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The perturbation series for electron-electron elastic scattering in quantum electrodynamics is studied
in the limit of high energies. For this matrix element, in addition to the previously known terms which
are proportional to s (the square of the c.m. energy) and hence lead to a constant total cross section at
high energies, there are found terms of the orders of magnitudes s lns, s (ins) z, s(lns) z, etc. For n=1, 2,
3, . . . , the coeKcient of s(lns)" is a power series in the fine-structure constant zz, where the leading term
is proportional to n'&"+'& and is due to Feynman diagrams with n closed electron loops. Physically, through
the optical theorem, the presence of these terms is intimately related to the production of low-energy
electron-positron pairs in high-energy electron-electron scattering, but is independent of whether the
spin-1 particle is a photon with zero mass or massive neutral vector meson. These leading terms of order
cP&"+'&are explicitly found for all n, and are all imaginary, representing absorption. The procedure of summing
the leading term is carried out, and the result demonstrates dramatically the importance of unitarity in
the direct, or s, channel for high-energy processes. Generalization to two-body diGraction processes a+b~
a'+b' is immediate.

1. INTRODUCTION

~

~ ~VER two years ago, a program to study high-energy
amplitudes in various field theories was initiated.

Even though field theory is a most interesting subject
in itself, our purpose for pursuing this work is far more
general. By studying high-energy problems in field
theories, we hoped to gain a basic understanding of
high-energy collision processes which may be applicable
to hadron physics. We are therefore not so much
trusting the quantitative significance of perturbative
results, but rather using perturbation as a tool to
extract some general behaviors exhibited by all high-
energy processes. One of the principal motivations of
this study stems from our belief that nature is much
more imaginative than potential scattering, which has
hitherto been relied on by many researchers with almost
religious faith. By far the best theoretical "laboratory"
we possess is still the field theory, which has the funda-
mentally important properties of relativistic invariance,
crossing symmetry, and unitarity.

As a first step in this program of study, we have
analyzed all the two-body elastic scattering in quantum
electrodynamics. ' ' It is found that to the orders con-
sidered dzr/dt approaches a finite constant as s ap-
proaches infinity with fixed t, where as usual s is the
square of the c.m. energy and —t is the square of
the momentum transfer. The Grst nonvanishing con-
tribution, however, appears in different orders of
perturbation for the processes: for example, sixth
order for electron Compton scattering and eighth
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order for photon-photon scattering. As expected,
these first results already contradict' ' the statements
from the Regge-pole model without introducing corn-
plications; in particular, we find that the Pomeranchuk
or vacuum trajectory cannot be a pole with factorizable
residues. Moreover, these results also contradict
that of the droplet model' in the most straightforward
interpretation, ~ although there is some similarity such
as the two-dimensional integration over the transverse
variables. The reason for this disagreement with the
droplet model is due almost entirely to the fact that
the eikonal picture is applied directly to the incident
photon in the droplet model, while we Gnd that the
eikonal picture must be applied to each member of the
virtual electron-positron pair in the photon. " From
this first step of the program emerges a natural picture
of high-energy scattering processes. 8

Out of this impact picture, we have formulated
rules to calculate directly the limiting behavior at
high energies of various matrix elements for elastic,
diffraction, and inelastic scattering processes. ' "These
rules of calculation are most efIiciently expressed in
terms of impact diagrams, and the results are of the
form of the product of s with an integral which depends
on f but not on s. We emphasize that this method of
impact diagrams is applicable to all orders of perturba-
tion theory, or in other words takes care of all Feyrtmart

6 N. Byers and C. N. Yang, Phys. Rev. 142, 976 (1966);T. T.
Chou and C. N. Yang ibid. 170, 1591 (1968); 175, 1832 (1968);
Phys. Rev. letters 20, 1213 (1968).' We disagree with the contrary claim of B. W. Lee /Comments
Nucl. Particle Phys. 111,198 (1969)j.He reformulated the drop-
let model in q-number language with the guidance of our physical
picture base/ on the rigorous calculation. Since the physical pic-
ture was the same, his results turned out to be identical to those
of Ref. 8 which we had previously obtained.

8 H. Cheng and T. T. Wu, Phys. Rev. Letters 23, 670 (1969).
9 H. Cheng and T. T. Wu, Phys. Rev. D 1, 1069 (1970).' H. Cheng and T. T. Wu, Phys. Rev. D 1, 1083 (1970).
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FIG. 1. Lowest-order Feynman diagrams that give rise to a logarithmic factor at high energies.

diagrarls for the processes Nrlder coesideratson "By this.

new method, our earlier results'4 can be reproduced
with amazing ease; while it took us over a year of hard
work before, ' we can now obtain all the results in a few
hours.

As mentioned above, the results of calculation with

impact diagrams are essentially integrals which depend
on f but not on s. To the lowest nontrivial orders, the
integrals give the impact-factor representation. "
How do the integrals behave in higher orders? If they
are well defined to all orders, we can claim a satis-
factory understanding of high-energy processes by the
impact picture, and we can perhaps attempt to study
the convergence or divergence of the perturbation
series in this limit. Actually, nature is far more profound
and interesting. As previously discussed, ' " the above-
mentioned integrals diverge logarithmically when the
orders of perturbation are suKciently high. For quan-
tum electrodynamics, this logarithmic divergence first
appears in connection with the diagrams" of Fig. 1.
Although this divergence can clearly be interpreted as
Ins, its presence nevertheless raises many questions.
For example, for large s the differential cross section
do/dt must now d.epend on lns and the existence of
lim, „da/dt is accordingly in doubt.

Is it conceivable that this appearance of logarithmic
divergence is a peculiarity of electrodynamics and
hence irrelevant to hadron physics? We think that this
is extremely unlikely. Some insight into this factor
lns can be obtained by the following consideration.
Since this lns appears in the imaginary part of the
amplitude, we may apply the optical theorem to the
diagrams of Fig. 1 and thus consider the diagrams of
Fig. 2, which shows the production of a pair in electron-
electron scattering. It is found that this lns is associated

' If we consider a scattering process, such as photon-electron
backward scattering ey—+ye, where do-/dt approaches zero as some
inverse power of s, then the method of impact diagrams developed
so far merely gives the trivial answer 0.

"H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 1405 (1969).

with the production of low-energy pairs in the c.m.
system. Such pairs, referred to as pionization products,
have been studied in detail. "'4 They are believed to
have been observed in cosmic rays" in addition to the
so-called fireballs. '6 For this reason these logarithmic

factors seem to be of fundamental importance and

neither the impact picture' nor the hypothesis of

limiting fragmentation'7 gives the entire story.
This fundamental problem of the logarithmic factors

is extremely dificult and challenging. We are still

very far from arriving at the complete answer to the

problem, and the aim of the present paper is to take
the first-step in that direction. To approach a problem

of this magnitude, it is necessary to have some physical

understanding which may serve as a guide. For this

purpose, in Sec. 2, we first devote ourselves to the

relatively simple task of obtaining the s lns term to the

lowest nontrivial order. Basically, the diagrams of

interest are those of Fig. 1, although we shall approach

(b)(~)

I'zG. 2. Pionization diagrams.

~' H. Cheng and T. T. Wu, Phys. Rev. Letters 23, 1311 (1969).
'4 H. Cheng and T. T. Wu (unpublished).
"I'roceedings of the Tenth International Conference on Cosmic

Rays, Calgary, Casaba, 1967 (Can. J. Phys. Suppl. 46, (1968)g.
~' G; Cocconi, Phys. Rev. 111, 1699 (1958); K. Niu, Nuovo

Cimento 10, 994 (1958); P. Coik, T. Coghen, J. Gierula, R.
+olynski, A. Jurak, M. Miesowicz, T. Saniewska, and J. Pernegr,
&uzi. 10, 741 (1958)."J.Benec&e, T. T. Chou, C. N. Yang, and E. Yen, Phys. Rev.
j.S8, 2159 (/9@).
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the problem with impact diagrams. It is found that a
certain function, called J and defined by (2.14),
appears in the final answer for the coefficient of the
s lns term. The properties of this function are studied
in Sec. 3, and Sec. 4 is devoted to the special case of
forward scattering. After this, in Sec. 5, al1. the con-
siderations of Sec. 2 for the s lns term from the simplest
electron-electron scattering diagrams with one fermion
loop are generalized to the s(lns)" terms due to the
simplest diagrams with e fermion loops. It is found that
the same function E appears repeatedly, and the
relevant properties of this E are further studied in
Sec. 6, again for the special case of forward scattering.
The results are discussed in some detail in Sec. 7.We also
learn how important unitarity in the direct channel is,
a fact which justifies our original choice of studying field
theories.

2. ELECTRON-ELECTRON SCATTERING

The impact diagrams of interest are illustrated in
Fig. 3. The diagrams in Figs. 3(a) and 3(b) describe
the process in which the pair is produced by the first
electron and scattered by the second one, while those
in Figs. 3(c) and 3 (d) describe the process in which the
pair is produced by the second electron and scattered

p~= I P~~~ p&7»

ps=Ps~, —r~ —q —p 7,
ps= [ps(d) q J q J. p J7)

(2.4)

(2 5)

(2.6)

p4=[A~ ri qs +ps7.
In (2.1)—(2.7), the quantities entered in square
brackets are the longitudinal and the transverse com-
ponents, respectively, of the corresponding spatial
momentum. We shall assume, without loss of generality,
that the line carrying momentum p& (ps) represents an
electron (a positron) .

The dominant contribution to the scattering ampli-
tude comes from the region P&«1, Ps«1. Applying the
rules in Ref. 9 and making the approximation /~&&1,

Ps«1, we obtain the scattering amplitude for Fig.
3(a) as

(2 7)

by the first one. Note that a solid line represents a
fermion and a wavy line represents a photon or a neu-
tral vector meson. Consider first diagram 3(a).We put"

P= [(1—
P~

—Ps)(u, qi7, (2. 1)

kl [(Pi+ps) oo, —r~ —qs 7, (2.2)

& =I (0+P), r —q 7, (2.3)

1 1

alt ~m 8„8, e (-2')
f,

'dpd-q'dq, ,dlh ,'dl%
0 0

XTr[(yo —ys) (—Ps+m) yo( —Ps+m) (yo —ys) (Ps+m) yo(Pi+m) 7

x IP,[(r,+q.+p )'+m'7+a (p "+m') }

X IP&[(qs.
' —qs.—Pi)'+m'7+ps[(r, —qs. '+Ps)'+m'7}-'

XP+(r,+qi')P (r&—qs. ')[(r&+qs)'+X'7-'[(r, —qs)'1), '7-'. (2.8)

In (2.8),"m and X are the masses of the fermion and the vector meson, respectively, and 8~s, 8~.s are the Kronecker
5 s in spin. We now explicitly evaluate the trace in (2.8) . Since

p' J3'&(Vo—'Ys) —P.s ' p&
and since

(vo —Vs)'=o,
we have

(vo v) p'-ho ~ )p'—,

where P, s.= —p;s. ys. . Thus the trace in (2.8) is equal to

Tr[(vo —vs) (—Ps~+m) vo( —P»+m) (vo vs) (P«+m) v—o(P»+m) 7

=2 Tr(psi+m) ( psi+m) (—pss+m) (p—is+m). (2.9)

Just as in the case of Compton scattering discussed in Ref. 2, the amplitude Des for diagram 3(b) can be obtained
from the right-hand side of (2.8) by setting qs. = r& in the trace as well as the energy denominators. Thus

1 1

mr. +mrs~(u'im-'b, sb& s e'(2sr)-' dpidqidqi' dP, dPs[(r, +qi)'+X'7-'[(r& —qi)'yX'7-'
0 0

x&+(ri+q~')& (r&—q~') Ipi[(ri+q~+p~)'+m'7+Ps(p~'+m') } '

((Ps.'+m') Tr[(pss. +m) (—psi —2rq+m) 7 Tr(ps J+m) (—psi+m) (—p4s. +m) (pl J+m)
pl[(1] qs. p J) +m 7+ps(pi'+m') p&[(qs.

' —qi —ps )'+m'7+ps[(r& —qs. +p J) +m 7

"See Sec. 3 of Ref. 9.
Strictly speaking, in connection with the Feynman diagrams of Fig. 1, we can keep only the lowest-order terms in E+ and P

fde6ned by (5.2) of Ref. 9$.
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I xo. 3. Impact diagrams corresponding to Fig. 1.

Observe that the integration in (2.10) is not convergent at the end point Pi ——P2
——0. This divergence is due to

the fact that the method of impact diagrams is not applicable in the region a&Pi
——O(1), cvP2

——0(1).This means
that the integration over pi and p2 must be cut off at or '. Denoting

pi= p&r

p =p(1-*),
and carrying out the integration over P by setting

(2.11)

(2.12)

p 'dp= in')
—1

we get

BR.+ORr, ',is 1ns(2—m)-'J dqidqi't (r,+qi)'+lr. '$-'L(r, —qi)'+X'7i
X&'(ri, qi)E(ri, qi, qi') 8'(ri, qi') P+, (ri+qi')P (ri —qi'), (2.13)

where

E(r, , q, q 'r =e'(2 )
' f dp dxix(r+p +q )'+(1—x)y '+m'] '

xi(TrL(P~i+m) (—Pmi —2ri+ns) $(yi'+. nz')

Px(r, —qi —pi) '+ (1—x) pi2+gg2j

In (2.13), 8'= i2e'm '8i2 is the electron impact fa,ctor.
The scattering amplitude BR,+BR& for diagrams 3(c) and 3(d) is equal to DR, +ORr, . Thus

BR=BR,+5Rr+BR,+Dig

Trf(P2&+~) ( P3&+~) ( P4&+~) (Pl~+rrr') $l (2.14)
t"x(qi' —qi —yi)'+(1 —x) (ri—qi'+pi)'+m'j]

=is lns (2rr) 4 f dqidqi'$(ri+qi)'+&'$ 'L(rz —qz)'+&'j '

Xd'(r, , qi)E(ri, qi, qi')8'(ri, qi')P+(r, +qi')P (r,—qi'). (2.15)

Equation (2.15) is the desired answer for this simple case. Sections 3 and 4 of this paper are devoted to a
detailed study of this function K(ri, qi, qi') as defined by (2.14) .
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3. SOME PROPERTIES OF X(r» qi, qi')

We obtain here some of the simple properties of E(ri, qi, qi'), namely,

E(1'i, qx, qi. ) =E(1'i, qx, qx)

E(r„&r&,q J.') =E(r„qi,ar, ) =0.

(3.1)

(3.2)

The symmetry (3.1) is most easily proved by carrying out the x integration in (2.14) . If the variable of integra-
tion y~ is everywhere replaced by yi —q~, we get"

1

&(n, ~ . a') "(2=) 'f &-r &~*L'*b.+")'+(~—~) (v —a )'+~'3-'
0

t'(pi —qi) '+m'] Tr (Pi+ ri —m) (Pi—ri+m)

(
X

x(pi —r,)'+ (1—x) (pi —qi)'+m'

(p yr, —m) (p —0 'ym) (p —0,—0,'yr, —m) (p —
F +m)

Ix(pi —q J.') '+ (1—x) (pi —
q i—qi'+ri) '+m'

p&' —ri2+m' (pi+ri) '+m'
ln

(y +r)'—(p —r)' (p —r)' — '

1 Tr(Pi+r& —m) (Pi—qi'+m) (Pi—qi —qi'+r& —m) (Pi—q~+m)
4 t (pi+r&)'+m']L(pi —qi —qi'+ri)'+m'] —f(pi —qi)'+m']t (pJ.—qi')'+m']

Equation (3.1) immediately follows from (3.3) .
The relation

[(pJ+ri) '+m'][(pi —qi —qi'+ri) '+m']
L(p.—q.) +m ]L(pi—qi') 'pm~]

E(ri, qi, ri) = 0 (3 4)

is also a ready consequence of (3.3). However, in order to get the other relation

E(r„qi,—r,) =0, (3.5)

it is necessary to note that the two terms on the right-hand side of (3.3), taken separately, contain no linearly
divergent part. Equation (3.2) follows from (3.4), (3.5), and (3.1).

These two properties (3.1) and (3.2) are to be expected: (3.1) is due to the symmetry of the Feynman diagrams
of Fig. 1 under the exchange of the two incoming electrons, and (3.2) is closely related to a property of the photon
impact factor, first given by (3.6) of Ref. 2 and later used in discussing the relation between impact factors and
form factors. "Rather, it is an advantage of the method of impact diagrams' "that (3.1) and (3.2) can be easily
derived. For instance, if we treat the Feynman diagrams of Fig. 1 directly in the most straightforward manner,
the result takes a form that fails to exhibit the symmetry (3.1) . The same problem appears in connection with the
electrodynamics of scalar particles" and is discussed in detail in that context. "

We treat the special case rj ——0 in detail in the next section. Although many of the considerations there can be
generalized to all r~, the results become rather complicated, and hence the derivation is relegated to Appendix A.

4. FORWARD SCATTERING

A. De6nition

Since both (2.14) and (3.3) are rather complicated, we restrict ourselves in this section to the case of forward
scattering where r» ——0. Let

E,(q&, q&') = L4e'(2~)-']-&E(0, q&, q&'); (4.1)

2O Note that pg2= —pg~ etc„.
"H. Cheng and T. T. Wu, Phys. Rev. 184, 1868 (1969).
»H. Cheng and T. T. Wu (unpublished).
"See Appendix 3 of Ref. 22.
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TrL(p~(, )- f gP. &
—

4(p, ym)L'(v —~
zo(q +m] I(p

q ~') ~+m ]
(4 3)gin

) 2+m'7I (p'

) (p, q,+m)],L-(p, m)(P,
q ) +

2j TrI (pi.—m) (P++ .(p -q')'+" * 'L'(y —q )'+ ',
) p1—*)(y —q'
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'
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'

x ici

dxdpi

+2(, )(
m' x(pi —qi'(1—x) (pi —qi)'+m
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X

(4.8)
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't is sym licitly, we intrr p (3.1).To restore t is symr roperty(4.5) fails to exhibi r p
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where
pi=8pi+pi, (4.9)

f
&p =(1—*)q +(1—y)q .

' the fact thatto this new variable yi,

h contribution

2

~ ~ ~ ~

In changing

l this shift gives t e cot. More precisely, t is s
'

2 ~2

e taken into accoun .

—x ' 1—y) (1—2y) qi

divergent must be ta enis linearly iver

i') —2bpif = dx dy —xp. I:(q,+
0 0

=-:(q"+q ").

(4.10)

(4.11)
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Eo(qi, qi') =-', (qi'+qi") —(2~)—'

With this contribution properly included, symmetric integration over pi yields, after a tedious calculation,
1 I

dx dy dpi'[pi"+x(1 —x) qi'+y(1 —y) q i"+eP] '
0 0

X {(pi"+nP) [(1—6x+6x') qi'+2 (1—2x) (1—2y) qi qi'+ (1—6y+6y') qi"j
+~'[2x(1—*)qi' —(1—2x) (1—2y) qi qi'+2y(1 —y) qi"j

—x(1—x) (1—2x) (1—2y) qi'(qi qi') —[x(1—x)+y(1—y) ]qi'qi"
+4x(1—x)y(1—y) (qi qi')' —y(1—y) (1—2x) (1—2y)qi"(qi qi') I. (4.12)

At this stage, simpli6cation can be achieved by noticing that the denominator is not changed by the replacement~1—x. Thus a number of terms in (4.12) do not contribute, and
1 1

Cx dy dpi'[pi"+x(1 —x) qi'+y(1 —y) qi"+m'j '
0 0

X {(pi"+m') [(1—6x+6x') qj.'+ (1—6y+6y') qi"/+2m'[x(1 —x) qi'+y(1 —y) qi")
—[*(1—*)+y(1—y) ]qi'qi"+4x(1 —x) y(1—y) (qi. qi')'I. (4.13)

The pi integral on the right-hand side of (4.13) is still logarithmically divergent. This divergence does not
cause any trouble because

Cx(1—6x+6x') = 0. (4.14)
0

It is now straightforward to carry out the integration over pi' to get

Eo(qi, qi') =-', (qi'+qi") + — dx dy{[(1—6x+6x') qi'+ (1—6y+6y') qi")
0 0

X ln[x(1 —x) qi'+y(1 —y) qi"+m'7+[x(1 —x) qi'+y(1 —y) qi"+m'] '

X {[*(1—*)qi'+y(1 —y) qi"$[(1—6x+6x') qi'+ (1—6y+6y') qi"—2ePj

+[x(1—x)+y(1—y) jqi'qi" —4x(1—x)y(1—y) (qi qi')'I }
1 1

= -', (qi'+ qi") — dx dy[x(1 —x) qi'+ y(1—y) qi"j
0 0

1 1

+ — dx dy[x(1 —x) qi'+y(1 —y) qi"+m'j —'
0 0

X {—x(1—x) (1—2x) '(qi') '—y(1—y) (1—2y) '(qi") '+[x(1—x) qi'+y(1 —y) qi"7

X[(1—2x) qi+(1—2y)2qi' j+[x(1—x)+y(1—y)gqi qi' —4x(1—x)y(1—y) (qi qi') I. (4.15)

Accordingly we get the desired answer

[x(1—x)+y(1—y)]qi'qi" —2x(1—x)y(1—y)[2qi'qi"+(qi qi')']
Ep(qi, qi') = dx dy (4.16)

x(1—x) qj.'+y(1 —y) qi"+no'
This form exhibits explicitly the properties

and
+0(q&, q& ) =Ito(q&, q&) (4.1/)

ICO(qi, 0) =X,(0, qi') = 0,

which are the special cases of (3.1) and (3.2) for r&=0.

(4.18)

C. Explicit Integration

The function Eo can be expressed explicitly in terms of Clausen's integral, '4 which has been tabulated. ' '5 The
integrals that we need are

1 1

dx dy[(1 —g') a'+ (1—y') u"+1)-~
0 0

=-', («') '[f(k~+&—~ )+f(k~ &+&') f(k~+&+&—') —f(k~ &~') 3 (4—19)—
"T.Clausen, J. Reine Angew. Math. 8, 298 (1832).
~ Clausen's original tabulation in Ref. 24 is quite extensive. A short table can be found in Handbook of Ma/bemud'ca/ Pgnctioes,

edited by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, D.C., 1964), pp. 1005 and 1006.
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FIG. 4. Some examples of impact diagrams with one loop.

J
1 I

dg dy g2$(1—g2) a~+(] —y2) a'2+]7-~
0 0

= (2a'a') '{-'(a'+a"+1)Lf(-,'a+a —a,')+f(-', ~—a+a') fPm+a+a') f—(,'~ a a') 7—-——

and
+a'(a'+1) "' sinh 'a—a(a"+1)'~' sinh 'a' —aa'I (4.20)

dy x'y'i(1 —x') a'+ (1—y') a '+17-'

= (2aa') 'I ', (a'+a"+1)'$f(-',~+8 d, ') +f( ', ~-d+—a') f(,'-sr+—a+0,') —f( ', ~-0 a') 7—-——

—(a'—a"+1)a'(a'+1) 'I' sinh 'a —(—a'+a"+1)a(a' +1)'~' sinh 'a' —aa'(a'+ a"—1) I (4.21)

where a and u' are two non-negative real numbers,

y= sin &t a/(a&pa~&+ 1 ) &/27 0' = sjn-'Pa'/(a'+ a"+1)'"7, (4.22)



R Gy' g F HA VIORLOGARITHMIC F ACTORS IN THE HIGH-ENERG 2783

(a, ~i) (&.-rt) (rs, «) (&,-~i)

(a)
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(e)

&) rl) ("+tr1 -t0,-r, ) (-&, &i
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o two lo arithmic factors at high energies.FIG 5 Lowest-order impact diagrams that give rise to wo oga

'

and f is Clausen's integraP' defined by
" sinm8

(4.23)ln(2 sin-', r)dh= g
n=C

d 4+5'& —'x the arguments of all Clausen s integra s inrais in, 4.19)—(4.21) are in theNote that, since 4&0, 8'&0, an
range 0—m..

In order to apply these integrals, let

(4.24)

f(~) =

x=-,'(1+x) and y=-', (1+y)
in (4.16):

(2—x'—y') q J.'qi" —(1—x') (1—y') Lqi'qi"+-', (q J q J') '

(~—")a"+(~—g')a "+4 '
0 0

I2 1 ~ 2 ' 1 y g=-'(I q~ I I
q~' I) 'Lq 'qJ"—l(q'q~')'jLf(k~+& —&)

-'( J qi')'I-'(I qi I I
qi' [)-'(qi'+qi"+4m') L(qi')-'+(qi")-'j

Xff( ', 7r+4 d') +-f( ', 7r—8+0') -f—( ', 7r+ 8+re') f—( ', 7r-d a'— -——
-' ( i')-' —(qi")-'jI

I qi ~-'(qi'+4m')'~'sinh-'(-' , I qi ~/m)

'(qJ. '+4m. ')'~'sinh '(2
]
qi' [/m)] ——,'I (qJ. ) +yqJ.

-'( qJ.')'j(2 [ qJ. ( I

qi' I)-'f-', (qi'+qJ"+4m')I f(-', m+Ci —ii')

d a' &' q&"+M')
I

q&'
I (qJ.'+4m')'" sinh-'(l

I qJ. I/~)
—(—q J. +q J 2+451" -4 ')

I
~

I (q."+4m')'" sinh '(k
I

q~' I/~) —
I q~ I I

q~' q" q~"—4~'

computations. For analytical purposes, the integraralwhere
re resentation (4.16) is much more useful, as we shall8=s -'Lq '/(q '+q "+4nz') j epresenta, 'o

S. TWO OR MORE LOOPS
r corn licated and We have seen that uncanceled s Ins terms exist in the4

d o-1 o i li d. I, hcumbersome, anb, d hence useful mainly for numerical electron-e ectron sca
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ps= [7140, rl qs&+ps&). (5.2)

The region which contributes to the s(lns)2 terms is
that region where pl, p2, 71, and 72 are all small and,
furthermore, 71+72«pi+ps. We shall therefore con-
centrate on this region. As before, the lower limits of
integration for pl+ps and 71+72 will be understood to
be cut off at co '. The scattering amplitude corre-

lowest-order impact diagrams which give an un-
canceled s lns term in the electron-electron scattering
amplitude are those illustrated in Fig. 3, and all of
them have one electron loop. It is now natural to pose
the question whether uncanceled s(lns) ' terms, or more
generally uncanceled terms of the order of s(lns) ",22) 1,
exist. To answer this question we must examine higher-
order impact diagrams. A number of such diagrams are
illustrated in Fig. 4. All of these diagrams have one
electron loop, and it can be shown that they give
uncanceled s lns terms only. The lowest-order impact
diagrams which give uncanceled s(lns) 2 terms are those
illustrated in Fig. 5. The corresponding Feynman dia-
grams are illustrated in Fig. 6. The diagrams in Fig. 5
are the lowest-order impact diagrams which have two
electron loops. In this section we show that the sum of
these diagrams gives the amplitude

—',is(lns)'(22r) ' f dq»dq»dq»[(ri+q») +~ ] '

X[(r,—q») '+ll')-'[(r, +q») '+X']-'

X[(rl q24) '+&')-'[(ri+q») '+&']

x [(r,—q») 2+),2]-lz'(r„q„,q, i)
XE(r„q»,qsi. ) 8'(r, , q, i.) 8'(rl, qsi), (5.1)

where E(ri, q», q») is precisely the function defined by
(2 14).

Analogous to (2.1)—(2.6), the various momenta that
appear in Fig. 5(a) are taken to be

ki= [(Pl+P2)40 rl ql4)

lrs= [(Pi+82)~, ri —qi~),

ks= L(vi+vs) ~, —ri —qs~],

&.=L(7+7), r —q ],
p= [(1—A—P2)~» q»],

Pi [I 1+& Pl+)&

p2 +240 rl ql & pl &)

ps [(P2 71 72) pp ql &+q2 j. pl &]

P4= [(A+vi+72) ~, rl —q24+P»],

ps= I »los p64) ~

Ps [7201 rl q24 Ps 2 )
pl= [7240, —q24+qs4 —ps2.],

and

sponding to Fig. 5(a) is then given by

-,'ippsm-'els(22r)-" g dq, idplidpsi

dPldP2dvldvs'9 (1 P & P2) 0 (P2 71 72)

XTr[(vp vs) ( P2+m)7„(—Ps+m) (vo —vs) (P4+m)

Xv„(P1+m)]Tr[7„( P—s+m)vo( P,+m—)7,(Ps+m)

Xvo(ps+m) )[(ri+q») '+&')-'[(ri —q») '+~') '

X[(r,+q») '+1 ']-'[(r,—q») 'yX']-'Z (r,+q»)
X2+(ri qs&) [Pl ps& +Pspl4 + (Pl+Ps) m ]

X[~,p,"+ep "+(e+~ )m']-'

X[vipsi'+72ps 4'+ (vi+72) m') '

X [vip24'+72ps4'+ (vi+vs) m'] '~12~1 2' (5 3)

To evaluate (5.3), we must note the following two
points: (i) We may approximate 7„.~ v„and7„~7„in
(5.3) by —,'(vp+vs) ~ ~ ~ (vp —vs), where (vp+vs) is to be
inserted in the first trace. This is because

v. "v.=l(7.+7) ~ ~ ~ (7.—7)
+ 2 (70 vs) ' ' ' (70+72) +)4' ' ' )ly

and the last two terms in the above equation can be
shown to give terms of the order of s 1ns only. (ii) We
make the change of variables pl ——px, p2

——p(1—x),
71——p'x', and 72——p'(1 —x') in (5.3), and carry out the
integration over p and p', obtaining

1 P

p 'dp p' 'dp'=-'2(lnlp)2 —6'(lns)2. (5 4)
co
—&

After these manipulations (5.3) becomes

3 1 1

ilo'(lnpp) 'e'(22r) ' g dq, idp, idp i dx dx'
1 0 0

XTr[( P24+m) ( P24+m) (P42.+m) (P14+m) ]
XTr[(—P64+m) (—P22.+m) (Psi+m) (P6 4+m) )

X [(rl+q14.) '+ll']-'[(r, —q, i) '+ll']-'

x[(»+q») '+&')-'[(ri —q»)'+~')-'
X [(r,+q») '+X')-'[(r,—q») '+1 ']-1

X [xp24.'+ (1—x) p14.'+m']-'

X[xps 4.2+ (1—x) p44.2+ms]

X[x'p24.2+ (1—x') ps J.2+ms)-'

X [x'p64.2+ (1—x') p64.2+ms) '

Xd'(r, , q»)d'(rl, qsi). (5.5)

In the above, we have replaced I'+P in (5.3) by its
lowest-order term [(rl+qsi)'+X'] '[(rl —q»)'+X'] '
(see Sec. 5 of Ref. 9), since we shall be interested in
only the lowest-order term in Eq. (5.3) . Equation (5.5)
is merely half of the contribution for diagram 5(a).
This is because the virtual photon of momentum k3
may be emitted from the electron of momentum yj
instead of from the positron of momentum p2. Further-
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{(u,r~) (u, -r~) (a), r)) ((u, -r)) (~, r, ) ((u, -r, ) (~, rl) (~, -r~)

{-cu,-r&) {-co,r (-~-r, ) (-~ r, ) {-&s-r)) (-td, r))

(a) (b) (c) (d)
FIG. 6. Feynman diagrams corresponding to Fig. 5.

(e)

more, the amplitude for diagram 5 (e) is exactly
equal to that for diagram 5(a), while that for diagram
5(i) is twice of that for diagram 5(a). The latter is
because for diagram 5(i), we have, instead of (5.4),

= (1no)) 2. (5.6)
co
—~ p a)

—& p

Thus we must multiply (5.5) by a factor of 8. Then
(5.5) is equal to (5.1), with K replaced by K, which
is the second term in (2.14), i.e., the contribution of
diagram 3(a) to K.

The sum of diagrams of Figs. 5(d), 5(h), and 5(1)
gives an amplitude equal to (5.1) with E replaced
by Kb, the first term in (2.14), and the sum of diagrams
of Figs. 5(b), 5(c), 5(f), 5(g), 5(j), and 5(k) gives an
amplitude equal to (5.1) with EE replaced by
K,Kb+EbE. Thus the scattering amplitude for the
sum of the twelve diagrams in Fig. 5 is equal to (5.1).

Before going on to study higher powers of lns,
we attempt to rewrite (5.1) in a somewhat neater
form. Let

X(ri, qi~, q24) = t (ri+q») '+) 'j '"
XL (r]—qi J ) + )c2)- i~2t (ri+ q2 J )2+)cq- i12

XP(ri —q, i) '+)~') 'I'E (r„q»,q»), (5.7)

and define the corresponding operator X by

(XF) (ri, qiJ.) = (2ir)-' f dq»X(r„q», q»)F(r, , q, J.).
(5 8)

It is also convenient to use the notation of scalar
products

(Fi F2) = (2ir)-' j dq JFi(ri, qJ) F2(ri, qJ), (5.9)
which is a function of r, . In (5.9) we have omitted
complex conjugations because we are dealing with real
functions. Finally, let

Jr'(ri, qJ.) =L(ri+qJ.)'+)']-"'
XL(rl q4)'+), 'j-'t'c!'(r, , q J) . (5.10)

In this notation, the matrix element (2.15) due to the

diagrams of Fig. 3 is simply

is lns(J', XP), (5.11)

provided that only the lowest-order terms in P+ and P
are kept, while the result (5.1) is

where X'= XX

—',is (lns) '(J' X'J') (5.12)

pn

(1/n!) (—,') "(lns) ". (5.13)

We also have the following factors of 2: (i) a factor
(2 ')" from replacing y„~y„by2i(go+f3) ~ ~ ~ (po —&3);
(ii) a factor (2')" from contracting the (po+yb) and

. ('Yp —'rb) factors in the traces; (iii) a factor 2" to take
care of the fact that both the electron and the positron
in a loop can emit a photon for the creation of the
next loop; (iv) a factor of (2 4)" from rule 7 of Ref. 9
for the virtual electrons in the loop; (v) a factor (2')"
from rule 7 of Ref. 9 for the denominator factors con-

nected with the loops. These five factors completely
cancel each other, and we are left with a numerical
factor (i)"/I! from (5.13).

For Fig. 7(b), we have, instead of (5.13),

dpi ~' dpi'
~" dpcc-i t dpcc!

cc-1 Pl ccc i P2 cc 1 PN 1 k ccc
—1 PN J

L(n —1)!$-'(-',) (lns) ", (5.14)

and similarly for other e-loop impact diagrams. Adding

up the amplitude from diagrams 7(a) and 7(b) as

well as those from all other n-loop diagrams of t»s

We now proceed to discuss the lowest-order impact
diagrams with e electron loops. They are also the
lowest-order impact diagrams which yield uncanceled
s(lns)" terms. Some typical diagrams of this kind are
illustrated in Fig. 7. Instead of (5.3), we have for
Fig. 6(a)

dp~ ~' dp2 ~"-' dp—~ ~ ~ —= (ib ~)-'(1n(u)"
~—1 py +—1 p2
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kind, we get

(p) "(~!) 'Il+~+Erb(~ —1)/2 3+ "+1I
The sum of these amplitudes is equal to (5.16), with
8'8' replaced by O'"O'"." If, analogously to (5.10),
we dehne J' ' by

=(p) "(~.)(1+1)"=(~l) ' (5 15) g..~(r, q, ) I („+q,)p+qpj-i(p

For the purpose of consistency, we shall again replace
P+(ri+q, i)P (ri —q, i) from the dashed lines of
Fig. 7 by its lowest approximation

t (ri+q ~) +~ ] &(ri q'~) +~
Then the sum of the amplitudes from all the impact
diagrams of the type in Fig. 7 gives

n+1 n+1

is(lns)"(m!) '(2~) '" ' g dq, i g t'(r, +q; )'+&Pj—i
1 1

X)(r,—q, i)'yX'j- g E(q, i, q(;+,)i, r,)
I

Xe'(ri, q») a'(ri, q(.+i) i) . (5.16)

By the notation of (5.8) —(5.10), this complicated
looking (5.16) is simply

i (e!) 's(lns) "(J~, X~J8) . (5.17)

We may easily generalize the above results to other
diff'ractive processes in quantum electrodynamics. For
the process a+~a'+b', the lowest-order impact
diagrams which give uncanceled s(lns)" terms are those
with m more electron loops than the lowest-order
impact diagrams which gives terms proportional to s.

&&/(r„—q&)p+&p$-»'@«'(r, , qz), (5.18)

then the amplitude mentioned above is

i(e!)-'s(lns) "(J-' X"Jb"). (5.19)

We emphasize that the operator X does not depend on
what a, u', b, and b' are.

6. SPECTRUM OF X IN FORWARD DIRECTION

A. Formulation

Because of (5.17) and (5.19), where various itera-
tions of the kernel X(r, qi, qi') appear, it is desirable to
study the spectrum of this operator X as defined by
(5.8). We have been able to carry out such an analysis
only for the forward direction, where r&

——0. As discussed
in Sec. 7, there are serious difficulties even in the
understanding of the result for the forward direction.
For this reason, we do not consider the generalization
to other directions to be the most urgent problem.

When r~ ——0, there is rotational invariance for
electron-electron scattering. Let 0 be the angle between
the two-dimensional vectors g& and q~', then the Ep of
(4.16) can be written in the form

(6.1)

x(1—x) +y(1—y) —Sx(1—x) y(1—y)
x dy x(1—x) s+y(1 —y) s'+m'

where (6.3)
Analogous to (5.7), define the kernal

t x(1—x) +y(1—y) $—2x(1—x)y(1—y) (2+cos'8)
Ep(qi, qi') =qi'qi" dx dy

x(1—x) qi'+y(1 —y) qi"+m'
As seen from (5.10), we are only interested in applying this kernel to functions that are rotationally invariant.
We can therefore average over 0 in (6.1) to get

1

(Ep(qi, qi') )p
——ss' d (6.2)

0

Xp(s, s') = (s+X')-'(s'+X')-'(Ep(qi, qi') )p

s s' ' ' x(1—x) +y(1—y) —Sx(1—x) y(1—y)
dg dy

s+l).' s'+l), ' x(1—x) z+y(1- y) s'+m' (6.4)

and the corresponding operator Xp by'~

(Xpf) (s) = ds'Xp(», s')f(s') . (6.5)

For the sake of mathematical rigor, we let f(s) be
elements of the Ip space, i.e., we consider those f(s)
that satisfy

Therefore, as a consequence of

Xp(s, s') = Xp(s', s), (6.7)

the spectrum S of Xp is a real, bounded, closed set. Let
pp be the lowest upper bound of this set. It is the
purpose of this section to calculate pp.

B. Result

~f(s) ~'ds(~. (6.6)
0

We shall see that Xp is a bounded operator on 1.2.

"H. Cheng and T. T. Wu, Phys. Rev. D 1, 459 (1970).
"Note that Xq is not a Fredholm operator.

Our result here is simply

)tbp
——11m'/64,

irsdependent of m arbd l)..
(6.8)
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The remainder of this section is devoted to a deriva-
tion of (6.8). The procedure followed is roughly as
follows. In Sec. 6 C we study in detail the special
case m= X=0. This case can be exactly solved by Mellin
transformation or, equivalently, Fourier transforma-
tion. We can thus verify (6.8) directly for this special
case, and this implies that )(40(11m'/64 for all m and l).
In Sec. 6 D we show, by a variational principle, that
po) 14'/64 from which (6.8) follows.

The variational principle also yields the additional
result that this end point 112r'/64 is not a point spec-
trum and hence belongs to the continuum.

At 6rst glance, the lack of dependence on m and )
may seem peculiar. In Appendix 8 we give an
explicit mathematical example where this happens.
It is hoped that this example may make the result (6.8)
appear more natural.

C. Case m=X=0
We 6rst study the solvable special case m=X=0,

where

'& &n-|

(-~, -&~)

Xo(s, s') =
1 1

dx dy
0 0

I.et

X
x(1—x) +y(1—y) —5x(1—x)y(1 —y) (6.9)

x(1—x) s+y (1—y) s'

s= e&, s'= e&', (6.10)

f(s) =e-&"g(&). (6.11)
The reason for using (6.11) is the fact that (6.6) is
equivalent to

~l
Wl

I
I

~l
I

g 2d (oo.

In the $ space, we need to study the kernel

(6.12)

Fro. 7. Examples of lowest-order impact diagrams that give rise
to e logarithmic factors at high energies.

expL(&+e)/n
x(1—x) +y(1—y) —5x(1—x) y(1—y)dx dy

x(1—x) e&+y(1—y) e&'

x(1—x) +y(1—y) —Sx(1—x)y(1—y)dx (6.13)*(1—x) expt. ($—]')/21+y(1 —y) expL
—($—$')/2j

which is a function of $—$' only. The Fourier transform of (6.13) is

x(1—x) +y(1—y) —Sx(1—x) y(1—y)
d& exp(i&r) dx dy

x(1—x) e«'+y(1 —y) e- «'

= m sech'. dx dyt x(1 x) +y(1—y) 5x(1 x)y(1—y) j
0 0

X}x(1—x)y(1—y) $ 'I' expI —ir[lnx(1 —x) —lny(1 —y) )I
L1'(l —*')O'L1'(l+' )]' ('1'(-:—' )7L2'(l+' ) j')=x sech~7 2 Re ' '

. —5I'(3—2zr) I'(1+2ir) I'(3—2ir) I'(3+2i )

(2r sech2rr)' ( 1—2ir 5 1+4r'P Re
2 csch2c 1 2—21 164+4 ')
2rs 11+12r2 sjnh2rr

64 1+r2 r cosh"2rr (6.14)
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(6 15) A P. 1 i
I(A, m) = dz dz's '"s' "' dx dy

1 1 0 0

50, 11m'/643.

D. Proof-of (6.8)
XLx(1—*)+y(1—y) —5x(1—x) y(1—y) 3We first note that

x(1—x) +y(1—y) —Sx(1—x) y(1—y) )0 (6.16) X {Lx(1—x)z+y(1 —y)z'3 '

—Lx(1—x)s+y(1 —y) z'+m'7 'I. (6.24)
for 0(x&1 and 0&y&1. Accordingly, it follows from
(6.15) that

i (X,j) (z) i' dz((11ir'/64)'
0 0

and. hence

~
f(z) ~p dz (6 17) . Note that I(A, m) does not depend on X and that the

integrand of (6.24) is non-negative because of (6.16).
Suppose for the moment that

For real values of r„the right-hand side of (6.14) If (6.22) is substituted into (6.21), we get in particular
takes on all real values between 0 and 11''/64. Since
this is bounded, it follows from (6.12) that, when pp&11'.P/64 —lim (lnA. ) 'I(A, m), (6.23)
m=X=0, the spectrum of Xo is the closure of the values
taken by the right-hand side of (6.14); i.e., the spec- where, by (6.4),
trum of Xo is

pp( 11m'/64 (6.18)

XP (1—x) +y(1—y) —5x(1—x) y(1—y) ]

I(m) = dz dz'z-'~'z' 'I'-
for all m and X. Equation (6.17) further implies that
Xo is a bounded operator on L2.

On the other hand, since

go= sup

ds dz'f(z) f(z') Xp(z, z')

s 2'
0

(6.19)

exists; then

X {t x (1—x) z+y (1—y) z') '

—t'x(1 —x)z+y(1 —y) z'+m'$-'} (6.25)

lim I(A, m) =I(m), .

over all real, nonzero f(z) that satisfies (6.6), we can
obtain a lower bound for PP by trying some f(z). In and he~~~ by (623)
particular, we choose, for all A&1,28

Then
=0

for 1&s& A.

otherwise.

pp&sup&LlnA+2X'(1 —A ')+-', X4(1—g-') $-'

pp& 1ls'/64. (6.26)

The required answer (6.8) then follows from (6.18)
and (6.26).

Therefore it only remains to show that the I(m) of
(6.25) exists. For this purpose, change the variables
x, y according to (4.24) and the variables z, z' by

8 I/

then

—(5/4)(1 —x')(1—y')) du du'
1 1

X IL(1 xp)upy(1 yp)u~Pj —1

The reason for this choice of f(z, A.) is as follows.
Since the right-hand side of (6.14) has a maximum at 1 1

r=O, the eigenfunction that corresponds to pp is, by I(m) =4 dx dyt'(1 —x')+(1—g')
(6.10) and (6.11),simply z '~', which of course does not 0 0

satisfy (6.6) and holds only for m= X=0. The f(z, A)
of (6.20) is essentially the product of this function
s 'I' with the inverse of the factor z/(z+X') that
appears in (6.4). By explicit calculation, it is easy to
verify that

(6.27)

lim (ink) ' dz dz'z-l~'z'-'~'X, (z, z ) ~„g,
g~ oo 1

—L"(1—x') u'+ (1—g') u"+4m'j-'}. (6.28)

By symmetry, we can integrate over the region x)g
so that

' The choice of this 1 is completely arbitrary. 1—x'& 1—y'. (6.29)
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Therefore

I(m) = 8 dx dgf (1—z')+ (1—g')
0 0

—(5/4)(1 —~')(1—g') j(1—*') '"(1—g) '"

dl dl'
(].—x2) 1/2 (1-gt2) 1/2

Xf(us+u")-' —(u'+u" +m') ')
I(8 dg dg(1 g2) —1/2(1 gs)-i/2

0 0

XL(1—*')+(1—g ) —(5l4) (1—~') (1—g') j
X dudu'f(u'+u") '—(u'+u"+4m') ']

~2+~p2pl- x2

1

=2s dx dg(1 —x') '/'(1 —g') '"
0 0

Xf (1—~') + (1—g') —(5/4) (1—~') (1—g') 3

Xlnf1+4m'/(1 —x')](ee . (6.30)

This completes the proof.

7. CONCLUSIONS AND DISCUSSIONS

As already stated in the Introduction, there are, in
the perturbation series for quantum electrodynamics,
terms of the matrix elements proportional to s(lns)",
m= 1, 2, 3, . . . , when ~00 with 6xed I,. For electron-
electron elastic scattering discussed in detail in this
paper, these terms first appear in the 4(v+1) th order,
i.e., the coefficient is proportional to e4'"+'), where
x=1, 2, 3, . . .. Moreover, these coefficients, to this
leading order, are explicitly given in Sec. 5. For
electron-photon scattering and photon-photon scat-
tering, the corresponding orders are, respectively,
4r/+6 and 4n+8 We em. phasize that the appearance
of these s(lns)" terms holds for all t%0, for both massit)e
ar/d massless photo/ss. These logarithmic factors are
therefore not related to, but rather in addition to, the
more familiar logarithmic factors due to the massless
nature of the photon, an example being the factor in
the total pair-production cross section. '

We are only beginning to realize the existence and
importance of these terms, and there is as yet no satis-
factory understanding of them. We must, for the time
being, be content with the most elementary properties
of these terms, discussed in Secs. 7 A and 7 B.

A. Leading Coefficien

Although some of the results can be easily generalized
to nonforward directions, we shall restrict ourselves to
the forward direction r1 ——0, where a more complete
discussion is possible. By Sec. 6 A, we write down the

"R. Jost, J. M. Luttinger, and M. Slotnick, Phys. Rev. 80,
189 (1950).

spectral decomposition" of X for r&——0:

xs(~, ~')= I~~~e(» ~)e(~', ~) (7 &)

By (5.8), (5.7), (4.1), (6.4), and (6.5), the eigenvalues
of X are, when r1——0,

2(n/~)sp, , (7.2)

where ts= e'/(4 i)ris the fine-structure constant.
Accordingly, by (6.8), the lowest upper bound for the
spectrum of X at r1——0 is

11 2~pa! 7l.

By (5.10), define the coeKcients

a(/) =(2~) 'I de~4(q~', /)(q~'+~') ',

then the matrix element (5.17) is
i(n!)-'s(lns) "Ptt'

(7.3)

(7.4)

x t'2( /~)'i" f I"dl L.~4~)JI (~ &)

Note that (7.5), when divided by i, is positive for
all n.

An important property of the a(/a) of (7.4) is that

a(/)= »m(1 —/// ) "'a(/)&0, (7 6)
P~PO

where p0 has been defined in Sec. 6A to be the lowest
upper bound of S. First, a(/i) is finite because, from
Sec. 6D, as s~~

@(s, /i) =O(r '/'). (7.7)

Also note the fact that, because Xs (s, s') )0 from (6.4),
P(qi, /is) is either non-negative or non-positive, depend-
ing on the choice.

This inequality (7.6) makes it possible to calculate
the asymptotic behavior of (7.5) for large e. It follows
immediately from (6.8) that

(5.17)~if (1+2)!g 's(lns) "8'8'(11s'/64)

X fi'retinas. j"fa(/is) gs, (7.8)
as e~~.

B.Sum of Leading Terms

It is tempting to sum (5.17) or, equivalently, ('7.5)
over all e. Such a calculation is sometimes referred to
as summing the leading terms, and has been discussed
in great detaip' before. Such a procedure has no mathe-
matical basis, but was used with great success over a
decade ago in a number of many-body problems.
Much later, attempts were made to apply similar con-
siderations to field-theoretic problems, renormalizable"

' Strictly speaking, the spectral decomposition should be
written in the form of a Stieltjes intergral. See, for sample, F.
Riesz and B. Nagy, Functional Analysis (Ungar, New York,
1955), p. 275."T. T. Wu, Phys. Rev. 149, 380 (1966). The procedure of
summing the leading terms is discussed in Sec. 8(4l.

"See, for example, M. Gell-Mann and M. L. Goldberger,
Phys. Rev. Letters 9, 275 (1,962); J. D. Bjorken and T. T. Wu,
Phys. Rev. 130, 2566 (1963l.
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or otherwise. "The physical meaning of these attempts
is not clear. About three years ago, as a possible check
on the validity of this procedure of summing the leading
terms, the soluble problem of the two-dimensional
Ising modeP4 was studied from this point of view. It was
found" that this procedure gives a firlite but wrong
answer. Thus summing the leading terms does not
assure us of the correct answer.

With these reservations in mind, we sum (5.17)
over e:

Q i(N!)-'s(lns)~(P X"P) =isr P, exp(X lns)Pj
n=o

=is(P, sxP). (7.9)

While (7.9) holds for all momentum transfers on which
X depends, specialization to the forward direction
r~ ——0 gives more speci6cally

(7.9) ~„s——is8'8' dpt a(p) j' exp(2(n/v. )'p ins)

~~~iyag8(v. /o) 4(lns) —
&$g(~ ) j&s&+»~'~&» (7 ]0)

for large s. Note that the power of s is larger than 1.
For suKciently small momentum transfers at least,
the value of a(pe) remains diferent from zero and the
power of s remains larger than 1. We therefore reach
the conclusion that, for the present problem, the pro-
cedure of slmmimg the lending terms gives aN answer fhui

violates s-chummed' Neiturity.
That the sum of leading terms gives such a large

answer has far-reaching consequences. First, it raises
doubts about the usual derivation" of Regge poles

from field theory. Indeed, the procedure of obtaining
(7.10) here is just the operator generalization of the
usual derivation"" of Regge poIes. In our opinion,
therefore, much work is needed to justify the existence
of Regge poles in relativistic field theory.

Secondly, we note that renormalization plays a very
minor role in the present consideration. Accordingly,
the failure of the result (7.10) to satisfy unitarity
cannot possibly be interpreted as a piece of evidence
for the breakdown of quantum electrodynamics.

Finally, we emphasize the important role played by
unitarity in the direct channel. Precisely on the basis
of this unitarity we conclude that the answer (7.10)
is incorrect. Unitarity can be partially restored by
including the iterations in the s channel of the diagrams
considered here, for example those of Fig. 1. This has
been studied before, " and it is found that, if we start
with the diagrams of Fig. 1 with the contribution
(2.15) of the order s lns, the sum of all iterations is
smaller and of order s ln(lns). Moreover, if we start
with the sum (7.10), the sum of iterations's saturates
the Froissart bound3~ and no longer violates s-channel
unitarity. However, it is not certain that this process
of taking iterations into account solves the problem.
We think that the most important problem now is how
to have some understanding of unitarity conditions
and in particular of their role in determining the high-
energy behavior of scattering amplitudes.
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APPENDIX A

In this appendix, we generalize the procedure of Secs. 4 A and 4 8 to the case r~/0. Let

E&(qi, qi') = $4e'(2~) ']-'E(r&, ili, rli'), (A1)

then the generalizations of (4.2) and (4.3) are

E~(qi, ill') =-,'(2v) ' dpi dx$x(pi+re)'+(1 —x) (pi —qi)'+m'j '

t'(pi —qi) '+m'] Tr(pi+ r,—m) (pi —r,+m)
X

x(pg —r,)'+ (1—x) (pi —qi)'+m'

Tr (pi+ r&
—m) (pi qi'+m) (pi qi qi'+—

r&
—m) (p—i—qi+—m)

x(pi —qi') '+ (1—x) (pi —
tlat

—tie'+rg) '+m' (A2)

"See, for example, T. D. Lee, Phys. Rev. 128, 899 (1962); G. Feinberg and A. Pais, ibid. 131, 2724 (1963).
'4E. Ising, Z. Physik 31, 253 (1925);I. Onsager, Phys. Rev. 65, 117 (1944).
"Regge poles correspond to the point spectrum (absent here) of the operator X.
'6 H. Cheng and T. T. Wu, Phys. Rev. 186, 1611 (1969).' M. Froissart, Phys. Rev. 123, 1053 (1961).
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and

pi' r—P+m' (pi+r&) '+m'
ICi(qi, qi') = (2~) ' dpi ln

(pi+ ri)' —(pi —ri)' (pi —ri)'+m'

1 Tr(Pi+ r& m)—(Pi—qi'+m) (Pi qJ. —q~'+—r& m) (—Pi —q~+m)
4 [(pi+r, )'+m'][(pi —qi —qi'+r, )'+m'] —[(pi—qJ)'+m'][(pi —qi')'+m']

[(pi+ ri) '+m'][(p i—qi —qi'+ r, ) '+m']
[(pi—qi) '+m'][(p i—qi') '+m']

To save some writing, we shall deal instead with the quantity [compare (4.3)]

&~(~, a ') = (2 ) ' f du

4 Tr(Pi+r& —m) (Pi qJ.'+m) —(Pi—qi —qi'+r& —m) (Pi—qi+m)x t-
[(pi+ ri) '+m'][(pi —qi —qi'+ r~) '+m'] —[(pi—qi) '+m'][(pi —qi') '+m']

[(pi+ri) 'qm'][(pi —qi —qi'+ri) '+m']
[(pi—qi) '+m'][(p i—qi') '+m']

Since the first term in the integrand of (A3) is independent of both qi and qi', we have

and
+D(qi rl) ItD(rl qi ) +D(rl ri)

Ei(qi, qi') =&n (qi, q~') —Eg) (rl ri) .

(AS)

(A6)

That E& is logarithmically divergent cannot cause any trouble.

If a second Feynman parameter y is introduced via (A2), Kz can be expressed in the form
1 1

Eg)(qi, qi') = (2')-' dpi dx dy(1 X&/DP), —
0 0

where lVi is the numerator that appears in (A4) and

Di xy(pi+r&) '——+ (1—x)y(pi —qi) '+x(1—y) (pi —qi') '+ (1—x) (1—y) (pi —qi —qi'+ r&) '+m'

= pi' —2pi [(1—x) qi+ (1—y) qi' —(1—x—y+2xy) r&]+xyrP+ (1—x)yqi'+x(1 —y) qi"

(A7)

We can again use (4.9), but here, instead of (4.10),
+ (1—x) (1—y) (qi+ qi' —ri) '+m'. (A8)

In terms of pi',
Spi= (1—x) qi+(1—y) qi' —(1—x—y+2xy) ri.

Di= pi"+A+m'

(A9)

(A10)
where

A =x(1—x) qi'+y(1 —y) qi"—2x(1—x) (1—2y) r& qi —2y(1 —y) (1—2x) r& qi'

+ (x+y —2xy) (1—x—y+2xy) ri2. (A11)

For r&/0, this quantity A is quite complicated. It is therefore useful to introduce

Q= qi —(1—2y) ri and Q'=qi' —(1—2x) r&. (A12)

Except for a factor of 2, these Q's are essentially the same as the Q previously encountered in (4.13) of Ref. 5.

In terms of these Q's, it follows from (A11) that

and the Spy of (A9) is

A =x(1—x) Q'+y(1 —y) Q "+4x(1—x)y(1—y) rP,

Bpi = (1—x) Q+ (1—y) Q'+ (1—2x—2y+2xy) ri.

(A13)

(A14)
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We next turn our attention to the numerator X~. Let

a~ ——bp4+r, = (1—x) Q+ (1—y) Q'+2(1—x) (1—y) r4,

a2= Bpi —q4. = —xQ+ (1—y) Q' —2x(1—y) r&,

a8 ——bp4. —q4.—q4.'+ r&
———xQ —yQ'+2xyr„

a4 ——Spy —q4. '= (1—x) Q —yQ' —2(1—x) yr&,
then

—,
' Tr——(p4.'+a4 —m) (p4.'+a4+m) (p4.'+a3 —m) (p4.'+a,+m)

= [(pJ +a&) ~ (p4.'+a2) +m'j[(p4. '+aa) ~ (p4.'+a4) +m'j+['(p4. '+a2) ~ (p4.'+a8) +m']

(A15)

&& [(p4.'+a&) ~ (p4.'+ a4) +m'j —[(p 4.'+a, ) ~ (p 4.'+ as) +m'j[(p 4.'+a, ) ~ (p 4.'+ a4) +m'j. (A16)

With symmetric integration over the two-dimensional vector yi, this numerator S& can be replaced by its sym-
metric part

where

and

E '= (p"+m') '+C'(p"+m') +C+m'C"

C= (a& a2) (a3 a4) +(a, a3) (a& a4) —(a, a,) (a, a4),

C'= (a,+a,) ~ (a,+a,),
C"=—(a, a,+a2 a4).

(A17)

(A18)

(A19)

(A20)

From the explicit formula (A15), the computation of C' and C" is relatively straightforward:

C'= (1—2x)'Q'+(1 —2y)'Q"+2(1 —2x) (1—2y) Q Q'

+2(1—2x)'(1—2y) r& Q+2(1—2x) (1—2y)'r& Q' —[1—(1—2x)'(1—2y)'gr&'

= (1—2x)'Q'+(1 —2y)'Q"+2(1 —2x) (1—2y) q4. q4.
'—[1+(1—2x)'(1—2y)'jr4 (A21)

and

C"= 2x(1—x) Q'+2y(1 —y) Q"—(1—2x) (1—2y) Q Q'+4x(1 —x) (1—2y) r&. Q

+4(1—2x) y(1—y) r& Q' —Sx(1—x) y(1—y) rP

= 2x(1—x) Q'+2y(1 —y) Q"—(1—2x) (1—2y) q4. .q4.'+ (1—2y) r& q4.

+ (1—2x) r& q4.
'—[1—8x(1—x) y(1—y) frP. (A22)

It is seen from (A21) that it is convenient to use both the Q's and the q4. s. The corresponding calculation for C is
much more complicated. We first write down

a& a2 ———x(1—x) Q'+ (1—y)'Q "+(1—2x) (1—y) q4. q4.
'—(1—y) r& q4.

+ (1—2x) (1—y) r& q4.
'—[(1—2x) '(1—y) +4x(1—x) y(1—y) )r42, (A23)

a3 a4
———x(1—x) Q'+y'Q" —(1—2x)yq4. q4. '+yr& ql.

+ (1—2x) yr& q4.
'—[(1—2x) 'y+4x(1 —x) y(1—y) )r42, (A24)

a& a3 ——x'Q' —y(1 —y) Q"—x(1—2y) q4. q4. '+x(1—2y)r& qJ.

+xr& q4.
' —[x(1—2y) '+4x(1—x)y(1—y) ]rP, (A25)

a& a4= (1—x) 'Q' —y (1—y) Q "+(1—x) (1—2y) q4. q4.'+ (1—x) (1—2y) r& q J.

—(1—x) r& qz' —[(1—x) (1—2y) '+4x(1—x) y(1—y) )rP, (A26)

a& a&
———x(1—x) Q' —y(1—y) Q"—(x+y —2xy) q4. q4.

'—(x—y) r&. q4.

+ (x—y) r, q&' —[—x—y+2xy+4x(1 —x) y(1—y) fr42, (A27)
and

a, a4 ———x(1—x) Q' —y(1—y) Q"+(1—x—y+2xy) q4. q4.
' —(1—x—y) r& q4.

—(1—x—y) r& q4.
'—[—1+x+y—2xy+4x(1 —x) y(1—y) ]rp. (A28)
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(A18) then yieldf (A23) —(A28) '""The substi«t""
2 1 x) 'y'(1—) 2(Q2) 2+y (1 y

I)2j+.[ x( 1 )

Ql2r 2

—x)y ~ q& —
1

1 2y s

). (., q )'-("q',
+8.(1-.)y(1-y)3+x(1—

y) [(q „.+,(1 y)[(),+8x(1—x) y(1 y "

) (1 zy) Q"q,)(1 Zx)(1—zy)Q ' ',
(1 y)(1—zy)Q"

x)[

+x(

, ,„„q.+4*(1-* '

, 2+16x(

) +Zx(1—x) y(1—y

x2(1—x

+4x(1

2793

ue to the shE~ due to

dy — — q4.
'—(1—x—+2xy) rlf.qi' —1—x— r, .[(1—Zx)q,dy[(1—x) q4.+ (1—y) q4.
'—1—x—BPJ. ' (Rl+R2 R2+R4) =

0
y

'—(1—2x) (1—2y) rl]+ (1—2y) qi' — —x

1—*)y(' —y) ('+4x

p~ to PL ~contribution to4.11, there is a conAnalogous to (4.1, con

u s
' ' ' to,A7) then yieldsSubstitution into

= -' q4.2+q12) +rl2/18.—,q (A30)

—14.")+rl'/18'= (22r)-q ') —[l(q"+qED dp. '(1—Z,/D, )

2 2 //(A' —C—m2C ), (2A —C') (p4."+m2) +
(p2."+A+m') '= (Z~)-l S

//'+AC' —C—m'C &

A+m'

ivergence ofthe logarithm&c div g

dx
2 0

ce indicatesutoff whose presence
'

where A. is a large cuto w
and (A21),

2 /2

—2 1—y)+12x(1—x)y 1—y2[1—Zx(1—x) —Zy 1—
y

and hence

2(12A — = — —x 6x') Q' —(1—6y+6y ) Q2A —C'= —(1—6x+6x'

(2A —C') =~rl2dS
00

te that, from (A22),1 d &. Also nodent of qi an q& .

" -Srl2/18

s independen

x C"=-'(qi2+qidx dy
0 0

3ro ortional to r~.nl by a term prop
'

l r .( ) o y

dx dy — ' m

x dy

1 )y—y)( —y)Q +
')+2x(1—x)y(1—y) jrl2 .(1—zy) [l(1—y+y'

BA/Bx)

0

fs s 1 x J m1—x) (q4.—r,) +m1—x 4.— ' m' I+ d

r 2I

{L ( —*)(q + l) ++ — dx rl' ln x

—x (1—zy)qi q~ — -' —x x

~ /

X {x(1—x

m')-'(BA/ay) {y 1+ dx dy A m -'
0 0

(A33)

(A34)
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If we substitute (A33) —(A35) into (A31), the result is

I n (q i, qi') + (2/9) rP —(2/3) rP in'
I

+-,'rP dx ln{[x(1—x) (qi+r, )'+m'][x(1—x) (qi —ri)'+m'j
0

1 1

)&[x(1—x) (qi'+ri)'++F7[x(1 —x) (qi' —ri)'+m'gI = dx dy, (A36)2+m' '

where

2K= —A'+A (C'+C") —C—[(1—2x) Q'+4y(1 —y) ri qi'j {x(1—x) (1—2x) Q'

+x(1—x) (1—2y) qi qi'+(1 —2x) [-', (1—x+x')+2x(1—x)y(1—y) frPI
—[(1—2y) Q"+4x(1—x) r, qif{y(1—y) (1—2y) Q"+(1—2x)y(1—y) q& qi'

+ (1 2y) [i3 (1 y+y') +2x(1 x) y(1 y) jri'I (A37)

By (A13), (A21), (A22), and (A27), this is explicitly

K= —2x(1—x)y(1—y) [2+(1—2x)'(1—2y)'](rp)' —2x(1—x)y(1—y) [(qi qi')' —(ri qi)' —(r, qi')']

+L*(1—x) +y(1—y) —4x(1—*)y(1—y) 3Q'Q"

+ {——',[1+7x(1—x) —20x'(1 —x) '7+3x(1—x) (1—2x) 'y(1 —y) I Q'rP

+{—6i [1+7y(1 y) —20y'(1 —y) '3+3x(1 x) y(1—y) (1—2y) 'I Q~'rP

+ix(1—x) (1—2x) (1—2y) Q'qi qi'+ i2 (1—2x) y(1—y) (1—2y) Q "q& q&'

+x(1—x) (1—2x) (1—2y+2y') Q'ri qi'+ (1—2x+2x') y(1—y) (1—2y) Q "r, qi

+4x(1—x) (1—2x) y(1—y) (1—2y) rpq i.qi' —2x(1—x) (1—2y) [-', (1—y+y') +2x(1—x) y(1—y) ]rpr, q&

—2(1—2x)y(1—y) [3(1—x+x')+2x(1—x)y(1—y) jrPri qi' —2x(1—x) (1—2x)y(1—y)r, q&q& q&'

—2x(1—x)y(1—y) (1—2y)ri qi'qi qi'. (A38)
Finally, the desired answer is, from (A6),

[x(1—x) (q.+r,) '+~'j[x(1—x) (q,—r, ) 2+ ~q

+ (previous term with qi replaced by qi')
1 1 K

x(1—x) Q'+y(1 —y) Q"+4x(1—x)y(1—y) rP nP

APPENDIX 3
In this appendix, we give a trivial example where a

change in the kernel does not change the spectrum.
First consider the kernel

di' p(~ ) (~+~ ) '= un(&) (B5)

then, to find the spectrum of (B3), we need to study
the integral equation

(s+s )

on the I2 space defined by (6.6). This kernel can be
treated in the same way as that of (6.9) in Sec. 6 C.
The spectrum is

p, = ir sechiri (B6)

(B2) ~(&) = &'r-v2(~), (B7)

where I' is the Legendre function of the 6rst kind.
From (B6), the spectrum of this kernel (B3) is also
given. by (B2).

Next consider the kernel

(s+s'+m2)-i. (B3)
Let

(B4)e= 1+2s/nz' and v'= 1+2s'/m', 'SF 0 Mehler, Math Ann 18, 161 (1881)

(B1) for v)1. But (BS) is a known integral equation,
whose solutions are,"for i' real,


