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The perturbation series for electron-electron elastic scattering in quantum electrodynamics is studied
in the limit of high energies. For this matrix element, in addition to the previously known terms which
are proportional to s (the square of the c.m. energy) and hence lead to a constant total cross section at
high energies, there are found terms of the orders of magnitudes s Ins, s (Ins)2, s(Ins)3, etc. For n=1, 2,
3, ..., the coefficient of s(Ins)™ is a power series in the fine-structure constant «, where the leading term
is proportional to a2 and is due to Feynman diagrams with # closed electron loops. Physically, through
the optical theorem, the presence of these terms is intimately related to the production of low-energy
electron-positron pairs in high-energy electron-electron scattering, but is independent of whether the
spin-1 particle is a photon with zero mass or massive neutral vector meson. These leading terms of order
a2 are explicitly found for all #,and are all imaginary, representing absorption. The procedure of summing
the leading term is carried out, and the result demonstrates dramatically the importance of unitarity in
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the direct, or s, channel for high-energy processes. Generalization to two-body diffraction processes a-+b—

a’+b' is immediate.

1. INTRODUCTION

VER two years ago, a program to study high-energy
amplitudes in various field theories was initiated.
Even though field theory is a most interesting subject
in itself, our purpose for pursuing this work is far more
general. By studying high-energy problems in field
theories, we hoped to gain a basic understanding of
high-energy collision processes which may be applicable
to hadron physics. We are therefore not so much
trusting the quantitative significance of perturbative
results, but rather using perturbation as a tool to
extract some general behaviors exhibited by all high-
energy processes. One of the principal motivations of
this study stems from our belief that nature is much
more imaginative than potential scattering, which has
hitherto been relied on by many researchers with almost
religious faith. By far the best theoretical “laboratory”
we possess is still the field theory, which has the funda-
mentally important properties of relativistic invariance,
crossing symmetry, and unitarity.

As a first step in this program of study, we have
analyzed all the two-body elastic scattering in quantum
electrodynamics.~% It is found that to the orders con-
sidered do/dt approaches a finite constant as s ap-
proaches infinity with fixed #, where as usual s is the
square of the c.m. energy and —¢ is the square of
the momentum transfer. The first nonvanishing con-
tribution, however, appears in different orders of
perturbation for the processes: for example, sixth
order for electron Compton scattering and eighth
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order for photon-photon scattering. As expected,
these first results already contradict!:? the statements
from the Regge-pole model without introducing com-
plications; in particular, we find that the Pomeranchuk
or vacuum trajectory cannot be a pole with factorizable
residues. Moreover, these results also contradict
that of the droplet model® in the most straightforward
interpretation,” although there is some similarity such
as the two-dimensional integration over the transverse
variables. The reason for this disagreement with the
droplet model is due almost entirely to the fact that
the eikonal picture is applied directly to the incident
photon in the droplet model, while we find that the
eikonal picture must be applied to each member of the
virtual electron-positron pair in the photon.!®® From
this first step of the program emerges a natural picture
of high-energy scattering processes.?

Out of this impact picture, we have formulated
rules to calculate directly the limiting behavior at
high energies of various matrix elements for elastic,
diffraction, and inelastic scattering processes.®’® These
rules of calculation are most efficiently expressed in
terms of impact diagrams, and the results are of the
form of the product of s with an integral which depends
on ¢ but not on s. We emphasize that this method of
impact diagrams is applicable to all orders of perturba-
tion theory, or in other words takes care of all Feynman

6 N. Byers and C. N. Yang, Phys. Rev. 142, 976 (1966) ; T. T.
Chou and C. N. Yang ¢bid. 170, 1591 (1968); 175, 1832 (1968);
Phys. Rev. letters 20, 1213 (1968).

7 We disagree with the contrary claim of B. W. Lee [Comments
Nucl. Particle Phys. 111, 198 (1969) ]. He reformulated the drop-
let model in g-number language with the guidance of our physical
picture based on the rigorous calculation. Since the physical pic-
ture was the same, his results turned out to be identical to those
of Ref. 8 which we had previously obtained.

8 H. Cheng and T. T. Wu, Phys. Rev. Letters 23, 670 (1969).

9 H. Cheng and T. T. Wu, Phys Rev.D 1, 1069( 970).

10 H. Cheng and T. T. Wu Phys. Rev. D 1, 1083 (1970)

2775



2776 H. CHENG AND T. T. WU 1
(w,-1;) (W) (w,-n) (W) (w-n) (@, 1)
Cwn) Cw-1y)  (w,Ty) (cw,-r)  w,7) (~w,-7)

(a)

(b)

(c)

Fie. 1. Lowest-order Feynman diagrams that give rise to a logarithmic factor at high energies.

diagrams for the processes under consideration.’! By this
new method, our earlier results!* can be reproduced
with amazing ease; while it took us over a year of hard
work before,! we can now obtain all the results in a few
hours.

As mentioned above, the results of calculation with
impact diagrams are essentially integrals which depend
on ¢ but not on s. To the lowest nontrivial orders, the
integrals give the impact-factor representation.!:?
How do the integrals behave in higher orders? If they
are well defined to all orders, we can claim a satis-
factory understanding of high-energy processes by the
impact picture, and we can perhaps attempt to study
the convergence or divergence of the perturbation
series in this limit. Actually, nature is far more profound
and interesting. As previously discussed,®'? the above-
mentioned integrals diverge logarithmically when the
orders of perturbation are sufficiently high. For quan-
tum electrodynamics, this logarithmic divergence first
appears in connection with the diagrams? of Fig. 1.
Although this divergence can clearly be interpreted as
Ins, its presence nevertheless raises many questions.
For example, for large s the differential cross section
do/dt must now depend on Ins and the existence of
limg.., do/dt is accordingly in doubt.

Is it conceivable that this appearance of logarithmic
divergence is a peculiarity of electrodynamics and
hence irrelevant to hadron physics? We think that this
is extremely unlikely. Some insight into this factor
Ins can be obtained by the following consideration.
Since this Ins appears in the imaginary part of the
amplitude, we may apply the optical theorem to the
diagrams of Fig. 1 and thus consider the diagrams of
Fig. 2, which shows the production of a pair in electron-
electron scattering. It is found that this Ins is associated

1Tf we consider a scattering process, such as photon-electron
backward scattering ey—ye, where do/df approaches zero as some
inverse power of s, then the method of impact diagrams developed
so far merely gives the trivial answer 0.

12H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 1405 (1969).

with the production of low-energy pairs in the c.m.
system. Such pairs, referred to as pionization products,
have been studied in detail.31* They are believed to
have been observed in cosmic rays® in addition to the
so-called fireballs.’¢ For this reason these logarithmic
factors seem to be of fundamental importance and
neither the impact picture® nor the hypothesis of
limiting fragmentation? gives the entire story.

This fundamental problem of the logarithmic factors
is extremely difficult and challenging. We are still
very far from arriving at the complete answer to the
problem, and the aim of the present paper is to take
the first step in that direction. To approach a problem
of this magnitude, it is necessary to have some physical
understanding which may serve as a guide. For this
purpose, in Sec. 2, we first devote ourselves to the
relatively simple task of obtaining the s Ins term to the
lowest nontrivial order. Basically, the diagrams of
interest are those of Fig. 1, although we shall approach

-
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the problem with impact diagrams. It is found that a
certain function, called K and defined by (2.14),
appears in the final answer for the coefficient of the
s Ins term. The properties of this function are studied
in Sec. 3, and Sec. 4 is devoted to the special case of
forward scattering. After this, in Sec. 5, all the con-
siderations of Sec. 2 for the s Ins term from the simplest
electron-electron scattering diagrams with one fermion
loop are generalized to the s(lns)” terms due to the
simplest diagrams with # fermion loops. It is found that
the same function K appears repeatedly, and the
relevant properties of this K are further studied in
Sec. 6, again for the special case of forward scattering.
The results are discussed in some detail in Sec. 7. We also
learn how important unitarity in the direct channel is,
a fact which justifies our original choice of studying field
theories.

2. ELECTRON-ELECTRON SCATTERING

The impact diagrams of interest are illustrated in
Fig. 3. The diagrams in Figs. 3(a) and 3(b) describe
the process in which the pair is produced by the first
electron and scattered by the second one, while those
in Figs. 3(c) and 3(d) describe the process in which the
pair is produced by the second electron and scattered

1 1
M~ — Les2im 130y 65 (2m) 3 / dp1dq.dqy’ / s, f s,
0 0
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by the first one. Note that a solid line represents a
fermion and a wavy line represents a photon or a neu-
tral vector meson. Consider first diagram 3(a). We put®

P=[(1—-B1—B)w, qr], (2.1)
k1=[(ﬁl+62)w7 —1'1*(11-], (22)
ko=[(B14B:) w0, 11— qu], (2.3)
p1=[61w7 p-L:]y (24)
Pe=[Bw, —11—qu—ps], (2.3)
Ps= I:ﬂ%'o’ qJ-,_ql“Pi], (26)
and
pi=[Biw, n—qu'+pr]. (2.7)

In (2.1)-(2.7), the quantities entered in square
brackets are the longitudinal and the transverse com-
ponents, respectively, of the corresponding spatial
momentum. We shall assume, without loss of generality,
that the line carrying momentum p; (p.) represents an
electron (a positron).

The dominant contribution to the scattering ampli-
tude comes from the region <1, 8:K1. Applying the
rules in Ref. 9 and making the approximation $;<1,
B:K1, we obtain the scattering amplitude for Fig.
3(a) as

X Tt (vo—s) (— pat-m)vo(— ps+m) (vo—1vs) (pst-m) vo(pr+m) ]
XABL(r1+qutp o) 2 +m?]+Ba(pa2+m?) )1
X A{B[(q1' = qu—p1)2H+m?]+B (11— qu'+pu)24-m? ]}

X Py (r1+q4") P_(1—qu) [(r+qu)*+NT [ (rn—qu) 2] L

(2.8)

In (2.8), m and \ are the masses of the fermion and the vector meson, respectively, and 61, 81-2» are the Kronecker
8’s in spin.! We now explicitly evaluate the trace in (2.8). Since

Di~Biw(vo—vs) —Pure YL

and since

(’Yo— ‘)’3) 2= 0,

we have

(Yo—"v3) b~ (vo—"s) Dis,

where p;o= —p;1+ y1. Thus the trace in (2.8) is equal to

Tr[ (yo—s) (— partm)vo(— psatm) (vo—vs) (partm)yo(protm) ]

=2 Tr(por+m) (— psst-m) (— psrt+m) (prat-m).

(2.9)

Just as in the case of Compton scattering discussed in Ref. 2, the amplitude 97, for diagram 3(b) can be obtained
from the right-hand side of (2.8) by setting q1’=r; in the trace as well as the energy denominators. Thus

1 1
MMy~ 1a81r20 €5 (2) 3 / dp1dqudq.’ f 6, / BB (11 0u) N (11— qu) N2 !
0 0
X Py (r14qu") P_(ti— qu”) {B[ (114 qu4-p o) 24 m? ]+ B (po2+m?) -1

Tr(por+m) (— psat-m) (— partm) (pro+m)

% ((pJ.?—{—m?) Tr[ (par—tm) (— por—211+m) ]
BiL (11— qu—pu)*+m?]+Ba(pa®+m?)

18 See Sec. 3 of Ref. 9.

 BL(qy— qi—p1) - mt] Bl (11— qu/+pu) Pm?]

). (2.10)

19 Strictly speaking, in connection with the Feynman diagrams of Fig. 1, we can keep only the lowest-order terms in P, and P_

[defined by (5.2) of Ref. 9.
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Fic. 3. Impact diagrams corresponding to Fig. 1.

Observe that the integration in (2.10) is not convergent at the end point 8;=8,=0. This divergence is due to
the fact that the method of impact diagrams is not applicable in the region wBi=0(1), wB=0(1). This means
that the integration over 8; and 8, must be cut off at 1. Denoting

B1=0x, (2.11)
B=B(1—x), (2.12)

and carrying out the integration over 8 by setting
1
/ 8-1d6=Tno,
-1

we get
MMy~ Ins(2r) 4 [ dqadqu’[(ri+qu) N T (f1—qu) 4N2T 1

X ge(rl) q-'-)K(rly qus, ql’) ge(rly ql,) P+(r1+ ql’)P—(rl— q-'-,) ) (2 . 13)
where

1
K(ty, qu, qu) = &4(2m) 4 / dps / Aol (tFpatqu)+ (1— %) pa2Hm?T !
0

< (TFE(PZJ-‘*‘M)(—Pzi“zh"f‘m)](l)lz‘f‘mz) _ Tx[ (pestm) (—psatm) (—pastm) (Pll‘f"m)]) (2.14)
[x(ri—qe—p1)?+ (1—x) po2+m?] [2(q—qu—pu)+(1—2) (n—qu'+ps)24m?])

In (2.13), 9°=%e¥m 101, is the electron impact factor.
The scattering amplitude N+, for diagrams 3(c) and 3(d) is equal to 9,49, Thus

M= M+ Np~+N+NTg
=isIns (2m)~* [ dqudqu'[ (1,4-qu) N[ (1— qu) N2 ]!
X g°(ry, qu) K(11, qu, q1’) 9(11, 1) Pr(ri+qu) P_(r1—qe’).  (2.15)

Equation (2.15) is the desired answer for this simple case. Sections 3 and 4 of this paper are devoted to a
detailed study of this function K (11, q1, q.’) as defined by (2.14).
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3. SOME PROPERTIES OF K(rj, qu, q.")
We obtain here some of the simple properties of K (11, g, q1’), namely,
K(r1,q1,q9s)=K (1,94, qu) 3.1)
and

K(ry, &11,q1") =K (11, qu, =£17) =0. (3.2)

The symmetry (3.1) is most easily proved by carrying out the x integration in (2.14). If the variable of integra-
tion pu1 is everywhere replaced by pL1—qu, we get®

K(11,q1,qu’)=et(2m)* / dps /1 dalx(pitr)?+ (1—x) (pr—qu)2+m? ]!
0

% {_ [(pr—qu)?+m*] Tr(potr—m) (pr—ritm)
x(pr—11) %+ (1—2) (Pr—qu)®+m?
_ Tr(patn—m) (pr—qu'+m) (pr—qi—qi'+1—m) (pa— ql+m)}
2(pr—qu)24+ (1—x) (pr—qu—qu'+11)24-m?
pL2—r+m? In (pitr11)2+m?
(prtr)?—(pr—r)?  (pr—1)2—m?

— 464 (2m) f dp.L{

. i Tr(poitr—m) (pr—qi'+m) (pr—qi—q/+ri—m) (pr—qi+m)
4 L(pat1) > +m* L (pr— qu—qu'+1)*+m* ] [(P21—qu) *+m* L (p1— qu) +m*]
C(patr)*+m [ (pr—qu—qu'+11)°+m?]
XIn , . (3.3)
[(pr—qu)*+m* [ (pa—qu’)*+m]
Equation (3.1) immediately follows from (3.3).
The relation
K(r;,qu,11)=0 (3.4)
is also a ready consequence of (3.3). However, in order to get the other relation
K(rly q., "rl) =07 (3.5)

it is necessary to note that the two terms on the right-hand side of (3.3), taken separately, contain no linearly
divergent part, Equation (3.2) follows from (3.4), (3.5), and (3.1).

These two properties (3.1) and (3.2) are to be expected: (3.1) is due to the symmetry of the Feynman diagrams
of Fig. 1 under the exchange of the two incoming electrons, and (3.2) is closely related to a property of the photon
impact factor, first given by (3.6) of Ref. 2 and later used in discussing the relation between impact factors and
form factors.t Rather, it is an advantage of the method of impact diagrams®™® that (3.1) and (3.2) can be easily
derived. For instance, if we treat the Feynman diagrams of Fig. 1 directly in the most straightforward manner,
the result takes a form that fails to exhibit the symmetry (3.1). The same problem appears in connection with the
electrodynamics of scalar particles? and is discussed in detail in that context.?

We treat the special case ;=0 in detail in the next section. Although many of the considerations there can be
generalized to all 1y, the results become rather complicated, and hence the derivation is relegated to Appendix A.

4. FORWARD SCATTERING
A. Definition

Since both (2.14) and (3.3) are rather complicated, we restrict ourselves in this section to the case of forward
scattering where r;=0. Let

Ko(qu, qu') =[4e'(2m) ="K (0, q1, qu'); (4.1)

20 Note that p.2=—p.2, etc.

21 H. Cheng and T. T. Wu, Phys. Rev. 184, 1868 (1969).
2 H. Cheng and T. T. Wu (unpublished).

23 See Appendix B of Ref. 22.
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then the two expressions for K, are

K2, 42) =120 [ dpa [ dalxpatt (1-2) (pamqn)-bmi

X {_ [(p1—q0)+m*] Te (pa—m) (patm)]  TrL(pr—m) (ps—gu'+m) (pr—qs—gs'—m) (m—ql+m>1}

apo’+ (1—=) (pr—qu)>+m? 2(pr—qe)?+(1—2) (Pr—qi—qu)*+m?
(4.2)
and
1 TrL(p1—m) (pr—qu'+m) (pr—qi—qi'—m) (pr—qi+m)]
Ko(qe,qu)=2m)1 | dprLil— - n 7
o4, 449 = (2m) / P { 4 (p+m?) [(Pr—qr—qu')*+m*]—[(p+—qu) *+m* ][ (pL—qu’)*+m?]
(p+m*)[(pr—qr—qu’)*+m*] }
X1 . (4.3
RO T pwey ey ey | R
These two expressions can be usefully combined in the form
1
Ko(qu,qu)=2x) | dpr | d
o(q, qu’) ) / P fo x
« {1_ 1 Tr(p;—m) (p;-q;’+m) (ju—q;-q;’——m) (p.L—-qJ.—l—m) } 2 4)
4 [ap’+ (1—2) (P1—qu)+mJ[a(pr—qu') 4+ (1—2) (Pr—qu—qu")24m?]] ©

If the trace of the v matrices is explicitly written out, the result is
1

Ko(qu, qu') = (2m)~ f dps ] dx
0

(po’+m?) 2= (po®+m*) [2ps- (qutqu’) — (Q12+qu-qu'+qs?)]
+2(p1-qu) (pr-qs’) —(psrqu)qu>—(pi-qs’)qu (4.5)
[op2+ (1—2) (pr—qu) - La(pr—qu') 4 (1—2) (Pr— qu—qu’) >+m?] o
This is the starting point of the present investigation.

X | 1=

B. Second Feynman Parameter

The form (4.5) fails to exhibit the symmetry property (3.1). To restore this symmetry explicitly, we introduce
a second Feynman parameter y to combine the two denominators:

1 1
Ko(qu, qu/) = (2r)—1 / dps / dx / dy (1—No/De), (4.6)
0 0
where NNy is the numerator that appears in (4.5) and D, is given by
Do=wxyp+(1=2) y(p1—qu)*+a(1—y) (P1—qu)*+ (1—x) (1—y) (P2— q1—qu)+m?
=p2—2(1—2)ps-qu—2(1—y)pr-qu/+ (1—x) yq2+a(1—y) Q1>+ (1—x) (1—y) (qu+qu/)2m2  (4.7)

We reverse the order of integration and rewrite (4.6) in the form

1 1
Ko(qs, qu/) = (20)1 [ dx [ dy f dps(1—No/D). (4.8)
0 0
Because of (4.7), we write
pir=dprtpys/, (4.9)
where
opr=(1—x)qut+(1—y)q.'". (4.10)

In changing to this new variable p./, the fact that
J dpL(1—N,/D¢?)
is linearly divergent must be taken into account. More precisely, this shift gives the contribution

1 1 1 1
— [ dx [ dyppa-L(astas)—2pa1= [ dx [ (=) (1-20) @+ (1) (1-2y) 4]
0 0 0 0
=3 (quitqu). (4.11)
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With this contribution properly included, symmetric integration over p.’ yields, after a tedious calculation,
1 1

Ko(qs, a) =h(@tau) = 20 [ s [ dy [ dpuTou+a(i—o)quity(1-3) gt
0 0

X A{(pr24+m?) [ (1—62+6x2) q12+2(1—2x) (1—2y) qr+qr’'+ (1—6y-+692) q1"%]
+m2x(1—x) qu*~ (1—2%) (1—2y) q1-qu'+2y(1—y) q.]
—a(1—2) (1—2x) (1—29)qu?(qs-qu") —[2(1—2) +y(1—y) Jq.?q."
+4x(1—2)y(1—y) (qe+q1)?—y(1—y) (1—2x) (1—2y)q"*(qe-qs") }. (4.12)

At this stage, simplification can be achieved by noticing that the denominator is not changed by the replacement
x—1—x. Thus a number of terms in (4.12) do not contribute, and

1 1
Ko(qs,q4") =5(qe*+qus?) — (2m) / dw / dy / dpi/[p1*+2(1—x) qu2+y(1—y) qu'2+m? ]2
0 0

X A{ (pa2+m?) [(1—6x+64%) g1+ (1—6y+6y*) qu* ]+ 2m*[w(1—x) g >+ y(1—y) Q']
—[x(1—x)+y(1—y) Jg12q?+4x(1—2) y(1—y) (qr-q)?}. (4.13)

The p.’ integral on the right-hand side of (4.13) is still logarithmically divergent. This divergence does not
cause any trouble because

1
| ds(1—6a-+622) =0. (4.14)
0
It is now straightforward to carry out the integration over p.’ to get
1 1
Ko(@s, ae) = b+ + 3 [ dn [ ay(01—60+638) quit (1—6y-+65)04"]
0 0

XIn[x(1—2)q*+y(1—y) qu*+m?]+[2(1—x) g ’+y(1—y) qu*+m* ]
XA{[x(1—=) g 24y (1—y) 2] (1 — 62+ 6x2) q 12+ (1— 69+ 6y2) q1"2— 2m?]
+lx(1—x) +y(1—y) Jgs’qu*—dw(1—2) y(1—y) (qr-q")%}}

1 1
=iatas?) - [ @ [ ale(-n)ai+y(1-y)as]
0 0

1 1
" ;/ dx [ le(1-2)asty(1=pas+mi

X{—2(1—x) (1—22)%(q1?)?— y(1—y) (1—2y)*(q?) *+[x(1— %) qu*+y(1—y) g"]
X[(1—22)%qu*+ (1—2y)°qu T+ [ (1—x) +y(1— ) Jq2’qs*— 4o(1—2) y(1—) (qu-qs")?}.  (4.15)
Accordingly we get the desired answer

1 1 1_ 1__ 2 /2_2 1___ 1_ 2 2 12 . 72
Ko((lL, q-LI)= / dx/ dy Ex( x)+y( y)]ql qJ' 2x( x)y( ,23’)[ 2ql ql +(ql qJ'> ]. (4:.16)
o o w(1—x)qu’+y(1—y) qu*+m
This form exhibits explicitly the properties
Ko(qs, qu) = Ko(qy/, qu) (4.17)
and
Ko(qu, 0)=K,(0, q1") =0, (4.18)

which are the special cases of (3.1) and (3.2) for r;=0.
C. Explicit Integration

The function K, can be expressed explicitly in terms of Clausen’s integral,?* which has been tabulated.?* The
integrals that we need are

/ s f 1 gL (1—&) e+ (1—P) >+ 1]
0 0

=3(ad) [ fGrta—a)+fGr—a+d) —fGr+i+d) —fGr—a—a)], (4.19)

2¢ T, Clausen, J. Reine Angew. Math. 8, 298 (1832).
% Clausen’s original tabulation in Ref. 24 is quite extensive. A short table can be found in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, D.C., 1964), pp. 1005 and 1006.
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Fic. 4. Some examples of impact diagrams with one loop.

f o [ @ # - et —p e+l
0 0
— Qa0) 3 (@4 + V[ fr+a—a) +fGr—a+8) —~fGrt+a+d) —fGr—d—d)]

+a'(a2+1)12 sinh-la—a(a’?+1) 2 sinh~1a’'—ad’}, (4.20)
and

[of 4y BPL (- (1- )@+ 1T
= (200)-*{3 (@ 1) f(rt-G— &) +f br—d48") —f Grt-d+8) —f(br—a—2') ]
—(a—a?+1)d' (a24-1)V2 sinh~ta— (— >+ a2+ 1) a(a?+1) V2 sinh~ 1’ — ad/ (a?4-a?—1) }, (4.21)
where @ and @’ are two non-negative real numbers,

d=sin[a/(a*+a?+1)1%],  &=sin"[a'/(a*+a"*+1)"2], (4.22)
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F1c. 5. Lowest-order impact diagrams that give rise to two Iogarlthmlc factors at high energies

(i)
0 ® sinnf
F(6)=— / (2 sinfydt= > = (4.23)
0 n=1

Note that, since 4>0, @’>0, and d+4’'<%w, the arguments of all Clausen’s integrals in (4.19)-(4.21) are in the

and f is Clausen’s integral?* defined by

(4.24)

range O-.
In order to apply these integrals, let
x=3(14%) and y=3(147%)

in (4.16):
d_(2 &2—7?) ququ?— (1—42) (1—-7*)[q1?q1?+3(qs-qu’)?]

K[’(ql’ql’):/o /o (1—2%) qu®+ (1—7%) qu'2+4m?
=3(qs || qe' )71[quqs?—3(qs-qu" )2 fGrt+d—a")
+fGr—a+d) —fGr+i+a) —fGr—a—a')]
+3(qe-qu’)2 {3l qu | | go’ )~ 1(qu+qu’2+4m?) [(qe?) -1+ (qu?) 1]
X[ fGr+d—a)+fGr—d+a) —fGrt+d+ad)—fGr—ad—a")]
+3[(qu®)~1—(qu?) 1| qu [71(qu>+4m?) V2 sinh~1(3 | qu |/m)
=1 Q' [1(qu/2+-4m?) 2 sinh~1(3 | qu” |/m) ]—3[(q.?) "1+ (qu?) 1]}
—[q+2q22+5(qe-qu)2](2 1 qu | | qu’ [)"3{3(qu*+qu?+4m?) [ f(Gr+d—a')
@')]— (qu*—qu">+4m?) | qu’ | (qu2+4m?) V2 sinh=1(% | qu |/m)
—4m?)}, (4.25)

Hf e a4+8) —{Grt8+8) ~ (b
— (—qu*+qu4-4m?) | qu | (qu"+4m?) 12 sinh=2(3 | qu’ |/m) —[ qa | | o’ | (qu®4-qu™
where computations. For analytical purposes, the integral
d=sin"1q.%/(q.2+q1"2+4m?) ] representation (4.16) is much more useful, as we shall
(4.26) see in Sec. 6.
5. TWO OR MORE LOOPS

We have seen that uncanceled s Ins terms exist in the
bl

and
'=sin~1[q.?/ (qu24qu2+4m?) .
electron-electron scattering amplitude. In fact, the

This explicit formula (4.25) is rather complicated and
cumbersome, and hence useful mainly for numerical
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lowest-order impact diagrams which give an un-
canceled s Ins term in the electron-electron scattering
amplitude are those illustrated in Fig. 3, and all of
them have one electron loop. It is now natural to pose
the question whether uncanceled s(Ins)? terms, or more
generally uncanceled terms of the order of s(Ins)?, #>1,
exist. To answer this question we must examine higher-
order impact diagrams. A number of such diagrams are
illustrated in Fig. 4. All of these diagrams have one
electron loop, and it can be shown that they give
uncanceled s Ins terms only. The lowest-order impact
diagrams which give uncanceled s(Ins)? terms are those
illustrated in Fig. 5. The corresponding Feynman dia-
grams are illustrated in Fig. 6. The diagrams in Fig. 5
are the lowest-order impact diagrams which have two
electron loops. In this section we show that the sum of
these diagrams gives the amplitude

$is(Ins)2(2r)~° [ dq11dqz1dqsa[ (1i+qia) 2N ]!
X[ (11— qua) > N[ (11+ Qo) >N ]!
XL Qo) NI [ (1 gsa) *+NT
XL (11— q32) > +NT1K (11, Gut, Qos)
X K (11, Qas, qsi) 9¢(11, que) 96(11, qse), (5.1)

where K (11, Q11, g21) is precisely the function defined by
(2.14).

Analogous to (2.1)-(2.6), the various momenta that
appear in Fig. 5(a) are taken to be

ki=[(Bi+B)w, —r1i— 1],
ky=[(Bi+B)w, 11— Qe ],
k=[(vi+v2)w, — 11— Qa1 ],
ki=[(vitv2)e, 1—Qu],
P=[(1-Bi—B)w, Qus],
pi=[Biw, Pr1],
P2= [, —11— Q1 —P11],
Ps=L[(Be—v1—72)w, —QurtQer—pis],
=L (Bi+vi+72)w, 11— Qertpisl,
Ps=[v1w, P51,
Pe=[y200, —T1— Qea—Ps],
Pr="[vo, —Q1tqQs1—pse],

and
ps=[v1w, 11— qs1+Pss]. (5.2)

The region which contributes to the s(Ins)? terms is
that region where Bi, B, v1, and v, are all small and,
furthermore, v1+7v2<<Bi+B.. We shall therefore con-
centrate on this region. As before, the lower limits of
integration for B;+@8: and 1472 will be understood to
be cut off at w ! The scattering amplitude corre-
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sponding to Fig. 5(a) is then given by

3
Flw?m %2 (2m)~ 1 H dq;1dp;1dPs.

2=1

1
‘X/ AB1dBady1dyof(1—Br—B2)0(Be—v1—"2)
0

X Tr[ (vo—s) (— pat-m)vu(— pstm) (vo—1vs) (pstm)
Xyy(Prtm) ] Trlyu(—pot+m)vo( — prt-m) v, (ps+m)
Xvo(pstm) L (114 1) 2N (1 —qua) 24N ]t
XL(r14-qon) N[ (11— Qoa) 2N ] 1 P_ (114 Qs)
X Py (1'1— qw-) [51P2J-2+32P1 1 (3l+32) 7”2]_1
X [Bips12+Bopas®+ (Bi+Bs) m* ]!
X [viPs 12 +veps 124 (vitve) m?
X [vipr2+vapss+ (vitye) m2 ] 6ude.  (5.3)

To evaluate (5.3), we must note the following two
points: (i) We may approximate y,* * +y, and vy,**+v,in

(5.3) by 3 (vo+vs) * * * (vo—1s), where (vo+7s) is to be
inserted in the first trace. This is because

Yur o Yu=35(voF+s) * * * (vo—"s)

+3(vo—7s) * * (votvs) Fyre -y,

and the last two terms in the above equation can be
shown to give terms of the order of s Ins only. (ii) We
make the change of variables Bi=px, B=p(1—2x),
y1=p"%’, and yo=p'(1—2") in (5.3), and carry out the
integration over p and p’, obtaining

[ wido [ gtdp=3na)mt(ns)s. (5.9)
w1 w—1
After these manipulations (5.3) becomes
3 1 1
i (1nw)?e(2m) [ TT dasadpsadpsa f dx f '
i=1 0 0
X Tt (= partm) (= psatm) (psrtm) (pratm) ]
X T (— portm) (— pratm) (Psrtm) (ps1+m) ]
XLt qua) NI L (= qua) "+ 3T
XL(r14qoa) *+N L (1= qoa) N1
XL (ti+qs) 2+NT 1L (11— qaa) 2N ]
X [ape?+ (1—2) pra®+m? ]!
X [aps o+ (1— ) paa+m? ]!
X[#'pra?+ (1—a') psa®+-m? ]
X [a'Po s+ (1—a") psa+m? ]
X ge(r1, Qie) 9¢(ry, qs1).  (5.5)

In the above, we have replaced P, P_ in (5.3) by its
lowest-order term [ (ri+qs1)2+N 11 (11— qse) 2-+N2] 1
(see Sec. 5 of Ref. 9), since we shall be interested in
only the lowest-order term in Eq. (5.3). Equation (5.5)
is merely half of the contribution for diagram 5(a).
This is because the virtual photon of momentum k;
may be emitted from the electron of momentum p;
instead of from the positron of momentum p;. Further-
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Fi16. 6. Feynman diagrams corresponding to Fig. 5.

more, the amplitude for diagram 5(e) is exactly
equal to that for diagram 5(a), while that for diagram
5(i) is twice of that for diagram 5(a). The latter is
because for diagram 5(i), we have, instead of (5.4),

1 dp /-1 dp’_ ,
fw L2 =

Thus we must multiply (5.5) by a factor of 8. Then
(5.5) is equal to (5.1), with K replaced by K., which
is the second term in (2.14), i.e., the contribution of
diagram 3(a) to K.

The sum of diagrams of Figs. 5(d), 5(h), and 5(1)
gives an amplitude equal to (5.1) with K replaced
by K, the first term in (2.14), and the sum of diagrams
of Figs. 5(b), 5(c), 5(f), 5(g), 5(j), and 5(k) gives an
amplitude equal to (5.1) with KK replaced by
K.Ky+KyK,. Thus the scattering amplitude for the
sum of the twelve diagrams in Fig. 5 is equal to (5.1).

Before going on to study higher powers of Ins,
we attempt to rewrite (5.1) in a somewhat neater
form. Let

(11, Qua, Qo) = [ (114 qua) 24-A]22
XL (11— qua) N2 (1t Qo) 2N ]2
XL (11— Qo) >N H2K (11, Qua, Qeu),
and define the corresponding operator X by
(KF) (11, Q) = (2m) 2 [ dQouR(ry, Qus, Qo) F (11, Qo).
(5.8)

It is also convenient to use the notation of scalar
products

(Fy, Fy) = (2m)~% [ dquFy(11, q1) Fy(ry, qu), (5.9)

which is a function of r;. In (5.9) we have omitted
complex conjugations because we are dealing with real
functions. Finally, let

Je(ry, qu) =[(ri+qu) N ] ,
X[ (11— qu) 2N 12g¢(1y, qu).  (5.10)
In this notation, the matrix element (2.15) due to the

(5.6)

(5.7

diagrams of Fig. 3 is simply
is Ins(Je, XJ¢), (5.11)

provided that only the lowest-order terms in Py and P
are kept, while the result (5.1) is

14s(Ins)2(Je, X¥°), (5.12)

where X?=XX.

We now proceed to discuss the lowest-order impact
diagrams with # electron loops. They are also the
lowest-order impact diagrams which yield uncanceled
s(Ins)» terms. Some typical diagrams of this kind are
illustrated in Fig. 7. Instead of (5.3), we have for

Fig. 6(a)
L dpy [ dps
/‘.,—1;1—/;—1;“ —1  Pa
~(1/n) ($)*(Ins).  (5.13)

We also have the following factors of 2: (i) a factor
(2-%)" from replacing v,* * v by 3 (vo+7s) =+ * (vo—3);
(ii) a factor (2%)» from contracting the (yo+7vs) and
(vo—1s) factors in the traces; (iii) a factor 2» to take
care of the fact that both the electron and the positron
in a loop can emit a photon for the creation of the
next loop; (iv) a factor of (2-4)" from rule 7 of Ref. 9
for the virtual electrons in the loop; (v) a factor (2%)"
from rule 7 of Ref. 9 for the denominator factors con-
nected with the loops. These five factors completely
cancel each other, and we are left with a numerical
factor (3)»/n! from (5.13).
For Fig. 7(b), we have, instead of (5.13),

(/1 %]m ip_z /n.._2 dpn—1)(/1 d’l)
w1l P1 Yol P2 o=l Pp-1 w1l Pn
~[(n—1)1T1(G)"(Ins)",

and similarly for other #-loop impact diagrams. Adding
up the amplitude from diagrams 7(a) and 7(b) as
well as those from all other n-loop diagrams of this

/‘ﬂ’— — (n))~1(Inw)"

(5.14)
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kind, we get
B ()Y 14+n+[n(n—1) /2004 - +1}
= (") 1+ 1) =(n)"1 (5.15)

For the purpose of consistency, we shall again replace
P (r;4q;1)P_(r;—q,1) from the dashed lines of
Fig. 7 by its lowest approximation

[(r1i4qs0) N0 [ (11— qon) 2N

Then the sum of the amplitudes from all the impact
diagrams of the type in Fig. 7 gives

n+1 n+1
is(tns)(at)12m) 2 [ T1 dges TE Clert a3

X[(r1—qu0) N1 T K (i, Qe 1, 1)
1

X ge(11, que) 9¢(T1, Qupn 1) . (5.16)

By the notation of (5.8)—(5.10), this complicated
looking (5.16) is simply

1(n!)~1s(Ins) »(Je, InJ°). (5.17)

We may easily generalize the above results to other
diffractive processes in quantum electrodynamics. For
the process a+b—da'+b’, the lowest-order impact
diagrams which give uncanceled s(Ins)™ terms are those
with # more electron loops than the lowest-order
impact diagrams which gives terms proportional to s.

[x(1—2)+y(1—y) ]—20(1—2)y(1— y)(2+cos20)

H. CHENG AND T. T. WU 1

The sum of these amplitudes is equal to (5.16), with
gege replaced by g9¢/g®¥ 26 If analogously to (5.10),
we define J°¢ by

Joo! (11, qu) =[(r4-qu)*N]12

XL(r1—qu)*+N] 1292 (11, qu), (5.18)
then the amplitude mentioned above is
1(n!)~s(Ins) »(Jeo/, KrJoY), (5.19)

We emphasize that the operator & does not depend on
what a, o/, b, and &’ are.

6. SPECTRUM OF X IN FORWARD DIRECTION

A. Formulation

Because of (5.17) and (5.19), where various itera-
tions of the kernel K (r, q1, q1’) appear, it is desirable to
study the spectrum of this operator & as defined by
(5.8). We have been able to carry out such an analysis
only for the forward direction, where r;=0. As discussed
in Sec. 7, there are serious difficulties even in the
understanding of the result for the forward direction.
For this reason, we do not consider the generalization
to other directions to be the most urgent problem.

When r;=0, there is rotational invariance for
electron-electron scattering. Let 6 be the angle between
the two-dimensional vectors q. and q.’, then the K, of
(4.16) can be written in the form

1
Ko(qu, q1’) =qu12q.” f dx /

0 0

r(1—x) qu2+y(1—y) qu>+m?

(6.1)

As seen from (5.10), we are only interested in applying this kernel to functions that are rotatlonally invariant,

We can therefore average over 8 in (6.1) to get

x(1—x)+y(1—y) —Sx(1—=x)y(1—y)

(Ko(qu, QL'))9=ZZ’/ dx/ dy
0 0

where
z=q.?

Analogous to (5.7), define the kernal

Koz, 2) = (z+7N) (" +N) " (Ko(gu, g1") )

2 Z, ld 1
- d
z—i—)\zz'—f—)\?./u x]; 4

and the corresponding operator &y by*

(%) )= [ @55 ). (6.5)

For the sake of mathematical rigor, we let f(z) be
elements of the L, space, i.e., we consider those f(z)
that satisfy

fwlf(z) 2 dz< oo. (6.6)

We shall see that X, is a bounded operator on L.

26 H. Cheng and T. T. Wu, Phys. Rev. D 1, 459 (1970).
27 Note that &, is not a Fredholm operator.

s(—m)atyd-petm 2
and z'=qu.” (6.3)
2(1—x)+y(1—y) —Sx(1—2)y(1—y) (6.4)
w(1—x)z+y(1—y) ' +m? ’ '
Therefore, as a consequence of
Ko(z,2') = Ko(', 2), (6.7)

the spectrum § of &, is a real, bounded, closed set. Let
uo be the lowest upper bound of this set. It is the
purpose of this section to calculate uo.

B. Result
Our result here is simply
wo=1173/64,
independent of m and \.

(6.8)
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The remainder of this section is devoted to a deriva-
tion of (6.8). The procedure followed is roughly as
follows. In Sec. 6 C we study in detail the special
case m=A=0. This case can be exactly solved by Mellin
transformation or, equivalently, Fourier transforma-
tion. We can thus verify (6.8) directly for this special
case, and this implies that uy<117%/64 for all m and \.
In Sec. 6 D we show, by a variational principle, that
wo>1173/64 from which (6.8) follows.

The variational principle also yields the additional
result that this end point 1173/64 is not a point spec-
trum and hence belongs to the continuum.

At first glance, the lack of dependence on 7 and A
may seem peculiar. In Appendix B we give an
explicit mathematical example where this happens.
It is hoped that this example may make the result (6.8)
appear more natural.

C. Case m=A=0
We first study the solvable special case m=\=0,

where
1 1
dx / dy
0 0

Ko(z,2') = /
x(1—2)+y(1—y) —Sx(1—x)y(1—7y)

x s(1—2) 5ty (1—9) - (69 %<:>§
Let

o (0,77

(-w,7)

(w,-1}) (w,ry)

z=¢f, 3'=é¥, (6.10) i \
and F() = tg(8). (6.11) V] |
The reason for using (6.11) is the fact that (6.6) is -
equivalent to (~w,ry) (-w,-r()
0
/ | g(§) Pde< co. (6.12) (b)
o F1c. 7. Examples of lowest-order impact diagrams that give rise
In the £ space, we need to study the kernel to nplogarithmic factors at It)ﬁgh e:xe%;ies.s o evens

x(1—2)+y(1—y) —5x(1—x)y(1—y)
a(1—x)et+y(1—y)et

_ fldxfldy x(1—2)+y(1—y) —5x(1—2)y(1—y)
o Jo  a(1—x) exp[(§—§)/2]+y(1—y) exp[— (¢-¥)/2]°
which is a function of £—¢' only. The Fourier transform of (6.13) is

© . 1 Vox(1—2)+y(1—y) —52(1—2x)y(1—7)
[ e"p(’g")/o dx/o ey (—g)e o

espl(6+£)/2] [ ' / " dy

(6.13)

=7 sechrr /1 dx /1 dyx(1—2)+y(1—y) —52(1—x)y(1—9)]

0 0
X[x(1=2) y(1—y) T2 exp{ —ir[lnx(1— =) —Iny(1—») J}
et oo BT [0 1407
T'(3—2ir) T (14-247) T'(3—2ir)T(3+42ir)

( secharr)? (1 1—-2ir 5 1+4¢2>
= 3 Re ————

27w csch2xr 2—2ir 16 4-+4~2

w2 1141272 sinhnr

~ 64 1472 7 cosh’r (6.14)
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For real values of 7, the right-hand side of (6.14)
takes on all real values between 0 and 1173/64. Since
this is bounded, it follows from (6.12) that, when
m=\=0, the spectrum of &, is the closure of the values
taken by the right-hand side of (6.14); i.e., the spec-
trum of &, is

[0, 117%/647. (6.15)

D. Proof-of (6.8)
We first note that
x(1—x)+y(1—y) —5x(1—=x)y(1—y) >0 (6.16)
for 0<x<1 and 0<y<1. Accordingly, it follows from
(6.15) that
71 ) @) [as< (/o 715 s (6.17)
0 0

and hence

o< 117%/64 (6.18)

for all m and . Equation (6.17) further implies that
XK, is a bounded operator on L,.
On the other hand, since

fw dz fw dz'f(2)f(2) Ro(z, 2")
0 0
Ho=Sup )

| L@
0

(6.19)

over all real, nonzero f(z) that satisfies (6.6), we can
obtain a lower bound for o by trying some f(z). In
particular, we choose, for all A>1,%

f(z, A) =732(34+)N2)
=0

for 1<z<A

otherwise. (6.20)

Then
po=>supa[ InA+222(1— A~ 1)+ (1—A-2) ]!

X /0 “ & /0 " 31z, Mf(Z, D) Ko(z, 7). (6.21)

The reason for this choice of f(z, A) is as follows.
Since the right-hand side of (6.14) has a maximum at
7=0, the eigenfunction that corresponds to pq is, by
(6.10) and (6.11), simply z~%/2) which of course does not
satisfy (6.6) and holds only for m=X=0. The f(z, A)
of (6.20) is essentially the product of this function
z U2 with the inverse of the factor z/(z+A?) that
appears in (6.4). By explicit calculation, it is easy to
verify that

lim (InA)-?

A—>o

A A
dz / A7’z 12~ 12500(2, 2') |mermo

1 1
=1173/64. (6.22)

28 The choice of this 1 is completely arbitrary.
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If (6.22) is substituted into (6.21), we get in particular

po>117%/64— lim (InA)~I (A, m), (6.23)

A->o0

where, by (6.4),

A A 1 1
I(A,m)= / dz/ dz'z‘1/2z"1’2/ dx/ dy
1 1 0 0

X[x(1—2)+y(1—y) —Sx(1—2)y(1—3) ]
X{[x(1—=)z+y(1—y)2' T

—[x(1—a)s+y(1—y)d+miT1). (6.24)

Note that T(A, 7) does not depend on \ and that the

integrand of (6.24) is non-negative because of (6.16).
Suppose for the moment that

© © 1 1
I(m)= / dz/ dz’z‘l/"'z"l”/ dx/ dy
1 1 0 0

X[a(1—x) +y(1—y) —5x(1—x) y(1—y) ]

X{[x(1=2)s+y(1=y)7' T

—[x(1—%)z4+y(1—y)z'+m?T 1} (6.25)
exists; then
lim I (A, m)=1(m),
Ao
and hence by (6.23)
o> 117%/64. (6.26)

The required answer (6.8) then follows from (6.18)
and (6.26).

Therefore it only remains to show that the I(m) of
(6.25) exists. For this purpose, change the variables
%, y according to (4.24) and the variables z, 2’ by

z=u?, 3'=u'% (6.27)
then
I(m)=4/ldoefldg[(1—x2>+(1—02)
0 0
— (5/9)(1—2) (1—)] / " du / " aw
X {C(1—@) e+ (1— ) 2]
—[(1— @)+ (1) >+ 4m2T 1) (6.28)

By symmetry, we can integrate over the region £>9
so that

1—B<1— (6.29)
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Therefore

I =8 1d' jd' 1—x2 1—q?

(m) /x/ gL (1= 2+ (1— )
—(5/4) (1—2) (1— %) J(1— @)~ 12(1— )12

0

0
X du / au
(-z2)1/2 (-72)1/2

X[ ()= (w+u"+m?)~1]

<8 ld- jd- 1—g2)-12(1—q2)- 12

<s [ as [ dg-mna-)
XL(A=a)+(1—7*) — (5/4) (1—a*) (1—9*) ]

X / dudu'[ (wP+u'?)~1— (u+u'?+4m?)~1]
ulpur2>1- 2

1 z
=21r/ da?:/ dg(1—g2)-12(1—q2)- 12
0 0

XLA-&)+(1=7)— (5/4) (1—-2) (1—7) ]
XIn[14+4m?/(1—-22)]< . (6.30)
This completes the proof.
7. CONCLUSIONS AND DISCUSSIONS

As already stated in the Introduction, there are, in
the perturbation series for quantum electrodynamics,
terms of the matrix elements proportional to s(lns)®,
n=1,2,3, ..., when s—o with fixed ¢. For electron-
electron elastic scattering discussed in detail in this
paper, these terms first appear in the 4(%#+1)th order,
i.e., the coefficient is proportional to e**tD, where
n=1, 2, 3, .... Moreover, these coefficients, to this
leading order, are explicitly given in Sec. 5. For
electron-photon scattering and photon-photon scat-
tering, the corresponding orders are, respectively,
4n+6 and 4n-+8. We emphasize that the appearance
of these s(Ins)™ terms holds for all ¢£0, for both massive
and massless photons. These logarithmic factors are
therefore not related to, but rather in addition to, the
more familiar logarithmic factors due to the massless
nature of the photon, an example being the factor in
the total pair-production cross section.?®

We are only beginning to realize the existence and
importance of these terms, and there is as yet no satis-
factory understanding of them. We must, for the time
being, be content with the most elementary properties
of these terms, discussed in Secs. 7 A and 7 B.

A. Leading Coefficients

Although some of the results can be easily generalized
to nonforward directions, we shall restrict ourselves to
the forward direction r;=0, where a more complete
discussion is possible. By Sec. 6 A, we write down the

B R. Jost, J. M. Luttinger, and M. Slotnick, Phys. Rev. 80,
189 (1950).
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spectral decomposition® of & for r;=0:
%o(e, )= [ udu bl 0,0, (7.1

By (5.8), (5.7), (4.1), (6.4), and (6.5), the eigenvalues
of X are, when 1,=0,

2(a/m)u, (7.2)

where a=¢?/(4r) is the fine-structure constant.
Accordingly, by (6.8), the lowest upper bound for the
spectrum of X at ;=0 is

F5aiT. (7.3)
By (5.10), define the coefficients
a(u) = (27)7 [ dq.o(qs? p) (@247, (7.4)

then the matrix element (5.17) is
1(n!)~1s(Ins) ngege

X {[2<a/7r>2]» / mdntamz}. (7.5)

Note that (7.5), when divided by 4%, is positive for
all n.
An important property of the a(u) of (7.4) is that
a(u) = lim (1—p/uo)a(n) #0, (7.6)
B->po

where uo has been defined in Sec. 6 A to be the lowest

upper bound of 8. First, ¢(u) is finite because, from

Sec. 6 D, as z—> o

é(z,m)=0(z1"). (7.7)

Also note the fact that, because &o(z, z’) >0 from (6.4),
(q42, o) is either non-negative or non-positive, depend-
ing on the choice.

This inequality (7.6) makes it possible to calculate
the asymptotic behavior of (7.5) for large #. It follows
immediately from (6.8) that
(5.17) ~i[ (n+2) 1T s (Ins) »gege (1173/64)

XCHetrPTaw) P, (7.9)

as n— o,
B. Sum of Leading Terms

It is tempting to sum (5.17) or, equivalently, (7.5)
over all #. Such a calculation is sometimes referred to
as summing the leading terms, and has been discussed
in great detail®® before. Such a procedure has no mathe-
matical basis, but was used with great success over a
decade ago in a number of many-body problems.
Much later, attempts were made to apply similar con-
siderations to field-theoretic problems, renormalizable®?

¥ Strictly speaking, the spectral decomposition should be
written in the form of a Stieltjes intergral. See, for sample, F.
Riesz and B. Nagy, Functional Analysis (Ungar, New York,
1955), p. 275.

31T, T. Wu, Phys. Rev. 149, 380 (1966). The procedure of
summing the leading terms is discussed in Sec. 8(4).

32See, for example, M. Gell-Mann and M. L. Goldberger,

Phys. Rev. Letters 9, 275 (1962); J. D. Bjorken and T. T. Wu,
Phys. Rev. 130, 2566 (1963).
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or otherwise.®® The physical meaning of these attempts
is not clear. About three years ago, as a possible check
on the validity of this procedure of summing the leading
terms, the soluble problem of the two-dimensional
Ising model®* was studied from this point of view. It was
found® that this procedure gives @ finite but wrong
answer. Thus summing the leading terms does not
assure us of the correct answer.

With these reservations in mind, we sum (5.17)
over n:

i i(n!)~1s(Ins) " (Je, K"J°) =is[Je, exp(X Ins)J<]

n=0
=1s(Je, s%J°). (7.9)

While (7.9) holds for all momentum transfers on which
X depends, specialization to the forward direction
1;=0 gives more specifically

(7.9) rro=1isg°s® fs duLa()F expl2(a/r)’% Ins]

~kigege(mw/a)4(Ins) 2@ (po) PstHuies/2 (7.10)

for large s. Note that the power of s is larger than 1.
For sufficiently small momentum transfers at least,
the value of @(u) remains different from zero and the
power of s remains larger than 1. We therefore reach
the conclusion that, for the present problem, tke pro-
cedure of summing the leading terms gives an answer that
violates s-channel unitarity.

That the sum of leading terms gives such a large
answer has far-reaching consequences. First, it raises
doubts about the usual derivation® of Regge poles

H. CHENG AND T. T. WU 1

from field theory. Indeed, the procedure of obtaining
(7.10) here is just the operator generalization of the
usual derivation®3 of Regge poles. In our opinion,
therefore, much work is needed to justify the existence
of Regge poles in relativistic field theory.

Secondly, we note that renormalization plays a very
minor role in the present consideration. Accordingly,
the failure of the result (7.10) to satisfy unitarity
cannot possibly be interpreted as a piece of evidence
for the breakdown of quantum electrodynamics.

Finally, we emphasize the important role played by
unitarity in the direct channel. Precisely on the basis
of this unitarity we conclude that the answer (7.10)
is incorrect. Unitarity can be partially restored by
including the iterations in the s channel of the diagrams
considered here, for example those of Fig. 1. This has
been studied before,®® and it is found that, if we start
with the diagrams of Fig. 1 with the contribution
(2.15) of the order s Ins, the sum of all iterations is
smaller and of order s In(lns). Moreover, if we start
with the sum (7.10), the sum of iterations® saturates
the Froissart bound® and no longer violates s-channel
unitarity. However, it is not certain that this process
of taking iterations into account solves the problem.
We think that the most important problem now is how
to have some understanding of unitarity conditions
and in particular of their role in determining the high-
energy behavior of scattering amplitudes.
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APPENDIX A

In this appendix, we generalize the procedure of Secs. 4 A and 4 B to the case r;7£0. Let

then the generalizations of (4.2) and (4.3) are

K4, 020 =100 [ dps [ efa(part )+ (1-2) (pam g
0

Ki(qu, qu') =[4e*(2r)~* 11K (1, qu, q1'), (A1)
% {_ L(p+—qu)2+m*] Tr(patr—m) (ps—ritm)
x(pr—11)2+(1—2) (pr—qu)2+m?
_ Tr(patn—m) (pr—gu'+m) (pr—gi—gqi'+n—m) (m—qH—m)} (A2)
®(pr—qu)*+(1—x) (pr—qu—qu'+11) 2+m?

# See, for example, T. D. Lee, Phys. Rev. 128, 899 (1962) ; G. Feinberg and A. Pais, ibid. 131, 2724 (1963).
# E. Ising, Z. Physik 31, 253 (1925); L. Onsager, Phys. Rev. 65, 117 (1944).
3 Regge poles correspond to the point spectrum (absent here) of the operator X.

3 H. Cheng and T. T. Wu, Phys. Rev. 186, 1611 (1969).
37 M. Froissart, Phys. Rev. 123, 1053 (1961).
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and
S 212 ol o
Ki(qu, QL')=(27r)—lfdpL{ i (patri)’+m

(Patr)*= (pa—r)?  (pa—r0)*m?

1 Tr(pot-r—m) (pr—qi'+m) (pr—qi—qi'+n—m) (pr—qstm)
4 [(patr1)2+m? ][ (P1—qu—qu'+10)2+m*]— [(pr—gu)* +m* ][ (pr—qu') *+m?]

I LRt 4+ I (P qu ql'+r1)2+m2]} (A3)
[(Pr—qu)+m* [ (pr—qu))+m*] |~
To save some writing, we shall deal instead with the quantity [compare (4.3) ]
K(as, 42) = (20)* [ dpa
v {1_ 1 Tr(patn—m) (pr—gu'+m) (pr—qa—qs'+11—m) (pr—qstm)
C(patr)®+m*IL(pr—qu—qu'+11) *+m*]—[(p1—qu)*+m* [ (pr—qu') *+m7]
[(px+r1)2+m2][(px—q¢—ql’+r1)2+m2]}
X1 . (A4
Ry Fryer T e R
Since the first term in the integrand of (A3) is independent of both q. and q./, we have
Kp(qu, 1) =Kp(ry, qu') = Kp(ry, 11) (AS)
and
Ki(q1, qu') = Kp(qs, qu) —Kp(1, 1). (A6)

That Kp is logarithmically divergent cannot cause any trouble.

If a second Feynman parameter y is introduced via (A2), Kp can be expressed in the form

1 1
Kp(qe,qu)=2x)1 | d dx | dy(1—N./D:?), (AT)
p(qu, qu) m fpl/; ];y /Dy
where NV is the numerator that appears in (A4) and
Di=2xy(prtn)*+ (1—x)y(pr—qu)*+x(1—y) (Pr—qu')*+ (1—=) (1—y) (Pr— Q1 —qu'+11)*+m?
=p2—2p1-[(1—x) qut (1—9) qu’— (1—2— y+22y) 1y ]+ ayr+ (1—x) yq 2+ (1— ) qu”

+(1—x) (1—y) (qut+qu'—1)*+m  (A8)
We can again use (4.9), but here, instead of (4.10),

pi=(1—2x)qu+(1—y)qu'— (1—x—y+2xy) 11 (A9)

Di=pu2+A+m?, (A10)

In terms of p./,

where
A=x(1—x)q>+y(1—y)qu?—22(1—2x) (1—2y)1r1-qu—2y(1—y) (1—2x) r;-qu’
+(vt+y—2xy) (1—x—y+2xy) 1% (All)
For 1,50, this quantity 4 is quite complicated. It is therefore useful to introduce
Q=q:—(1—-2y)r; and Q'=qu'—(1—2x)r. (A12)
Except for a factor of 2, these Q’s are essentially the same as the Q previously encountered in (4.13) of Ref. 5.
In terms of these Q’s, it follows from (A11) that

A=2(1—2)Q*+y(1—9)Q"*+4x(1—x)y(1—y) 1 (A13)
and the §p. of (A9) is
pr=(1—2)Q+ (1—9) Q'+ (1—2x—2y+2xy) 1, (A14)
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We next turn our attention to the numerator N;. Let
a;=0p1+1=(1-2)Q+(1-9) Q" +2(1—x) (1—y)1,
Ay=8p1—qu=—aQ+ (1—3) Q' 2x(1—y)1, (A15)

a;=06pL1—qi—qu'+11=—2Q—9yQ'+2xyr;,
and

a;=0p1—qu'= (1-2)Q—yQ'—2(1—=x)yr,
then

Ni=1 Tr(p/+ai—m) (po'+a+m) (pi/+as—m) (p'+ay+m)
=[(ps'+a) - (pr'+as) +m*J[(po'+as) - (po'+as) +m?]+[ (pi'+as) - (po'+as) +m?]
X[(ps'+ai) - (pa'+as) +m*]—[(pr'+a1) - (po'+as) +m* ][ (pr'+as) - (po/+a) +m¥]. (A16)

With symmetric integration over the two-dimensional vector p.’, this numerator N, can be replaced by its sym-
metric part

Ny = (p"+m?)2+C' (p"2+m?) +C+m2C", (A17)
where
C=(ar*ay) (az-as) + (as-a3) (a1 a,) — (a;°a3) (ag-a4), (A18)
C'= (a1+a3) . (a2+a4) y (A19)
and
C"=—(a;-aztas-a,). (A20)

From the explicit formula (A15), the computation of C’ and C” is relatively straightforward:
C'= (1-22)°Q*+ (1—29)Q"*+2(1—2x) (1-29)Q-Q’
+2(1-22)*(1—-2y) 1;- Q+2(1—2%) (1—2y) s Q' — [1— (1—2x) 2(1—2y) *]r?
= (1—22)*Q*+(1—29)*Q"+2(1—2x) (1—2y) g1+ qu'— [ 1+ (1—22) (1~ 2y) ]ry? (A21)
and
C"'=2x(1-2) Q25 (1~ ) Q"— (1—24) (1~ 25) Q- Q'+4a(1—x) (1—29)1;-Q
+4(1-22)y(1—9) 1 Q' —8x(1—x) y(1—y) 1?
- =22(1-2)Q*+2y(1—y) Q"?— (1—2x) (1—2y)q1-qu'+ (1-2y)11-qu
+(1—=2x)r-qu/—[1-8x(1—2x)y(1—y) Jri2.  (A22)

It is seen from (A21) that it is convenient to use both the Q’s and the q.’s. The corresponding calculation for C is
much more complicated. We first write down

ai = —x(1—2) Q>+ (1—9)2Q"+(1—-2%) (1—-y)qr-qu'— (1—y) 11 qu
+(1-2%) (1=y)ri-qu'—[(1—22)2(1—y) +4x(1—2) y(1—y) Ir?, (A23)
az-a,= —2(1—%) Q*+5*Q"2— (1—2x) yqu-qu'+y11°qu
+(1=2%)yr1-qu/—[(1—22)2y+4a(1—x) y(1—y) Iri?, (A24)
ay-a3=2?Q*—y(1— ) Q?—x(1—2y)qu-qu'+x(1—2y) 11°qu
+ariequ'—[x(1—2y)+4w(1—2) y(1—y) Jri?, (A25)
arras= (1-2)2Q*—y(1—y) Q"+ (1—x) (1-2y)qr-qu'+ (1—2) (1—-2y)11-qu
—(1=2) 110 qu'—[(1—x) (1—2y)*+4a(1—x) y(1—y) Jri?, (A26)
a-a;=—x(1—2) Q*—y(1—9) Q"?— (x+y—2xy)qr-qu'— (x—y)11-qu

+(@—y)r-qu' = [—a—y+2xy+de(1—x)y(1—y) Iri?, (A27)
and

ayra=—2(1—2)Q?—y(1—9) Q2+ (1—x—y+2xy)qu-qi’— (1—x—9y)11°qs
—(1—z—y)11°qu'—[— 14a+y—2xy+4x(1—2) y(1—y) Jri2. (A28)
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The substitution of (A23)-(A28) into (A18) then yields
C=a2(1-2)( Q)+ (1) AQ)*+1622(1— ) (1) (x)?
+ao(1—x) y(1—3) [(qe-qu) = (r1°qu) = (11°qu) I+ [—2(1—2) —y(1—y) +22(1—2) y(1—y) ]Q*Q"
- +a(1—2) [(1—22)2+-82x(1—=) y(1—y) JQ*r’+y(1—y) [(1—2y)*+8x(1—=) y(1—y) JQ"rs?
—x(1—2) (1—2x) (1—2y) Q*q-qu'— (1—2x) y(1—y) (1—2y) Q"q-q.
+a(1—x) (1 -2y) Q- qu—a(1—=) (1—2x) Q’11- qu'—y(1—y) (1—-2y) Q"11:qu
+(1—-22)y(1—) Q"r1* qu'— 4o (1—=) (1—22) y(1—y) (1-2y) r’qu-qu
+4x(1—x)y(1—y) (1—2y) 1?11 qut+4a(1—2) (1—22) y(1—y) r?ri-q./.  (A29)
Analogous to (4.11), there is a contribution to Kp due to the shift from p. to p.’:
. / ' / ayopa (ackartasta) = [ s [ L0k (1-5) s~ (1-amy229) 5] [(1=20)as
+(1-2y)qu’'— (1—-22) (1—2y)1,]
=§(q1*+q"?) +1,2/18. (A30)

Substitution into (A7) then yields

1 1
Kp(qy, qx')—[%(qlz+qx'2)+r12/18]=(27r)‘1f dxf dyfdpx'(l—Nx/Diz)
0 0

- (24— C') (pu/+m2) + (42— C—miC")
= (27)-1 ’
(2n) fo dx /,, ay [ ans e

1 p A — A2 AC—C—mC"
~[4q [d (ZA—C’ ] )
2/0 ®) 4y ( )nA+m2+ e ,  (A31)

where A is a large cutoff whose presence indicates the logarithmic divergence of Kp. Note first that, from (A13)
and (A21),

24—C'= — (1—62+46a2) Q*— (1—6y+6y2) Q"2— 2(1—2x) (1—2y) qu-qu’
+2[1-22(1—=) —2y(1—y) +12x(1—x) y(1—y) I, (A32)

and hence
f g f Ly (24— = $r (A33)
0 0
is independent of q. and q.’. Also note that, from (A22),
% fo i fo 1 dy C"=%(q1*+q."?) —51,2/18 (A34)
and hence (A30) and (A34) differ only by a term proportional to ;2. By (A32),

fl dx fl dy(2A—C") In(A4+m?) = % /1 dy r2 In{[y(1—y) (qu'+ 1) 24-m2 Ly (1—9y) (qu'—11) 2++-m2]}
0 0 0

+ %f do 12 In{[x(1—x) (qQut10) *+m2][a(1—x) (qu—10)2>+m?*]} + fl dx /l dy(A+m?)~1(34/0x)
0 0 0
X {2x(1—x) (1—2x) Q*+x(1—=) (1—2y) qu-qu'4 (1—2x) [F(1—a+a?) +-20(1— ) y(1—y) Jri2}
+ fl dx /1dy(A+m2)‘1(6A/8y){y(l—y)(1—2y)Q’2+(1—2x)y(1—y)qrqx’
0 0
+(1-29)[3(1—y+") +2x(1—2) y(1—y) Iri2}.  (A35)
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If we substitute (A33)—-(A35) into (A31), the result is

Kp(qu, qu’)+(2/9) 12— (2/3) r2 InA

H. CHENG AND T. T. WU

+ir? /1 dx In{[x(1—x) (qut1) 2+m?[x(1—x) (qQu—11) 2+m2]

X (12 (@) T —2) (=)l = [ as [ dy

where

21=— A+ A(C'+C") —C—[(1—2x) Q*+4y(1—y) ri-qu"]{x(1—=) (1—2x) Q2
+a(1—x) (1—2y) qu-qu/+ (1—22) [ (1—a+22) +2x(1—x) y(1—1y) Jr;?}
—[(1—2y) Q" +4x(1—x) - qu ] {y(1—y) (1—2y) Q"+ (1—-2x) y(1—y) qu-qu’

By (A13), (A21), (A22), and (A27), this is explicitly

N=—2x(1—x) y(1—y) [2+4 (1—22)2(1—29) 7] (1) *— 22 (1 — %) y(1—9) [ (q1-q1") >~ (11-q1) = (11-q)) %]
+le(1—a) +y(1—y) —do(1—2) y(1— ) ]Q*Q"
+{—$[14-Tw(1—2) — 2002 (1 —x) "]+ 32 (1—«x) (1—22) %y (1—y) } Q212
+{—[1+Ty(1—y) —20y*(1— )]+ 32(1—x) y(1—y) (1—29)*} Q"rs?
Fr(1—x) (1—-2x) (1—2y) Q*q1-qu'+3(1—22) y(1—y) (1-2y)Q"q1-q.’
Fa(1—x) (1—22) (1—2y+2y*) Q%1 qu'+ (1—2x+24%) y(1—y) (1—29) Q"ry qu
+ax(1—x) (1—22) y(1—y) (1—2y) r’qu- qu'— 20(1—x) (1—29) [F(1—y+9?) +2x(1—2) y(1—y) Jr’r1-qu
—2(1—22)y(1—y) [F(1—a+a?) +20(1—2) y(1—y) Jri’ri- qu'— 20(1—x) (1—22) y(1—y) 1, ququ-q o/

Finally, the desired answer is, from (AG6),

1

AT (A36)
+(1=2y)[5(1—y+9) +20(1—2x) y(1—9) Ir?}.  (A37)
—2x(1—2)y(1—9y) (1—2y)1r1-qu'qu-q1’. (A38)

Le(1—a) (qutr) *+m*][x(1—2) (qu—11) *+m?]

1
Ki(qu, qu') = — e f dxIn
0

m? 4 (1—x) r2+m?]

+ (previous term with q. replaced by q.’)

1 1 9
* ]; dx/o » 2(1—2) Q*+y(1—) Q2+dw(1—=) y(1—y)r2+m?

APPENDIX B

In this appendix, we give a trivial example where a
change in the kernel does not change the spectrum.
First consider the kernel

(z42)1, (B1)

on the L, space defined by (6.6). This kernel can be
treated in the same way as that of (6.9) in Sec. 6 C.
The spectrum is

[o, =]. (B2)
Next consider the kernel
(z45"+m?)-1. (B3)
Let
v=142z/m? and o'=1+425"/m? (B4)

(previous term with qi=qu1'=1;). (A39)

then, to find the spectrum of (B3), we need to study
the integral equation

/1 " o () (v+o) 1= (v)

for »>1. But (B5) is a known integral equation,
whose solutions are,® for { real,

(BS)

p=m sechw{ (B6)
and

@(v) = Pi_1pp(0), (B7)

where P is the Legendre function of the first kind.
From (B6), the spectrum of this kernel (B3) is also
given by (B2).

# F. G. Mehler, Math. Ann. 18, 161 (1881).



