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dI'~"&/dQ and I""& into those for do&"&/dQ and a&"& (the
corresponding power cross sections), respectively.

The third quantity, the number cross section, appears
the least useful from the experimental point of view yet
has appeared in some of the standard papers on the
subject, since it is most natural from the point of view
of quantum-mechanical calculations. The differential
number cross section in a given frame, dZ "&&/ dQ, is de-
fined as the number of eth harmonic photons detected
in a solid angle dQ divided by the number of (first-
harmonic) incident photons all in some unit time in-
terval. In a given frame, the relation is easily seen to be

dZ "&/&dQ= (&o'/pp„, p) (da &"&/dQ)

= (&o'/&o...,) (1/I) (dI'&"&/dQ) . (A1)

In particular, in the I. frame this relation becomes

= —L1+—'g' sin'( —'8) 7 — . (A2)
dpi. n JI. dQz,

If we compare our results to those of Brown and Kibble, '
we note that it is the number cross section derived from
the power lost by the electron that agrees precisely
with their results. They did not consider the extra time
retardation that must be included when going from the
power lost by the electron to the power observed in a
given frame. It is the observed power rather than the
power lost by the electron that is actually measured
so that this extra retardation must be included when
comparing theory to experiment.
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Nonrelativistic Galilean quantum mechanics and the standard transition to relativistic Poincare quantum
mechanics is analyzed in terms of group theory. Special emphasis is given to the discussion of the relation
between dynamics and geometry. Certain unsatisfactory features are pointed out and a new relativistic
group g5 is suggested as the symmetry group of dynamics. g& contains both the nonrelativistic Galilei group
and the Poincare group as subgroups, and it is a group extension of the restricted Lorentz group. For use
in relativistic quantum mechanics, the central extension of 85 by a phase group must be employed. The
Lie algebra of this relativistic quantum-mechanical Galilei group g5 contains an acceptable covariant
space-time position operator and a nontrivial relativistic mass operator. The latter also serves to describe
dynamical development. The irreducible unitary projective representations of g5 correspond to infinite
towers of states with increasing spin.

I. GROUP-THEORETICAL ANALYSIS OF
NONRELATIVISTIC QUANTUM

MECHANICS

"NDOUBTEDI.Y, the most remarkable feature of
relativistic dynamics is that the invariance group

of the dynamical law coincides with the group of rigid
motions (essentially the group of isometrics) of the
underlying geometrical manifold. In fact, the under-
lying geometrical manifold is the Minkowski space
E3,1 where the identity component of the group of
isometrics-is the connected Poincare group containing
the identity, i.e., the inhomogeneous Lorentz group'
ISOp(3, 1)—=T4&32+t. At the same time, the laws of
motion are required to be invariant under ISOp(3, 1).
The situation is very diGerent in nonrelativistic phys-

ics. The underlying geometrical manifold is, to start
with, the Euclidean space E3, where the identity corn-
ponent of the group of isometrics is the connected
Euclidean group, i.e., the inhomogeneous rotation
group ISO(3)=Tp&3SO(3). This space does not per-
mit even the formulation of any dynamics. One there-
fore introduces the time as an additional kinematical
variable and thereby changes the underlying manifold
from E3 to E3&&E1. Note that no metric is introduced
into this Cartesian product space. Next one demands
that the laws of motion be invariant under the con-
nected component of the Galilei group. This group
we shall denote in what follows by the symbol b4.
The carrier space of &&4 is Ep&&Ei and the group is
obtained by adjoining to the transformations of ISO(3)
the additional two sets of transformations

*Work supported by the U.S. Air Force under Grant No.
AFOSR-67-0385B.

'For convenience, in this paper we shall use the symbol
SOO(3, 1) for the restricted Lorentz group 2+~, even though this
notation is not quite standard. t~t+r,

(1.1a)

(1.1b)
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LI'i„Gig = —ibiiM. (1.3)
Since the geometrical transformations xi,—+xi,+ai, and
x&~x&+v&t evidently commute, it is clear that in
quantum mechanics we are dealing not with g& but
with a larger group. A more detailed analysis' ' re-
veals that the group in question is the central ex-
tension" of the covering group of g4 by a phase group.
This quantum-mechanical nonrelativistic Galilei group
we shall denote in the following by g4. Its structure
is given by"

84= {Ti X(T3 XTi') } {T3"taS&(2)} (14)
Here Ti is the one-dimensional (Abelian) phase group
responsible for the emergence of M. The SU(2) in
Eq. (1.4) appears as the covering group of SO(3).
For the reader's convenience, the complete algebra of

L and some other simple related topics are sum-
marized in Appendix B.

' There are ten other isomorphic forms, but (1.2) is best suited
for the study of representations.

E. Inonu and E. P. Wigner, Nuovo Cimento 9, 705 (1952).
A simple discussion of this topic can be found in-T. F. Jordan,

Linear Operators for Quantum 3IIechanics (Wiley, New York,
1969), Chap. VII.' Throughout this paper we use natural units h =c=1.' V. Bargmann, Ann. Math. 59, 1 (1954).

M. Hamermesh, Ann. Phys. (N.Y.) 9, 518 (1960).
8 J. -M. Levy-Leblond, J. Math. Phys. 4, 776 (1963).
J. Voisin, J. Math. Phys. 6, 1519 (1965).' For the de6nition of group extension, see Appendix A.

"Again, there are ten other isomorphic forms. See Ref. 2.

with vI, and v- being parameters. Thus, the structure
of b4 is

b4= {T8'XTi'}8 {T3"CRSO(3)}. (1.2)

Here T&' is the translation group xi,—+xi,+ai„Ti' the
time translation group (1.1b), T3" the velocity trans-
formation (boost) group (1.1a). The symbol X stands
for direct product and {3 for semidirect product. We
emphasize that, since E3)&E~ is not endowed with
metric, b4 has no geometrical significance. On the
other hand, g4 does contain as a subgroup the ISO(3)
group of the basic geometry.

As was pointed out by Inonu and Wigner, ' for the
formulation of nonrelativistic quantum mechanics, the
group g4 has to be further extended. Speaking some-
what loosely, the mathematical reason for this neces-
sity is that the representation of the group operations
in the Hilbert space of a quantized system is a ray
representation, i.e., up to a phase factor, and for the
Galilei group the classes of ray representations are
not equivalent to the true representations. Now, be-
cause of the nontrivial phase factor, the generators
are determined only up to an additive real multiple
of the identity operator. By means of simple redefini-
tions and the use of the Jacobi identity, all such
additive multiples can be eliminated, except for one.
This will appear in the commuta. tor of the I'i, (the
generators of Tp) with the Gi (the generators of the
boost Ta") and we have4'

Vp=—iLH, Xi,f (1 6)

can be defined. Evaluating the commutator with Eq.
(B3f), we get Vi, MI'i, . This——relation then permits
us to interpret M as mass and we see that

~a=XI (1.7)

Comparing (1.7) and (1.6), we then conclude that
development with respect to the kinematical time
variable is expressed by commutation with H. Thus,
the latter assumes the role of a Hamil/oriana. Instead
of being constrained Las we were in the ISO(3)
frameworkj to talk about a fixed state, we now can
consider a family of states whose members differ from
each other by the eigenvalues of H. The relatiorI, be-

tween the dynamical motion of energy aed the kinematical
notion of momcetlm is borne out by noting that

S=P'j2M —H

is a Casimir operator of g4. Thus, selecting the rep-
resentation of g4 characterized by S' =0, we have

P'/2M —H =0. (1.8)

In fact, this relation between the energy and the
momentum of an elementary particle is true for any
representation with '&0, because H occurs only
icosi,de the commutators of the g4 algebra, so that we

may redefine H to be H+S'. (A more rigorous justi-
fication follows from the circumstance that the rep-
resentations with different S eigenvalues are equivalent;
cf. Ref. 8.)

At this point we can clearly summarize, in terms
of group invariants, the above-emphasized transition
from the sole consideration of a sAsgle, fixed state to
the consideration of a family of states. The Casimir
operator of ISO(3) which corresponds to S of g4 is
of course just O', =P'. Hence, in the "predynamical"
stage we have, instead of (1.8), the equation (in the
proper reference frame)

P2=0. (1.9)

Denoting the eigenvalues of I'i, and H by p& and 8,

We now summarize the "gain in physics" that is
achieved when going from ISO(3) to 54. The under-
lying geometrical manifold E3 permits the definition
of linear and angular momentum (Pi, and I&) only.
These are suitable for the specification of a given
state of motion. When we make the extension to g4,
we are permitted to introduce the energy H Lgenerator
of (1.1b)$, which is an obviously dynamical variable.
Furthermore, by setting

XA, =—M 'Gg,

we obtain a dynamical definition of the position, oper-
ator which is consistent with the Heisenberg rules of
quantization {as seen from (1.3)j as well as with
other requirements. 7 Further, a velocity operator



NEW D YNAMI CAL GROUP ~ - ~ 2755

respectively, we thus have in the ISO(3) framework

p2 —0

and in the g4 framework's

p'/2M —E=0.

(1.10a)

(1.10b )

Equation (1.10a) characterizes a st'ngle possible state,
viz. , a particle at rest, whereas Eq. (1.10b) charac-
terizes a family of states, with arbitrary energy (the
spectrum of E is continuous) and with a correspond-
ing state of motion (p' being determined by E).

Actually, we have a further enrichment in physics.
The second Casimir operator of g4 [cf. Eq. (85)7
turns out to be related to intrinsic spin, which has
no place in the ISO(3) background. " Thus, the
"family" of states is differentiated by spin, too.
Finally, since 3f commutes with all generators, we
also have a superselectt'on rule for states with dif-
ferent mass "'

In order to extract detailed statements from the
above-sketched g4 characterization of quantum dy-
namics, it is best to construct a representation" of
the g4 algebra in the Hilbert space K(EsXEr) built
upon the carrier space EsXEt of g4. The realization
of the operators in this K(EsXEr) is given in Eq.
(86). Then the Schrodinger equation is nothing but
the realization of (1.8), i.e. , the relation

In detail,
Sg(x; t) =0.

(-,'M 'A+it},)P(x; t) =0.

(1.11a)

(1.11b)

At this point we note that (1.11b) has separable
solutions. Setting

we obtain
4 (x; t) =v (x)x(t),

x(t) =exp( —iEt)

(-'M 'A+E)y(x) =0.

(1.12)

(1.13)

(1 14)

Here E appears as a separation constant. Equation
(1.14) is now an eigenfunction problem in the Hilbert
space 3C(Es) built upon, the "predynarnical" underlying

geometrical manifold Es (and not upon the dynamical
carrier space EsXE&). Actually, by separating variables
toe lost g4 insariance: Equation (1.14) is invariant not
under g4 but only under ISO(3). [In fact, —b, P'
is the Casimir operator of ISO(3), so that (1.14)
tells us to pick a representation of this group. ] The

loss of L invariance is compensated for by having
now a statement to the effect that, instead of the
O', —=P'=0 "predynamical" representation of ISO(3),
we must choose the O', —=P'= 23IZ representation.
Thus, naturally, we did not lose physical information

by separating the variables in (1.11a). On the other
hand, if one started with an ISO(3) equation 0', =
2ME [of which (1.14) is a realization in K(Es)$,
the energy E would appear rot as a dynamical vari-
able [i.e., not as the eigenvalue of an operator in the
i,ie algebra of ISO(3)$ but rather as a label of a
representation" or, equivalently, as the eigenvalue of
an operator in the enveloping algebra of ISO(3). The
necessity of a dynamical eigenvalue problem for A"

would not even arise: Hey representation label 0', is
as good as any other. The state of affairs is even
more transparent if one considers not a free particle
but one under the inQuence of an interaction. Then
the Schrodinger equation is (in the spinless case)

[-;M 'A —V(x)+is,)ib(x; t) =0. (1.15)

Here x must be interpreted as a relative coordinate
(the c.m. motion has been separated off), M is the
reduced mass, and V depends on r=Q(x') only, so
that Eq. (1.15) is still g4 invariant. M After separation
we get

[-'M-tA —V(x)+Ef~(x) =0. (1.16)

Naturally, b4 invariance is again lost, but now (1.16)
cannot be interpreted at all as an equation in the
ISO(3) enveloping algebra, selecting a representation.
This is in spite of the fact that, obviously, (1.16) is

ISO(3) invariant. The dynamical origin of E is now
well emphasized, as opposed to its previous role of
simply labeling an ISO(3) representation.

II. STANDARD TRANSITION TO RELATIVISTIC
QUANTUM MECHANICS AND CRITIQUE

In the previous, somewhat lengthy, section we
elaborated on generally quite familiar topics (although,
perhaps, in an unusual presentation and with partic-
ular emphasis on certain points). The purpose of this
analysis was to prepare the ground. The present sec-
tion serves the same purpose: We shall analyze, from
our particular point of view, the standard transition
from nonrelativistic to relativistic quantum mechanics.

As is well known, the first step in this transition
is to define the underlying geometrical manifold to be

"It is amusing to observe that, as was shown by Hamermesh
(Ref. 7), the first Casimir invariant of the original g4 group is not
P'/2M —IJ but rather just P', the same as the one for ISO(3).
Thus, even for the present purpose of physical interpretation of E,
the use ot 84 (rather than g4) is crucial.

"Nor in the 84 background. The second Casimir operator of
g4 is P.J, rather than F' given by (35).

'4The systematic construction and detailed study of the ir-
reducible unitary projective representations of g4 was first given
by Levy-Leblond, Ref. 8, on the basis of the Bargmann paper,
Ref. 6. See also Ref. 9.

'5 Actually, the label is 2JIEE, and there is no possibility of
giving a separate meaning to M and K

Equation (1.16) arises from the study of the decomposition
of the tensor product of two one-particle representations
(m'

)
S' s') and (m' (

tg' s'); cf. Ref. 8, especially Eqs. (VI-5)
and (VI-6). Incidentally, the same analysis shows that even
though (as stated above) tg may be taken equal to zero for the
one-particle representation, yet it cannot be altered simul-
taneously to zero in all the (M (Gi, s) representations which
occur in the decomposition of the tensor product. It is in this
context that 8 assumes the nontrivial role of "internal energy"
of the compound systems.
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( +m')lt (x) =0. (2.3)

Obviously, this is rot an eigenvalue equation for m.
Let us once again point out that we have no operator
for the relativistic mass in the Lie algebra. Formally,
this is related to the circumstance that in the Poincare
algebra there is no analog of (1.3), i.e., no multiple
of the identity operator appears in any of the com-
mutators. (This is so because, as is well known, ' all

"The nonrelativistic mass operator M is not counted in this
context.

' E. Inonu and E. P. Wigner, Proc. Natl. Acad. Sci. U.S.
39, 510 (1953).See also E.J. Saletan, J. Math. Phys. 2, 1 (1961).

the Minkowski space E3,~. This means that in the
carrier space EsXEi of g4 one introduces the pseudo-
Euclidean metric

ds =g»dx&dx", with gss= —ging=1; g»=0 (p&v).

(2.1)

The group of isometrics in this space is the Poincare
group. The next step is crucial: One declares, by fiat,
the identity component of eke very same group Li.e.,
the ISOs(3, 1) group'j to be the invariance group of
dynamics. This means that one has (as before, in
the g4 dynamics'~) ten basic dynamical observables
(I'„and I„,) but with a very different algebra. The
relation of this ISOe(3, 1) algebra to the g4 algebra
(and hence the relation of the relativistic dynamical
ovservables to the corresponding nonrelativistic ones)
is revealed, as is well known, " by the procedure of
coetractioe, performing the limit c—&~. In this con-
text we only point out that the nonrelativistic mass
M is defined as the contracted limit of I'e/c, and
thus one obtains (1.3). This implies that it is indeed

g4 (rather than g4) which arises from ISOs(3, 1) upon
contraction.

Since ISOp(3, 1) has been declared to be the dy-
namical invariance group, the equation of motion is
obtained by selecting a representation corresponding
to an arbitrary value of the Casimir operator 6=—I'„I'I'.
Thus, the dynamical equation is

(2.2)

and the relativistic mass makes its appearance simply
as a representation labe/. In other words, the mass
operator is rot an observable contained in the Lie
algebra. Unlike the case of g4 dynamics, the equa-
tion of motion now coincides with the selection of an
arbitrary representation of the kinematical (purely
geometric) group. Equation (2.2) describes one single
kind of state, that of a particle with fixed mass: In
any irreducible unitary representation of the Poincare
group the mass is a fixed constant.

When constructing a representation of the ISO(3, 1)
algebra in the Hilbert space K(Es,i) built upon the
geometrical background manifold, the familiar realiza-
tion of (2.2) becomes the Klein-Gordon equation

ray representations of the Poincare group are equiva-
lent to the faithful representations of its covering
group. ) For the very same reason, we have no analog
of the position operator (1.5) in the Lie algebra.

At this point, we are prepared to raise the follow-
ing rather unconventional question: Is the standard
transition from the nonrelativistic fo the relativistic quan
turn dynamics (as outlined above) the best possible one7
It is not difficult to conceive of reasons why the
answer could lie in the negative.

First, it would be desirable to posses a dynamical
relativistic mass operator in the Lie algebra of the
dynamical group. As we pointed out above, this is
not the case. Hence, mass is an "unquantized" pa-
rameter. Even if we combined the dynamical Poincare
group with some internal semisimple Lie group, the
celebrated O'Raifeartaigh theorem" still prevents the
emergence of a nontrivial (discrete) mass spectrum.
From another viewpoint, the failure in obtaining a
mass spectrum can be traced to the Flato-Sternheimer
theorem, " according to which every extension of the
Poincare algebra by a semisimple Lie algebra is trivial
(i.e. , it is the direct sum of the two algebras), im-

plying commutativity of the "mass operator" I'„P&
with all generators of the internal symmetry group.

The second reason why we may be discontent with
the standard transition from nonrelativistic to rela-
tivistic quantum dynamics is the following. We would
like to have in the dynamical Lie algebra a relativ-
istic position operator I„.Again, as indicated above,
this is not the case. It is true, of course, that several
attempts have been made" to define, in a somewhat
artihcial manner, some kind of such operators. How-
ever, for several reasons, even these coestrlcts are not
entirely satisfactory objects. On the other hand, it is
possible to define satisfactory operators for the spatial
position only. "However, the existence of such objects
is not what we are looking for in the present context.

Summarizing our misgivings in somewhat different
formulation, we may say that the conventional tran-
sition from the nonrelativistic to the relativistic quan-
tum dynamics is disappointing because (a) no new
quantity becomes quantized and (b) actually we seem
to lose something in the process, such as the Heisen-
berg relation $P, , Xsf= —i8,s in the dynamical Lie
algebra.

Apart from these physical considerations, one might
also view with suspicion the mathematical procedure
itself. The Poincare group does not contain the b4
group as a subgroup, as one would expect if it were

L. O'Raifeartaigh, Phys. Rev. 139, 81052 (1965). See also
P. Roman and C. J. Koh, Nuovo Cimento 39, 1015 (1965)."M. Flato and D. Sternheimer, J. Math. Phys. 7, 1932 (1966).' See, for example-, T. O. Philips, Ph. D. thesis, Princeton
University, 1963 (unpublished). Further developments are given.
by H. Bacry, Phys. Letters 5, 37 (1963); A. Sankaranarayanan
and R. H. Good, Phys. Rev. 140, 8509 (1965)."T.D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 300
(1949).For a review of further developments, see A. S.Wightman,
ibid. 34, 845 (1962).
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a straightforward enlargement of the dynamical frame-
work. Instead, it is the nonrelativistic kinematical
(geometric) ISO(3) group which is a subgroup of the
supposedly dynamical relativistic group ISOO(3, 1).
Of course it is true that ISOO(3, 1) and g4 are related
by contraction. " However, this can be interpreted
only by saying that nonrelativistic dynamics is a lim-
iting case of the relativistic dynamics. The converse
notion of extension fails, since the "expansion" of L
is rot Neiqne. 23

These last remarks give us a hint of a possible
procedure that might lead to a nonconventional pas-
sage from nonrelativistic to relativistic quantum
mechanics. As we shall see, our proposed structure
may be viewed either as a direct generalization of the
nonrelativistic Galilei quantum mechanics to a rela-
tivistic enlargement, or, alternatively, as an extension
of the Poincare quantum mechanics Lin the same
sense as the g4 dynamics is the enlargement of the
ISO(3) kinematical frameworkj. In the development
of our proposed structure we shall stress the second
point of view.

III. NEW DYNAMICAL GROUP

In this section we shall construct an enlarged
framework for relativistic quantum mechanics. Our
procedure will closely parallel the transition from
ISO(3) to g4 which was discussed in Sec. I. The
reader is asked to pay special attention to the anal-
ogies, even when they are not explicitly pointed out.

Our first step in passing from nonrelativistic to
relativistic physics is the same as in the standard
procedure: tA'e change the manifold B3&E~ into the
geometrical manifold E3,~ by introducing the usual
Minkowski metric (2.1). The group of isometrics is
the Poincare group, with the Lorentz transformations

(3.1)

and the translations

transformations (3.1) and (3.2) as well as the ad-
ditional transformations

(3.3)
and

(3 4)

Here we remark that for future convenience, we take
I to have the dimension of length (like all x&), so
that the four (real, unrestricted) parameters h& in

(3.3) are dimensionless. The transformations (3.3)
are the generalization of the nonrelativistic boost
transformations (1.1a). To avoid confusion, we shall
call (3.3) the "relativistic Galilean boost" (RG-boost)
transformations. In Eq. (3.4), the parameter 0. is an
unrestricted real number with the dimension of length.
The Abelian set (3.4) is the analog of the Galilean
time translation (1.1b).

It is easy to verify that the transformations (3.1)—
(3.4) indeed form a 15-parameter group over the car-
rier space E3,~&E». The composition law, as well as
the Lie algebra, is given in Appendix C. Our group
contains the original (geometrical) Poincare group as
a subgroup Furtherm. ore, it is a natural and straight-
forward generalization of the nonrelativistic Galilei

group. We shall denote the connected component" of
our group by g5. Evidently, b4 is a subgrouP of g&.

(One obtains g4 from g5 if one restricts the param-
eters by setting A„' =Ao~ ——a'= I5' =0 and formally
identi6es" ii with t. )

The structure of our gi can be represented as""

g5
——IT4'XTi'} CR I T4'SOD(3, 1)I. (3.5)

Here Ti is the space-time translation group (3.2),
Tq' is the u-translation group (3.4), T4~ is the RG-
boost group (3.3), and SOD(3, 1) is the restricted
Lorentz group.

The Lie algebra (C5) tells us that Ti'XTi XT4~
is an invariant subgroup. Equation (3.5) then reveals
that we have the isomorphism

x"—+x~+a~. (3.2) SOD(3, 1)~~pi/T4'X Tz'X T4 . (3.6)

However, we do not consider this group (or rather,
its connected component) to be the full dynamical
invariance group. Instead, following closely the pat-
tern which leads from nonrelativistic kinematics to
nonrelativistic dynamics, we introduce now an ad-
ditional kinematical variable, to be denoted by N.

The nature and physical meaning of I is left un-
speci6ed at this point. 24 Ke thus change the under-
lying manifold from E3,& to the product space E3,&XE&.
No metric is introduced into this manifold, but we
consider it as the carrier space of a new group. The
transformations of this group consist of the Poincare

"By"expansion" we mean the procedure inverse to contraction.
See, for example, J. Rosen, Nuovo Cimento 35, 1234 {1965).

"This is also true in nonrelativistic kinematics when t is
introduced. The only function played by t is that of a parameter
labeling the dynamical sequence of states.

Hence, the grouP g5 is an extension" of the restricted
Lorentz group. '9 This statement is, of course, more
powerful than our previous observation that pig
ISOo(3, 1), and it will have important consequences
regarding the representation theory. However, it must
be emphasized that g5 is not an extension of the
Poincare group ISOo(3, 1). On the other hand, we
wish to point out here that the Poincare group
ISOO(3, 1) is itself an extension of the restricted

2'Obtained by restricting the Lorentz subgroup (3.1) to the
transformations with det h. =+1 Ap &+1.

"This observation provides a partial interpretation of the
physical role played by u; in the nonrelativistic limit it assumes
the role of ordinary time.

It is instructive to compare (3.5)- with (1.2).
28There are ten other isomorphic forms, but (3.5) is best

suited for the study of representations.
2~ The situation is analogous to the case of the nonrelativistic

Galilei group, where g4 is a group extension of 50(3).
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Lorentz group SOp(3, 1), because we have the iso-
morphism

SOp(3, 1) ISOp(3, 1)/T4,

with T4 being an invariant subgroup. Now, as we
just said above, our gs is also an extension of SOp(3, 1).
Hence, both the customary relativistic dynamical
group ISOp(3, 1) and our new proposed relativistic
dynamical group gs "grow out" as extensions from
SOp(3, 1), which, in turn, can be looked upon as the
group that determines the metric of Minkowski space.
We find this observation interesting, because it sheds
light on the rather natural emergence of bp as a rea-
sonable generalization of ISOp(3, 1).

For the reasons elucidated above, we make it our
dynamical postulate that the laws of dynamics should
be invariant under the gp group Na. turally, this auto-
matically implies Poincare invariance, but the latter
is considered as only a hinema6cal symmetry (as,
similarly, ISO(3) is only a kinematical nonrelativistic
symmetry). As we shall see later, the true dynamical
development of the system will be associated with
the progress according to the new variable N.

For use in qlantlm mechanics, however, we must
make a further extension. The reason is the same as
in the case of the nonrelativistic Galilei group: The
up-to-a-phase representations in Hilbert space deter-
mine the generators only up to an additive multiple
of the identity operator. When writing down the
algebra (CS), we ignored all such additive terms.
If one, however, keeps them, it turns out that by
simple redefinitions and by the use of the Jacobi
identity all but one of these multiples of the identity
can be eliminated. Denoting the Lorentz generators
of (3.1) by J„„ the translation generators of (3.2)
by P„, the RG-boost generators of (3.3) by Q„, and the
u-translation generator of (3.4) by S, we actually
find the following algebra:

connected with the appearance of l '. The SL(2, C)
in Eq. (3.13) appears as the covering group of
SOp(3, 1). It is readily seen that L can be looked
upon" as a grouP extension of SL(2, C).

The invariants of gp, as well as a brief discussion
of its representations, are given in Appendix C.

X.= —lQ' (4.1)

This identification is substantiated not only by the
Heisenberg relations (3.10), but also by (3.9) (i.e.,
[I„, X,]=0), and by (3.11), which tells us that
X„behaves as a four-vector under Lorentz trans-
formations. 'Ke shall come back to some properties
of I„later.

The appearance of l in (3.10) has yet another
welcome consequence. It allows, in fact it forces on
us, the introduction of a gniversut /ength, in a com-
pletely natural and covariant way. Since l1 commutes
with everything, we have a superselection rule: Sys-
tems with different fundamental length are incoherent
and do not communicate. "

The next question that arises is to find the physical
meaning of the generator S. This is achieved by
observing that

X)—=P„P&+2l 'S (4.2a)

is a Casimir operator of bs. [It is the analog of S,
the Casimir operator of b4, cf. Eq. (84).g Thus,
selecting a representation of L characterized by the
eigenvalue X)'=0, we have

IV. SOME IMMEDIATE CONSEQUENCES

Ke now try to extricate the basic physical con-
sequences of our gs invariance group.

To start with, Eq. (3.10) has an important implica-
tion. It permits us to introduce, in a completely
natural way, the relativistic space time-position oPer-
ators

LJ",J"j=~:(gA. g.P- g"J"+g-J-—), (3—7)

[P„,J,.j=i (g„,P. g„.P,), —(3.8)

[Ps P.E=[Q., Q.j=[JP., Sj=[Pp, Sj=0, (39)
This shows that

I'„I'~+2t—, '5 =0.

5R'=——2l '5

(4.2b)

(4.3)

LP., Q.3=-'g,.i-', (3.10)

[J",Q j=i(g"Q.—g-Q ) (3»)
[S,Q„]=iP„. (3.12)

The departure from (CS) is the relation (3.10). Here
the constant / has the dimension of length.

A closer inspection tells us that we are dealing
with the central extension" of the covering group of

gs by a phase group. We shall denote this group in
what follows by L. Its structure is given by"

Qp ——
I Ti'X (T4 X T, ) } CS I T4'SL(2, C) I. (3.13)

Here Ti' is the one-dimensional (Abelian) phase group

"There are ten other isomorphic forms. See Ref. 28.

can be defined as the relativistic mass srluared operator. -

Note that BTP lies inthe Lie ,algebra of L. The defi-
nition (4.3) is consistent with the commutation rela-
tions (3.9): The mass so defined is a translation-
invariant Lorentz scalar, as it should be.

This interpretation of 5 remains valid also if one
chooses a representation with X)'&0. This is so be-
cause S occurs only inside the commutators of the
gs algebra, so that we may redefine S to be S—5)'.
A more precise justification of this statement is that,

"Similarly as g4 can be looked upon as an extension of 5U(2) .
3' Let us note here that the particular choice l ' =0 would change

(3.10l to [I'~, Q„)=0, so that it wouid bring us back to the
original g5 algebra; i,e., for / '=0 our central extension becomes
a trivial extension, a simple direct product. We shall always take
tt I&0.
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as mentioned at the end of Appendix C, all unitary
irreducible (one-particle) representations of L which
differ only in the value of S are equivalent.

Next we observe that, apart from being the mass-
squared operator, 5 has also a second, different role."
From Eq. (3.12) and the identification (4.1), we
obtain

i[S, X„j=lP„, (4 4)
so that we can define the four velo-city operator U„by
setting

The operator

E„„=——/M„„=P„X„—P„X„ (4.10)

E;I,——P)Xg, —PI,X; (4.11)

is interesting inasmuch as it can be looked upon as
an "internal" counterpart of J„„.The commutators
of E„„with J„„,P„, Q„, and S are the same as the
corresponding ones for J„„itself, and also the [8„„,E„$
commutator has the same structure as [J„„J„,j. In
particular,

must be interpreted as ittternal sPin. This is con-
sistent with the identification of X„as position
operator. "

Additional insight can be gained by specifying an
explicit realization of the gs algebra in the Hilbert
space K(Zs tXEt) defined over the carrier space
Es,t)(Et. This is given in Appendix C, Eqs. (C12a)—
(C12d). With this realization the position operator
(4.1) can be written in the rather remarkable form

(4.12)X„=x„—lNP„.

When u=0 [i.e. , at the beginning of the dynamical
development, cf. (4.7)j, the position operator coinci-
des with the geometrical coordinate x„.The dynamical
development renders the position "nonlocal. " The po-
sition is "washed out" over a region characterized
by the fundamental length 1. Thus, the discrepancy
between x„and X„ is clearly a microscopic, quantal
effect.

It may be also worthwhile to write down the ex-
plicit realization of the "total angular momentum"
T,t, [defined by (4.9a) and (4.9b)j. In the realization
(C12), we get

for every operator 0 that is a function (polynomial)
in X„and P„. The integrated form of (4.6) is

Q(N) =exp(iStt) Q(0) exp( —iStt). (4.7)

This displays the intrinsic developntent of 0 from its
"initial value" Q(0) to an arbitrary "I instance. "
In particular, if an observable is a dynamical coestanf
of ntotion, it must obey the relation'4

U„—= (i/bn) [S, X„]. (45)
[The evaluation of the right-hand side by means of
(4.4) gives P„/nt. Here nz is the mass eigenvalue ].
Since, on the other hand, the four-velocity is the
derivative of position with respect to proper time,
Eq. (4.5) tells us that I 'nt 'S is the evolution operator
with resPect to Proper time. In view of the fact that
S is the generator of the tt tra, nslations (3.4), we
now see that the new parameter u serves the role
of labeling the sequence of intrinsic dynamical de-
velopment, as we already suggested in Sec. III.

Since, by (3.9), P„and S commute, we have, as
a generalization of (4.5),

dQ/du=i[S, 0] (4.6)

~"—=P.Q —P.Q~. (4 9b)

"This dual role of S is analogous to the dual role of II in g4,
which, on the one hand, is the nonrelativistic energy operator
and, on the other hand, is the evolution operator (Hamiltonian)
with respect to nonrelativistic time.

'4 Note that in the standard Poincare-invariant theory there is
no intrinsic dynamical development operator. In particular,
PPo, Qg= 0 is riot a sufhcient condition for Q to be a constant of
motion, nor is it a covariant relation. The intrinsic dynamical
development in the standard theory is described covariantly by
taking the derivative with respect to a spacelike surface, and the
condition for Q to be a constant of motion is 8Q/B0 (x) =0.

[S,0)=0.
We emphasize that, owing to (3.9), J„„and P„are
constants of motion, as it should be. Furthermore,
since S is a translation-invariant scalar, (4.8) is a
Poincare-invariant relation. Finally, in view of (4.3)
and (4.8), ÃP is trivially a dynamical constant of
motion, as expected.

Some further insight into the structure of our
theory is obtained if we note that the second and
third Casimir operators of gs are constructed (see
Appendix C) from the tensor

(4.9a)
where

T,g ——i(x,cjt, —xt cj,)+iZ;i+i (B,xg —Bgx,) =it, t, (4.1.3)
Not unexpectedly, in our "one-particle realization"
T;I, reduces to its intrinsic spin part. Some further
comments on the spin content of our theory will be
given in Appendix C.

V. MASS SPECTRUM

In order to perform explicit calculations, it is best
to write down the realization of the equation of
motion, Eq. (4.2b), in terms of the differential oper-
ators as given by (C12). We obtain

( —2l—'iB„)p(x; I)=0, (5.1)
with =B„cj".This is the analog of the nonrela. tivistic
Schrodinger equation (1.11b). Equation (5.1) is in-
variant" under bs.

"We relegate the discussion of the spin, ks well as that of the
other quantum numbers associated with the representations of
g5, to Appendix C.

"This follows from the way the equation was obtained, but it
can be also directly verified by explicit calculation, in a way
analogous to the explicit proof of the Galilean invariance of the
ordinary Schrodinger equation; cf. Ref. 8.
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We now separate coordinates, putting

4(x; ~) =V (*)X(~),
and obtain37

It is best to introduce a biharmonic coordinate
system

x'= s sinho. ,

and
X(N) =exp(i ', tm-'n) (5.3)

( +m')q (x) =0. (5.4)

x' =s coshn sin8 cos4t,

x'=s cosha sing sing,

g =s cosho, 'coso~

(5.7a)

Thus, we obtain the Klein-Gordon (KG) equation.

L invariance is lost; we have only Poincare invariance.
The constant m' in (5.4) made its appearance as a
separatior4 constant Hen. ce, (5.4) has now a different
interpretation than in the usual theory: It is ae eigee-
nalue equation for m2. It is the relativistic analog of
(1.14). Equation (5.4) is an eigenvalue problem in
the Hilbert space K(Es,i), built upon the underlying
geometrical (not dynamical) mainfold Es,i. In the
customary interpretation, as we pointed out following

Eq. (2.2), the KG equation describes a single state.
In contrast, in our framework (5.4) describes a family
of states, with all possible permitted eigenvalues m',
i.e., with all possible masses. The situation is similar
to the one which occurs when we pass from the kine-
matical ISO(3) group to the dynamical g4 group;
cf. our discussion in the latter part of Sec. I.

Of course, the solution of the eigenvalue problem
(5.4) is trivial. The admissible (i.e., "square inte-
grable" over the E3,i space) solutions (with positive
energy) are the plane waves

iP(x) = (2o~i, ) 't' exp[i(aiqxo —Ir x)j,

where

0(s( ~, —~ (c4(+~,
0(8&~, 0&4t &2ir. (5.7b)

The coordinate system is so chosen that it corresponds
to spacelike points. This is necessary because in our
problem x stands for the relative coordinate of the
two particles which form a composite system. Thus,
corresponding pairs x&') and x~2& along the world lines
of the two particles always belong to a spacelike
surface. "

For further reference we note that in terms of
(5.7) the invariant inner product of two functions

f and g becomes

(f, g) = ff*(s, 4x, 8, P)g(s, n, 8, P)s'cosh'a

Xsing dP d8 da ds. (5.8)

In terms of the new coordinates, (5.6) becomes

1
—s 'B,s'B,+s '[cosh 'n (B cosh'cx B —By' —cotg Be

sin —2g Bq2)/+V(s)+m2}q, (s n g y) 0 (5 9)

with

4d = (k'+m')'"
This equation can be separated by putting.=A( )&( )C(8)D(~), (5.10)

and thus m can be any real positive number.
However, suppose we wish to study not a free but

rather an interacting gz-invariant system. The inter-
action ought to be described by a phenomenological
potential which represents the interaction between
the two particles. It depends3 on x only through
x'=@0'—x'. Here x must be interpreted as a relative
coordinate, the relativistic center-of-mass motion of
the particles having been already separated off. The
g5-invariant equation that replaces (5.1) thus becomes

[ +V(x') —2l—'iB„)$(x;n) =0. (5.5)

[This is the analog of (1.15).j Separating (5.2) now
leads to

+V(x')+m']q (x) =0. (5.6)

Once again, L invariance is lost and reduced to
ISOO(3, 1) invariance. Equation (5.6) is a nontrivial
eigenvalue problem for m'. We now discuss the solu-
tions of this problem.

"Since —2l 'i8 is the realisation of the operator 9R'= —2l 'S,
the separation constant is correctly denoted by m'.

' We do not consider N-dependent potentials, since they would
not allow for states that are stationary with respect to N develop-
ment.

and we get
(B '+44')D(y) =0, (5.11a)

[Be'+cotg Be—44'/sin'8+X(X+1) jC(8) =0, (5.11b)

[cosh 'a B cosh'a B„+X(X+1)/cosh'c4
—t4(t4+2) jB(a)=0, (5.11c)

[ s' Bs4'—B4+t(4t4+2) /'s+V(s)+ m]A(s) =0. (5.11d)

We are looking for regular, square-integrable solu-

tions. Hence, (5.11a) yields

D(4t4) =exp(i~)),
~

44 ~=0, 1, 2, ~ ~ ~ . (5.12)

Therefore, the regular solution of (5.11b) becomes

C(8) =Pi,"(cosg), X=O, 1, 2, ~ ~ ~, and
~

44
~

&X.

(5.13)

Proceeding, the solution of (5.11c) is found to be4'

B(o4) = coshn Px"+'(tanh4x). (5.14)

' Putting it in another way, we may say that when xp('& = xp( ),
we have x'= —(x(') —x(~&)~= —x~, so that in this system we
clearly have x'&0. Lorentz covariance then leads to x'&0 in
general.

4' Thiscanbe seen by settingB= (1—z') "'B(s),withe=tanhn,
which leads to the standard Legendre equation for 9 (s) .
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t '=t+p. (5.19b)

Equation (5.19a) has exactly the same structure as
the familiar radial equation in nonrelativistic quantum
mechanics. We are looking for regular solutions with
nz')0. Vnfortunately, there are only a few types of
"potential" U (s) which are known to permit an
exact solution. %e consider first

V(s) = —v/s, v) 0 const. (5.20)

The square-integrable solution is

A (s) =s" 'e ~*L
p P&+'(2ms), (5.21a)

with
p= i) 2) 3)

The corresponding eigenvalues are

m„,„'=v'/4(v+p+-, ')'.
Another example is afforded by

V(s) =0 for 0&s(s,
fol s) sp.

(5.21b)

(5.21c)

(5.22)

A square-integrable solution exists only if p, & —1, and
it is given by

A (s) =—s 'J„+z(ms) for 0(s(sp (5.23a)

and A(s) ==-0 for s)sp. Hence, the mass spectrum is
given by the (nonzero) roots of the equation

J„~g(rl„„sp)=0, (5.23b)

Polynomial behavior of Pz&+' requires that ) —p, —1
be a non-negative integer. Since we already know
that P is a non-negative integer, this implies that p is
an integer, and we have the relation

X=),+1+n, e=O, 1, 2, ~ ~ ~ . (5.15)

Furthermore, we have the constraint p+1&X, so that,
for given ), the new quantum number p, has the range

p= —1, 0, 1, ~ ~ ~, X—2, X—1. (5.16)

It can now be checked that our function

&'.(~, 0, )—=D(~)c(0)~( )

is square integrable on the unit hyperboloid s'= —1,
with respect to the measure da—=cosh'a sinedg dodn
gas implied by (5.8)$. Actually, with a normalization
factor supplied, we have the orthonormality relation

(Rxpq ~c') 'p' ) o~~'~Ax' ppu" (5 17)

Thus, when we now turn to Eq. (5.11d), we only
have to guarantee the square integrability of A(s)
with respect to the measure db—=s'ds.

To solve (5.11d), we set

A (s) =s—Pt'g(s), (5.18)

which transforms it to

L~ '—
t '(t '+1)/s' —V(s) —~'jg(s) =0 (5 19a)

where

with v= i, 2, 3, ~ ~ ~ labeling the successive zeros. Vn-
like in the previous example, the spectrum is not
bounded from above, and the higher mass values
tend to be equally spaced and to be closer to each
other than the lower mass levels are. These are quite
agreeable features. Naturally, neither example gives
a truly acceptable hadron mass spectrum.

Of course, the generation of a mass spectrum by
some guessed "potential" should not be taken se-
riously and serves only an illustration of having a
nontrivial spectrum. A more realistic approach to the
mass-spectrum problem would be to combine our
space-time group L with some internal symmetry
group Dike SV(3)) and investigate the ensuing struc-
ture in relation to the mass operator 5. We shall
attempt to carry out this program at a later time.
Here we only note that, since gp is not an extension
of the Poincare group, the Flato-Sternheirner theo-
rem'P will not apply when bp is further extended by
internal symmetries, so that there is no reason why
this extension should be trivial. Hence, the investi-
gation of the emergence of a nontrivial mass spectrum
appears appealing.

VI. CONCLUDING REMARKS

In this paper we have proposed a new relativistic
space-time group which seems eminently suitable for
the quantum-mechanical description of elementary
particles. From the heuristic point of view, we find
it intriguing that our group arises from the metric-
specifying Lorentz group in the same way as the
nonrelativistic Galilei group arises from the corre-
sponding metric-specifying rotation group; cf. our
discussion following Eq. (3.6). Once we accept the
group g» we are immediately in possession of a natu-
ral space-time position operator X„and a mass-
squared operator —2t '5, both being members of the
Lie algebra. We also have a way to specify covari-
antly internal dynamical development, with the help
of the S operator itself. Finally, as will be briefly
discussed in Appendix C, our symmetry group leads
directly to the emergence of towers of states with
increasing spin. %'e find these features very inter-
esting.

In conclusion, we wish to briefiy touch upon the
following problem: Is it possible to obtain our dy-
namical group L by the Process of contraction from
some geometrical group of isometrics, in a manner
analogous to the construction of the nonrelativistic
dynamical group L from the covering of the con-
nected Poincare groups The answer lies in the af-
firmative. It is not difficult to see that L is the
contracted limit of the covering of the connected
component of ISO(3, 2), the inhomogeneous de Sitter
group, which is the group of isometrics in E32. The
contraction parameter is g44, defined by do'=gods'dx~
(a, b=O, 4, 1, 2, 3). The relationship between L and
ISO(3, 2) will be investigated elsewhere. |Cf.J. Math.



2762 AGHASSI, ROMAN, AND SANTILLI

APPENDIX A: GROUP EXTENSIONS

In order to make certain subtle mathematical points
(that were referred to in the text) more acessible to
a wider set of readers, we give here some concepts
concerning group exterlsio22s.

Let g and X be two groups and let r be an in-
variant subgroup of g. If we have the isomorphism

x=b/r, (A1)

then we say that g is an exte22siorl of X. It then fol-
lows that there is a one-to-one correspondence h:k—+c

between the elements k of X and the elements c of
the coset space g/r. Thus, an element cgg/r can be
written as c=h(k), and the composition law is

h(kl)h(k2) ~(k1y k2)h(kl'k2) ~ (A2)

Here cv(ki, k2) C r and is called a factor system Further-.
rnore, any element g of g can be uniquely decom-
posed as

g=y h(k) with yc r and h(k) g g/r. (A3)

The composition law of g is then given by

glg2=yi h(kl) y2. [h(kl)] '(o(ki, k2) h(ki k2). (A4)

Phys. (to be published). ] We only mention that this
study will shed additional light on the properties of the
RG-boost operator Q„and of the mass operator S. It
may also give rise to a cosmological interpretation.

The relationships between the Euclidean, nonrela-
tivistic Galilean, Poincare, relativistic Galilean, and
inhomogeneous de Sitter groups can be well visualized

by the following diagram:

ISO(3)+ISO(3, 1)+ISO(3, 2)

n g n
g4 C gs

(The symbols stand for the respective Lie algebras.
The arrows indicate contraction, and Q means in-
clusion. ) These relations are quite instructive. For
example, we see that nonrelativistic kinematics can
be obtained from g& either by going first to the non-
relativistic dynamics g4 and then to the corresponding
Euclidean kinematics, or by going first to the Poincare
framework and then to the Euclidean system. This
illustrates our point that the Poincare framework.
should be considered more of a kinematical (rather
than dynamical) symmetry.

1Vote added in proof While. this paper was in print,
L. Castell kindly called our attention to his work in
Nuovo Cimento 49, 285 (1967),in which he constructed
Lie algebras that contain a relativistic position operator.
One of his algebras is isomorphic to the Lie algebra of
our group 82. We also note that the recent paper by
J. E. Johnson, Phys. Rev. 181, 17SS (1969), contains
an interesting discussion of position operators and
proper time.

We note that if r is a one-dimensional (Abelian)
group Ti', then ~(ki, k2) is just a phase factor. We
then speak of a scalar extension.

Suppose now that there exists for any h(k)Pg/r
(hence, for any kC X) a certain element pl, p r such
that

h(k) p [h(k)] '=pi, y y2 ' for all y&I'. (AS)

We then call the group g a cerltrat exterlsiorl of X.
In particular, if I' is a one-dimensional (Abelian)
group T12 which belongs to the center of g, then we
have, obviously,

h(k) y [h(k)] '=y,
i.e., (AS) is fulfilled, and so we have a central ex-
tension b of X by the phase group Tie. Equation (A4)
then reveals that

g = Ties X. (A6)

If, in particular, the factor system cv(ki, k2) is not
only a phase, but actually co(ki, k2) =+1 for every
k~, k2, then the central extension becomes trivial and
we have the direct product

g = Ti'X X. (A7)

APPENDIX 8: NONRELATIVISTIC QUANTUM-
MECHANICAL GALILEI GROUP

For convenience and easy reference, we list here
some basic facts about the rlorlretatillist2c GaHtei grouP

The carrier space is E2XE1, with x= (xi, x2, x2) &E2
and tg E~. The transformations are written, in a con-
densed form, as

x~x =Rx+vt+a,
t~t'= t+r, (B1)

where R is a rotation matrix of SO(3), a is a trans-
lation in E3, z is a translation in E~, and v is the
boost in E3)&Ej. Here 7- is a scalar and a and v are
three-vectors under SO(3). The group so defined is
denoted by g4.

We shall be interested only in the central extension
of the covering group of g4 by a phase group. The
structure of this quantum-mechanical Galilei group
g4 is then

g4 ——
I Ti X (T2 XT )}81IT 8S2U(2) }) (B2)

as was discussed in Sec. I. Denoting the generators
of SV(2), T2, T2", and Ti' by Jl„P&, G&, and H,
respectively, we have the Lie algebra

[J', Jl]=ie*21Jl, (B3a)
[Pl, Jk]= 26~7clPl)—(B3b)

[P1, Pl]=[Gl, , Gl]=[Jl„H]=[Pl„H]=0, (B3c)
[Pg„Gl]= i oi,lM, —(B3d)
[Ji„Gl]=ical G„, (B3e)

[H, G2] = i P2. —(B3f)
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The Casimir operators are

e =-',M-~P2-II

where
I'~=A+M 'erat, I'iG~

Setting I&——M 'G&, we may rewrite (85b) as

F=J+P xX,

(84)

(85a)

(85b)

(85c)

ponent SOp(3, 1) of the Lorentz group, ' a is a trans-
lation in E3,», o- is a translation in E», and b is the
RG-boost in E3,»)&E». Here o- is a scalar and a and b

are four-vectors under SOs(3, 1). The group so de-
fined is denoted by gs. An arbitrary element will by
symbolized by g=(o., a, fi, h.). The unit element is
(0, 0, 0, 1). The composition law is

(os) as) f'2y A2) (&1) all fly i4)

(&2+&1) a2+Asat+&lf 2) ~2++2~1) A2+t) (C2)
which reveals that F is the spin angular momentum.

As suggested by (84) and (85), the irreducible
unitary projective representations" of b4 are labeled

by (a) an arbitrary real number M, (b) an arbitrary
real number S, and (c) an integer or half-integer
number s. [The latter is the index of the familiar
finite-dimensional unitary representation D' of SU(2).
Alternatively, the eigenvalue of X could be used
too.$ A representation is denoted by the symbol
(M I

(8, s).
A realization of the b4 algebra in the Hilbert spa, ce

over E3&E» is given by

(86a)

(86b)

(86c)

(86d)

Here Z~ denotes the familiar finite-dimensional repre-
sentation matrices of the SU(2) generators.

In the realization (86), the angular momentum
operator Iiq becomes simply Ii~ ———iZ~, i.e., the spin.
Hence, we can identify the representation label s
with the particle spin. The label M is identified with
the mass, and the label S with internal energy. How-
ever, ' the representations with different values of S
are equivalent in the sense that

'tt~ ei, (g) =exp(irS)A "t4r, p, (g)A, (87)

APPENDIX C: RELATIVISTIC GALILEI GROUP

In this appendix we summarize the mathematical
properties of our proposed new relativistic GaMei group.
For completeness, we shall repeat a few items and
formulas that were already presented in the main text.

The carrier space is Es,iX Ei, with x = (x', x', x', x') C

E3,» and N&E». The transformations are written, in
a condensed form, as

x~x' =Ax+ bN+a, =I+0) (C1)

where A is a Lorentz matrix of the connected com-

where t4i, @,, (g) is the operator corresponding to an
arbitrary group element g&g4 in the representation
(M I S, s), and A is an isometric operator. Hence,
in the free-particle realization, S has no significance,
and can be taken to be zero. (See, however, Ref. 16.)

[S, Q„)=iP„.
The Casimir operators are

I» ——I'„I'~,

I& ——W„W~.

Here we used the following notation:

W„=e„p.J&'I'".

(C5f)

(C6a)

(C6b)

(C7)

It is interesting to note that I» and I& are precisely
the familiar invariants of the Poincare group.

As was explained, from the physical point of view,
in Sec. III, the next step is to go to the covering
group of gs [by replacing SOs(3, 1) with SL(2, C))
and then to perform a central extension by a phase
group T»'. Ke thus obtain the quantum-mechanical
relativistic Galilei group, which has the structure"

gs ——{Ti'X(T4'XTi )}8 {Ti'8SL(2)C)}. (CS)

We shall symbolize an element gags by g= (exp(ie);
o., a, ti, A). For the factor system (cf. Appendix A)
we conveniently use the form"

~(g1 g2)=—exp{i& 'f(oi, ai, &1 ~1 o2 a2 ~2 i12) } (C9)

4i The function f has the explicit form f= (b2A2a&+mhmso&), hut
alternativeforms are possible. The constant l ' with the dimension
of inverse length appears in the exponent of co because f has the
dimension of length.

The inverse element is

g '=(—o. —h. '(a —o.b), —h 'b, A. '). (C3)

The group structure is"

bs= I T4'X Ti'}S {T4'8 SOo(3, 1)} (C4)

Even though our interest lies in the corresponding
quantum-mechanical group L, we first give here some
details about the algebra of gs itself.

Denoting the generators of SOe(3, 1), T~, T4', and
Ti' by J„„,I'„, Q„, and S, respectively, we find

L" "j= (g A g.p -—g" "—+g- ~.) ( )

[&., ~,.1='(g.,~.—g"~,), (C5b)

[P„,E„]——[Q„,Q„]=[X„„,S]=P'„,5]=0, (C5c)

[~. Q 3=0 (C5d)

I ~... Q,r='(g. ,e.-g.,e,), (c5 )
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The composition law of L can then be written as

(exp(282) G2, G2 62, A2) (exp(281) '
%1 Gl /'1 Al)

= (exp2(82+81+/ f) i &2+&1) G2+A2G1+&182y

~2++281) A2A1) (C10)

The unit element is (1;0, 0, 0, 1).The inverse element
of g becomes

g
'= (expi( —8—/ 'f) i

—o, —A '(G —ob), —A
—'b, A

—'),

where f is the function in (C9) which corresponds
to 4p(g, g ').

The Lie algebra of g& is now easily found. One
obtains the same relations (C5) as were found for gp

itself, wi//2 the exceptio22 of Eq. (C5d), which is re

P/Gced by~

n =P„P~+2/ 'S,-
g= 2T„„T"",

X= 4e/, „p~T""T~~.

Here we used the abbreviation

(C13a)

(C13b)

(C13c)

with
M„„=P„Qy—P„Q„—. (C14b)

We observe that the operators 4i Gnd X are the
Casimir oPerators of G22 SL(2, C) algebra. It is well
known" that in the unitary irreducible representa-
tions, the eigenvalues of these operators are

We now turn to the discussion of the Casimir
operators of bp. They are found to be444'

LP., Q.]= —i/ 'g". (C11)
g =Gp 1'Gi 1, X = 22GpG1~ (C15)

Furthermore, the meaning of the operators J„,changes:
They are to be looked upon as the generators of
SL(2, C) rather than of SOp(3, 1). We note that if

/ ' is set equal to zero, by (C9), the factor system 4p

reduces to the constant value 1, so that the central
extension becomes trivial, a direct product of Tj~ and
the covering of gp.

An explicit realization of the Lie algebra (3.7)—
(3.12) of gp in the Hilbert space X(E2,1XB1) built

upon the carrier space E3,&XE& is easily constructed
and has the following form4':

g„„=i(x„a, x,B„)+i&—„„
I V ZBV7

Q„=i248,—/ 'x„

S=i0„.

(C12a)

(C12b)

(C12c)

(C12d)

(C12a) the matrix iZ„, is what the physicist
usually calls "the intrinsic spin part" of J„„.One

may, of course, choose these operators to be the
fami]iar finite-dimensional representatives of the

SJ(2, C) group. I
Thus, for example, for "spin —',

"
one has g„„=41(p„y„—y„y„), with y„being the Dirac
matrices. j When so doing, Eq. (4.13) tells us that
the realization (C12) describes a particle with unique

spin, whose value is determined by the eigenvalues

of jZ,&. However, as will be discussed below, the use

of finite-dimensional representations for Z„, would

imply that the realization of the algebra of gp by
(C12) is not Hermitian. Conversely, in order that
(C12) represent a Herrnitian realization, it is neces-

sary to interpret the Z„, as the infinite-dimensional

matrices associated with the irreducible unitary rep-
resentations of Sl (2, C).

4' To save space, we do not write down here the full Lie algebra

of g5. In any case, it has been written down before; see Eqs. (3,7)—
(3 12) ~

.4'It may be worth while to point out that the corresponding
realization of the Lie algebra (C5) of g5 is of the same form as
(C12) except for (C12c), which is replaced by Q, =ill„.

where

a=0 —'
) 2) u&= arbitrary pure imaginary

(C16a)

in the representations belonging to the "principal
series, " and

a0=0, Gi ——arbitrary real, 0(G1(1 (C16b)

in the representations belonging to the "supplemen-
tary series. "

Equations (C13a)—(C13c) thus suggest that the irre-
ducible unitary projective representations of our L are
labeled by (a) an arbitrary real number /, (b) an
arbitrary real number 5), and (c) two quantum num-
bers G, and Gi, as specified by (C16a) or (C16b).
Such a representation will be denoted by the symbol
(/ I X), Gp, aS).

In order to justify this result fully, as well as to
explore the physical interpretation of the quantum
numbers, it is necessary to construct explicitly the
irreducible unitary projective representations of L.
The details of this procedure will be given elsewhere;
here we only sketch the calculation.

The representations in question will be induced by
the subgroup

44 Using the fact that, as stated in Sec. VI, g5 arises as the
contraction of ISOO(3, 2), one can check that there are no more
invariants than the three listed below.

4' It is interesting to compare these invariants of g5 with those
of the original 85, cf. Eq. (C6).

'See, for example, I.M. Gelfand, R. A. Minlos, and Z. Ya.
Shapiro, Representations of the Rotati on and Lorene Group
(Pergamon, New York, 1963), p. 200.

4' In view of Eq. (4.3), the eigenvalues r of S are related to
the mass-squared eigenvalues m' by r = —&l'm'.

{2'4'XT'1'X Ti'I SN. , (C17)

where (R is the stabilizer of the orbits in T4 XTy.
Denoting the eigenvalues of P„by p„and those42 of
S by r, a point of an orbit is represented by (p„, r)
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and the orbits are given by the equation

p„pal+21
—'r =n. (C18)

It is then found that the stabilizer (R in (C17) is
precisely the group SL(2, C).

We now choose a set of basis functions

where $, it serve to label the components of the rep-
resentation space of SL(2, C). As is well known, 4'

in the unitary irreducible representations of SL(2, C)
(discussed above), the labels $ and it take on the
discrete values

a0p ao+ 11 ao+2)

n= —$, —i+1, (C19)

Eventually, with a suitable invariant measure being
de6ned, the irreducible unitary projective representa-
tions of gq are found to have the following form":

G= V„„,„'QV„„,„, (C21a)

where 0 is a particular element of the factor group
T4~SL(2, C), viz. ,

Q=(1;0, 0, b, A), (C21b)

and V„„,„ is that element of the same factor group

"See, for example, p. 188 of Ref. 46.
"The constant P is arbitrary.

=exp/i(ro. +p„a&+$8)g

XLD o (G)&v, t, I
p„', r', (', ~'). (C20a)

Here the RG-boosted p„' and r' are given by

p'=4 '(p —/ 'b) r'=r+pb 'L 'b' —(C-20b)

The D 0 &'(G) is an infinite-dimensional matrix belong-
ing to some unitary irreducible representation of
SL(2, C) (see above), representing the group ele-
ment G. The latter is given by

which transforms an (arbitrary) fixed point (p„, r)
of the orbit (C18) into the given point (p„, r). Finally,
in (C20) summation over $' and rt' Lwith the ranges
as given in (C19)) is understood.

Now we briefly discuss the physical interpretation
of the quantum numbers associated with the above
representation (t

~

X), ao, ai). We have already pointed
out at the beginning of Sec. IV that l can be looked
upon as a universal length. Concerning X), then, we
have the following comment to make. From (C20a),
it can be shown that representations differing only
in the value of S are equivalent projective represen-
tations, in the sense that

'tti, ~,„., (g) =exp( 2i—lot))A "ttio„„, ,(g,)A, (C22)

where we used a notation analogous to the one em-
ployed in (B7). Thus, in the free-particle realiza-
tion, X) is of no significance and can be taken to
be zero."

Finally, we consider the two remaining quantum
numbers. From (4.13) and (C12a) it is evident that
we wish to interpret the label ao of the representa-
tion as spin. Equation (C20) together with (C19)
and (C16a) tells us that this indeed is possible.
However, and this is a very interesting feature of
our framework, (C19) shows that our representations
describe not a single spin value but rather, for each
representation (t

~
5), ao, ai), an infinite tower of spin

states, starting with the lowest value s=ao, and going
up in integral steps. LTo each value s=a,+n we,
of course, have a (2s+1)-fold degeneracy, differing
in spin component. )

The additional quantum number a~, related to the
eigenvalues of the noncompact part Zg, of the "spin
operator" Z„„, does not lend itself to such a simple
interpretation. At the present stage, we can only
say that both ao and a& are needed to select a de6nite
"tower. "

' For the interacting case, this is no longer true; but we may
still renormalize the "internal" part of the mass squared of the
composite system by the amount Q'+XV. The reduction of
products of representations will be discussed elsewhere.


