by which the
four-dimensional Bethe-Salpeter equation is obtained from the off-mass-shell Feynman rules. The three-
dimensional equation for the (off-energy-shell) scattering amplitude appears as a straightforward generaliza-
tion of the nonrelativistic Lippmann-Schwinger equation. The corresponding homogeneous equation for
the bound-state wave function and the normalization condition for its solutions are derived from the equation
for the complete four-point Green s function. In order to obtain a solvable model, we consider a simplified
version of the quasipotential equation which still reproduces correctly the on-shell scattering amplitude
and is consistent with the elastic unitarity condition. It involves a "local" approximation to the potential
V(p —q) which defines the kernel of our integral equation (the integration being carried over a two-sheeted
hyperboloid in the energy-momentum space) . It is shown that for the scalar Coulomb potential V(P —q) =
u/(p —g)', our model equation is equivalent to a simple infinite-component wave equation of the type
considered by Nambu, Barut, and Fronsdal. The energy eigenvalues for the bound-state problem are
calculated explicitly in this case and are found to be O(4) degenerate (just as in the nonrelativistic Coulomb
problem and in Wick and Cutkosky s treatment of the Bethe-Salpeter equation in the same approximation) .

I. INTRODUCTION

f 1HE purpose of this paper is to show the relation-
ship between a modification of the quasipotential

approach to the relativistic two-body problem developed
in Refs. 1—3 and the infinite-component wave equations
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leave from DPhT-CEN Saclay, BP No. 2, 91, Gif-sur-Yvette,
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