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This paper presents and discusses two sum rules for the axial-vector form factor for the He'-H' isodoublet,
the conventional Weisberger-Adler sum rule, and a new plane-wave sum rule. Both sum rules are well
satis6ed. A method of improving the impulse-approximation estimate of pion-cross-section differences is
presented, and the various disintegration cuts and anomalous thresholds inherent in a nuclear dispersion
relation are discussed.

I. INTRODUCTION

HK success of the Weisberger-Adler (WA) sum
rule for the nucleon axial-vector form factor f~

leads immediately to questions about its applicability to
other systems, including nuclei, which one might hope
to treat as elementary in some sense. One might use
the sum rule either for information about pion-nucleus
scattering or axial-vector form factors.

Our interest in the particularly simple case of the WA
sum rule for He' is motivated by the latter point —that
one might be able to calculate the H'~ He'+e+v,
axial-vector form factor without having to consider
the nuclear physics of the problem in any great detail,
in analogy to the Thomas-Reiche-Kuhn sum rule for
atomic systems. The elementary-particle treatment of
light nuclei has had some success in nuclear P-decay
calculations (particularly those of Rim and Primakoff)'
and originated in the muon-capture calculations of
Dreschsler and Stech, ' and Fujii and Yamagouchi. '

The experimental value of the H'-He' axial-vector
constant Fz can be obtained directly from the (ft)
value of H', or from a ratio of the (ft) values for H'
and the neutron. Since the theory of radiative correc-
tions to nuclear P decay is not well developed, we

choose the second course and use (ft) values determined
at a consistent level of approximation, '

(ft)„1+3F&' 1187w35

(ft)n' 1+3f~' 1132&40

for ~f~) =1.18~0.02, ~F&~ =1.22W0.07.
In direct nuclear-physics calculations (i.e., outside

the elementary-particle model) there is no apparent
structure independence of F~. The problems of deter-
mining the internal nuclear wave function and of

expressing the exchange effects are both unsolved and
linked. This is an enormous problem for heavy nuclei
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and is already acute in He', where the Q value of the
P-transition is small (18 keV) and the nucleons are
lightly bound (8 MeV).

As the Goldberger-Treiman (GT) relation for Hes

is marred by the appearance of anomalous thresholds
in the axial-vector form factor, it is possible that the
anomalous thresholds in the WA sum rule itself are
just as serious. It is not obvious that the WA sum
rule can be of practical utility in nuclei unless these
structure effects are insignificant (or at least as minor
as for the nucleon).

The price that must be paid for the simplicities of
the WA sum rule is the covert appearance of the nuclear
structure effects as analytic structure in the sum rul" a
nuclear disintegration cut, and the appearance of
anomalous thresholds in the extrapolation to zero pion
mass of physical x-He' scattering. Also, the experi-
mental input to the sum rule, ~+-He' scattering data,
does not now exist. We choose to estimate the sum
rule by using the impulse approximation in place of
the scattering data.

We also 6nd a new sum rule, involving only the
nuclear disintegration pieces evaluated in a basis of
plane-wave three-particle states (rather than the
exact three-particle scattering states of the %A sum-
rule disintegration contribution).

An alternative approach to WA sum rules for nuclei
has been presented by Kim and Primakoff, ' who use
closure (via, the infinite-momentum frame) to eliminate
the explicit disintegration contributions. The following
presentation is more closely allied to particle physics
and, while in an incomplete state (the various admix-
tures in He' are ignored), indicates a direction that
could lead to further applications of nuclear disper-
sion relations.

The structure of the paper is as follows: We derive
the sum rule for He' and the extrapolation prescription
which accompanies it. We then calculate the nuclear
disintegration contribution and present the new sum
rule which arises naturally at this point. Finally, we
attempt to evaluate the sum rule in the absence of
experimental ~-He' scattering data, and discuss very
briefly the question of forward vr-He' dispersion
relations.

C. %. Kim and H. Primako8, Phys. Rev. 147, 1034 (1966).
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II. SUM RULE

We consider the identity of Weisberger'

g~g~T~), =1T

d'x e'2*22 Q (P,sl tI(x»)LA»+(x), A„(0)]I P,s)

equal-time commutators in (1), and then equate to
zero the crossing-odd term of O(v). Since the Born
term is just —F~2(q2=0), the sum rule becomes

+00

0=1 F~—2 ——dv'(v') ' ImT22(v', q'=0)
QQ

+' d" '"-: r. (p, l~(")LA.-(*),D (0))lp, ) (»
dv'(v') ' ImT, (v', q'=0), (3)

where the vector-current matrix element resulting
for states

I p&s) of He' with spin and isospin -', . Further& from the axial-charge-axial-vector current commutator
provides the factor of unity, and

d'* ' *(p,s I
(D+(x)D-(0)),

l p,s), (2b)

utilizing the isotopic raising/lowering components of
the axial-vector current A„+(x), its divergence D+(x),
and the time-ordering symbol ( )+. Neither He' nor
the other member of the isodoublet H' has excited
states, and He' satis6es all the 6eld-theoretic conditions
for (1) to hold.

The leading singularities of T„„(orT) in the variables
we consider (q' and v= p. q/MH, ) are the Born term,
arising from the H' intermediate state at va (MH-—'
—MH, '—q')/2MH, for the direct term and the double
(and single) pion poles at q'= m '. At fixed q' there are
also disintegration cuts beginning at v„„„=L(2m„+mv)—M —

q )/2M and v„e= L(m„+my) —M —
q )/2M for

the direct term (M= MH, and ms is the deuteron mass)
and at —v»v L(3m„)2—M'———q')/2M for the crossed
term as well as the ~-He' scattering cuts beginning at
~ v= 140 MeV for q'=0. The disintegration cuts begin
at

I vl =8 MeV.
For q'=0 and 0(

I
vl «va, the left-hand side of (1)

is O(v'/va'), and thus we may write the familiar sum
rules of Weisberger and Adler, ' and Adler' by equating
to zero the terms of order v, and of order unity, on the
right-hand side of (1).We will be concerned only with
the first (crossing-odd) sum rule.

Alternatively, we might choose to separate out the
Born term on the two sides of (1) and show that the
residues of the poles in v match on both sides for q'=0
as well as at q'=m ' (as they must). The nonsingular
remainder is just Ii~' and the left-hand side is then of
order v'/v, ' (v, = v„„„),where v, is the position of the
new nearest singularity in T„„—T„„~"".We choose the
former prescription for the symmetry it provides be-
tween the Born term and the disintegration cuts.

Our procedure is first to extract the Born term in T
at q'=0 up to O(v), use the algebra, of currents for the

'%. I. Weisberger, Phys. Rev. 143, 1302 (1966).' Reference 6 and S. I. Adler, Phys. Rev. 140, 3736 (1965).
S. L. Adler, Phys. Rev. 137, 81022 (1965).

+crossed term, (4)

ImT. = l (2~)' 2 1(nID (0) I
He') I'~(p+q —p-)

+crossed term. (5)

The states Il') include nd) and Innp) for the direct
term (IH') is excluded) and Ippp) for the crossed.
term.

The states In) for the direct and crossed terms in-
clude all states except the three-nucleon states;
begins with IHe22r), Innp2r), etc.

We rewrite the sum rule as

I'g'= 1—6——
7r

dv v-'ImT, (v, q'=0),

(n1 ID l0) = (m-' —q') 'Lm-'J". (n1 li-(0) I0)),=-.

+ (m2 q2)
—ld (m2) dm2 (7)

where the residue d of the one-pion pole has been ex-
plicitly displayed. The continuum begins at m02, which
equals 9m ' in the absence of anomalous thresholds.
We thus expect the leading singularities of ImT, (v,g2)

in q' at. fixed v to be a pion pole of order 2 at q'= m '.
Picking out the most singular term in the putative

where it is understood that 6 (the disintegra, tion contri-
bution) is to be evaluated from theory at q'=0. We
might have chosen to estimate it from experimental data
at q'= m, ' if such data existed. Our problem now is to
relate T, (v, q'=0), which we require, to T (v, q'=m '),
the physical pion-He' scattering amplitude. To this
end, consider the related matrix element (np I

D
I 0),

where the state In) has invariant mass p '= (M+m )2

and p= —p is the momentum of the anti-He' in the
final state. Disregarding the complications of spin and
isospin and suppressing the dependence on the internal
variables of the state In), we write
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Laurent expansion at m '= q' we find sum rule ~i.e., there is little likelihood that the axial-
vector current will be absorbed b f te ore turning into a
ploil ~

~ ~

This is perhaps a good point at which to contrast

latter, we would extrapolate the axial-vector current
matrix element (H'

~

A
~

He') t '= 0
domominance of the one-pion pole. This extrapolation is
valid if the1'd e nearest continuum threshold is at neo'»m„'
or if the discontinuities across th e correspon ing cuts
are small. For He' we would extrapolate along the line
s=M' in the (v, q') plane and this intercepts the anoin-

. ts . or eavier nucleialous cut (see Fig. 1) at q'=4. 6nz '. F h
t is anomalous cut is closer to q'=0 and therefore is

ew a surprising con-even more influential. The somewh t
c usion is that we can expect nuclei to be more "ele-

GT relation (or are in fact). This may be of some im-

portance in heavier nuclei.
We might also note that in the field-the

o C (partially conserved axial-vector current)
we define the extrapolation of the pion field b C

p, „—~x„m Ii and thus the anomalous thresholds
appear irectly in the extrapolation .of (eP

~
D

~
0)

=m 'F m„'—q') '(nP~ j~0), where the matrix element
of the pion source is taken at q' (rather than m '

Using the crossing relation and unitarity (ImT,

ImT, (v, q'=0) =J ' ImT (v, q'= m ') .
Loosely, we say that the double pion pole at q'=m '
dominates EmT, at q'= 0. Th " lis extrapolation to
q = can be carried out along any line in the (v,q2)

plane and we choose, with Weisber er ' t k
s an . e location of some singularities in this (v,q')

imensional reduced graphs giving the exhibited
thresholds are shown in Fig. 2.

Thee two-dimensional reduced graphs give anomalous
thresholds which disappear into the thresholds of the
one- 'mensional graphs at the points of tangency. We

and we note t
show only the right-hand cut in T (v ') f
an we note that the dangerous anomalous thresholds
are for v&m K '

, suKciently distant so as to justify tak-
ing the 6rst term in (7). Note th t th

res old for the three-pion state is also present in the

and contributes only for v well below the A(1236).
The nearby anomalous nuclear structure threshold
should have a minimal effect, since they approach

than ov
q'= m ' only in the vicinity of one valu f he o v rat er

an over a range. Note that for 8& v& 140 MeV the
effect of theo e anomalous thresholds is expected to be
more critical.

We find that the compositeness of He' has
from the a

ss o e as, apart
e appearance of d, a small effect on the WA
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=l3 o), we find

XLo'(vr He') —o'(2r+ He') ), (8)

where the prime is a reminder that ImT excludes the
processes 2r He~ 2323P, 22d; 2r+He3-+ PPP which are
included explicitly at q =0 in A. Except for the omis-
sion of these processes, the 0-' are total cross sections.

The set of states
I
l') in Eq. (4), plus the state

I
H'),

constitutes a complete set in the subspace of three-
nucleon states where the states I22nP), I23d&, and

I PPP&
are exact scattering states orthogonal to the H~ state.
%'e may, however, choose to span this space with a
complete set of noninteracting (plane wave) three-
nucleon states which we denote lpw). We may then
recast (6) as follows: The definition of ImT22 is extended
so as to contain the state IH'); then we simply sub-
stitute for the complete subset ll&= ll'), IH') the
alternative subset

I l; pw&. The sum rule then becomes

ImT~'"=2(2~)' 2 I(l; pwlD IH"&I'
L;pw

X8(p+q —pi)+crossed term, (10')

where ll; pw)= I2222P; pw) for the direct term and

I ppp; pw) for the crossed term.
Subtracting (9) from (6), we have a new "plane-

wave" sum rule

F~' ——Ap„—A.

III. CALCULATION OF 4y AND 4
Ke turn now to the calculation of hp and 6 at

q'= 0. For both we use the impulse approximation and a
simple symmetric He' wave function. The calculation
of Dp is a prelude to the calculation of h.

Since the outgoing nucleons in Ap are in plane-wave
states, it is natural to use the impulse approximation
represented by

D'(o) =2 ~.'(~ID'(o) IP&~s

+00

O=l —~pw — dv v ' ImTc

with ImT, unchanged and

dv v ' ImTg)p

with i2 and p free one-nucleon plane-wave states and
9

( ID"(0) l~&

=if~(2~) '(m ms/E Ep)"'(m +ms)u y6r+26p

=if~~(22r)3X

262 (p —po)Xp. (13)

(10) fr=nucleon axial-vector decay constant;
I f„I

= 1.18.
We also use the symmetric He' wave function'

3%3u6q'"
I
He'; p, s, =—)= (2zr)

I p d'r; p d'y; expl —i p p,"r,——'n (ri2 +rl3 +r23 )$
i=1 j=l

i j=123
Xiip (Ply Sz=2)~3n (P2z Sz= —2)iin (P3j Sz= 2) I0) z

o, =0.384 F '=75 MeV.
(14)

The hnal plane-wave states are

I23np; pw)= (2) 'i2a t(pi', si')u t(p2', s2')a„t(p3', s3') IO)

and

I ppp pw) = (6) "'on'(yi', »')on'(y2', s2')o'(y3, » ) I o)

We may now carry out the spin suins in (10) and (10'),
as well as perform the spatial integrals from the He
wave function.

The result for d p
~ is

any ~f 2 (3~3+6x3)-1 d & g d3p,

y2' 2 (p,+y2/2)'-
2 exp

2Q 3Q

(p"+y ') (pi+p2/2)'

4a' 3A

(pi+p3/2)'
&'(p+q —Z p') (15)

30! i=1

where we choose q= (P61, i) and the frame p= (O,m).
There are three convenient levels of approximation to
(15).First, we may use a pole approximation by writing
for the argument of the energy 8 function

(M—Q E~+ 3) = (M—3m+ v) .

Next, we can in addition keep the erst-order corrections
to the pole approximation coming solely from the
inverse of the derivative of the argument of the delta
function which is implicitly set to unity in the zeroth
approximation, but not corrections from the momentum
dependence of v. Third, we can include these latter
corrections as well. There are no corrections of this
third type to the first term in (15), and the corrections
to the second term of this type are of order (3„„„2/
u2)(u2/m2)= (3 „/m)', where we denote the threshold
value of v by v„„„=9.0 MeV. Thus the only important
corrections to the pole approximation are of the second
type.

9 L. I. Schiff, Phys. Rev. 133, 8802 (1964).
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Including these corrections of the second type,

6, ""P=fA2[1+11n2/m2+v„„„2/6n2+v„„p/mg, (16)

and, similarly,

~pw fA Lvppp /6n +v»p/mg. (17)

Note that the pole-approximation contribution to
Dp„"» vanishes.

The calculation of 6 itself is difficult because of the
appearance of exact three-particle scattering wave
functions for the state

I
n). A typical term leading to

Eq. (15) contains the square of the matrix element

8

T= g d2r, C „*o'2"Cn.X„te qXn.

/the q2 factor in the squared matrix element will be
cancelled by the factor v ' in (10)]. As IqI —&0 the
overlap integral fC„*CH,—+ 0 if C' and CH, are
eigenstates of an exactly charge-independent Harnil-
tonian (which we assume). The matrix element is then
of order IqI I (r)„,H, I, and thus 6""p is of order
(v „/n)'=1%. Another such situation arose in the
calculation of Dp„»& where the radial three-proton
wave function was constrained to be asymmetric by
the Pauli principle, and thus orthogonal to the (sym-
metric) He' radial wave function. Thus the leading
term in Ap„p» is 0((v»„/n)')

Rather than attempt a calculation with the exact
wave function C, we expand the exponentials e''l" and
use the orthogonality assumption to eliminate the
first term. The next term can then be estimated by
replacing 4 ie this term by a plane-wave three-particle
wave function, i.e.,

The additional contribution from the
I
nd) Anal state in

can be calculated by using a two-term Gaussian
wave function, " similar to that used for He', and
applying the same procedure. Then

g n d f 2—(v 2/6n2) (21)

where the thresholds are as follows: v „„=9.0 MeV,
—v»„=6.4 MeV, and v &=6.8 MeV. Numerically,
we find

6 =6"~+LV "p—6» p = —0.0014fA' (22a)

=5p„""p 6p„»"=1.0—35fA' (22b)

IV. EVALUATION

In the absence of. ~-He' scattering data, we wish to
attempt to estimate the integral in the WA sum rule
(8). To this end we use the impulse approximation in
the form

d v v 2k~I o'(2r He') —o'(2r+ He2)g

d v v
—'k. (o (2r

—
P) —o (2r+P))v, (23)

Note that the magnitude of 6 does not depend strongly
on cancellations.

Equations (22) lead directly to the plane-wave sum
rule (10), FA' 1.036f„',——IFA I

= 1.20. This is in
striking agreement with the experimental value, and
particularly encouraging in that the ratio IFA/fAI is
larger than unity. This latter point is suggested by the
experimental information, and is almost impossible to
predict on the basis of an ordinary (as opposed to
"elementary particle" ) theory.

C'„*(exact)(iq r, )C n, = C'„"'(pw) (2'q r,)C'He ~ (19)

We have compared this approximation with the exact
result in a simple two-particle model and find that the
approximation overestimates 6 by 30% Since 2 is
small, this level of accuracy is acceptable. The two-
particle model calculation is outlined in the Appendix.

It is now a straightforward matter to adapt the
calculation of A~ to this approximation. If we write
(15) in terms of the T's, eliminate the contribution at
q= 0 and keep only the remainder, square, and perform
the integrals as before, we find

(20)

Since for 6»" we are already assured that there is no
q=0 component in the matrix element, our approxima-
tion is just

»"=fA2gv '/6n'+
I "pppl /mj.

where the bracket ( )v means that the cross sections
are to be averaged over the Fermi motion of the
nucleons in He'. We used the Gaussian wave function
(14) to give a Gaussian "smearing" function. The
results are shown in Fig. 3. With this approximation for
the m-He' cross sections,

dv v 'k (o(2r P) —o(2r+P))v=33. 1 mb (24)

compared with

dv v
—'k Lo (2r

—
P) —n(2r+P) j=36.7 mb,

without the Gaussian smearing function. The chief
source of the 10% decrease in the integral is the smear-
ing of the h(1236) into the region wherek (k '+m ') "'
is small.

' C. Ernst and S. Fliigge, Z. Physik 162, 448 (1961).
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mb
+l50—

——~(w+p)-0 ( tr p) {EXPERIMENT)

(0 (7T'+p)-o(7f p)) (~~ (7r He )-0 (7r He ))

+ IOO—

+50—

l.5

-50—

If we use the GT relation (for the nucleon), we find

for He' Drom (8) and (24)j compared with
~ f~ ~

= 1.17
for the nucleon. Using the physical pion decay constant,
which we regard as more reasonable, we find

compared with
f f~/ =1.21 (f f~/ from the nucleon

sum rule in both ca,ses). The a,greement with the experi-
mental value of ~F~~ is well within the error limits
stated in the Introduction, but not as striking as the
result from the plane-wave sum rule. The reason for
this is apparent: One further series of approximations
has been introduced [in (23)]. It is clear, however,
that the WA sum rule is valid for He', "and we turn to
a discussion of the approximation (23).

We expect that the impulse approximation (23) is
reasonable on several counts. First, the most obvious
processes which violate the impulse approximation are
~+He' —+3N near threshold, corresponding to a two-
nucleon capture process. These processes are ex-
plicitly excluded from 0.', however. We can attempt to
estimate what they would contribute if included in the
integral (24), by using the 5-orbital capture rates
calculated by Cheon" to estimate the matrix elements.
The result would be to increase (24) by =2%%u~ if,
rather than o.', we (wrongly) used o., the total cross
section. Possibly, then, other violations of the impulse
approximation have a similarly small effect.

Secondly, we note that the impulse approximation
(understood to include the smearing due to the nucleon's
Fermi motion) is a fair approximation for pion-deuteron
scattering, though resonances do seem somewhat more
"smeared out" than our impulse approximation

' This conclusion is the opposite of that reported previously
by one of us (EAP). We gratefully acknowledge comments on
this earlier paper by C. W. Rim, H. Primakoff, G. Barton, and
J. E. Paton.

"Il-Tong Cheon, Phys. Rev. 145, 794 {1966).

k GeV

FrG. 3. Comparison of the "Fermi averaged" and impulse-
approximation values for the difference of cross sections appearing
in Eq. (23). k is the laboratory momentum of the incident pion.

indicates. Also, Ericson, Formanek, and I.ocher"
attempted to find o(ir Bes)—o(n.+ Be') by an en-

tirely different approximation technique, and the
general decrease in the height of the D(1236) resonance
is about the same in their work as in ours. Note that
the Fermi motion effect is not too much different in
Be' and He'.

The presence of the average over the Fermi motion.
of the nucleons is important for reasons evident from a
naive argument. A pion incident on a single nucleon
at rest at an impact parameter 6 can excite a resonance
of orbital angular momentum l=tI|' b. If we suppose
that another nucleon (also at rest) lies also within an
impact parameter b, we might expect that both nucleons
would be excited coherently into, for example, the
A(1236) resonance. This would then lead to a violation
of the unitarity relation for this particular configuration
and partial wave. Of course this violation is spurious
since the effects of rescattering are precisely such as to
enforce unitarity. The ordinary impulse approximation
(ignoring the relative motion and rescattering) then
leads to violations of unitarity. In the presence of
relatively narrow resonances which saturate the
unitarity relation and the Fermi motion, the relative
momenta of the nucleons will usually be such as to
prevent such coherent excitation of the resonant state
(as well as reduce the rescattering corrections). One
might naively expect that the Fermi motion and the
rescattering corrections might together lead to some-
what greater "smearing" than the Fermi motion alone,
but we prefer to avoid further excursions into the
thicket of pion-nucleus scattering. Note that the rms
nucleon momentum in He' (75 MeV) is not very
diRerent from the half-width of the t1(1236).

It is worth noting that the usual condition for the
validity of the impulse approximation is not really
valid here, since the 6(1236) moves very little before
it decays (=0.1 F) and the average over the Fermi
Inotion has been taken.

V. DISCUSSION

We now summarize our results and point out some
significant features of the WA sum rule for He'. The
sum rule is useful chieAy because of the possibility of
carrying out in a simple way the continuation in the
variable q' from 0 to m ' for at least a part of the
absorptive amplitude (that part excluding the three-
nucleon disintegration states with threshold at v=8
MeV, i.e., beginning with the pion threshold near 140
MeV) while estimating the remaining disintegration
contribution at q'= 0. This prescription depends
critically on the location of the anomalous threshold
singularities in the (i,q') plane —particularly those
anomalous thresholds due to the nuclear structure. We
note that for the direct term these singularities are

'3 T. E. O. Ericson, J. Formanek, and M. P. Locher, Phys.
Letters 268, 91. (1967).



280 T. F. WA LS I-I A iX D E. A, PETER SON

generally to the left of the region of interest in the
continuation (0&q'&m ', v&140 MeV). In fact, these
singularities seem to lie above and to the left of the
parabola passing through v = q'= 0 and v= m, q'= m '
which Fubini has conjectured does not cross any
anomalous thresholds. " These singularities do, how-
ever, prevent a reliable extrapolation of the disintegra-
tion contribution from q'=0 (where it is required for
the sum rule) to q'= m ', where it is either the absorp-
tive part of the amplitude in the unphysical region
(8& v& 140 MeV), or the pion absorption cross section
for v above m . This can be most simply noted by
remarking that energy-momentum conservation ex-
cludes the impulse approximation (one-nucleon capture)
for q'= m ', v =m, but not for q'= 0. Corresponding to
this, one might expect that higher-order anomalous
thresholds than the ones of Fig. 1 cover the region
q'=m ', v= m and prevent one from extrapolating the
impulse-approximation result at q =0 to q'=nz ' near
v=m . We have found, in fact, that some three-
dimensional reduced graphs contribute anomalous
thresholds just in this region. This makes any extrap-
olation of 6 even more suspect than one might judge
from Fig. 1. In this respect, the WA sum rule is even
better than one might think from phenomenological
estimates of D(q'= m ') "

In connection with our use of the impulse approxi-
mation we may remark that, taking the difference of
the cross sections o(~+He') —o(~ He') seems, from
the work of Ericson et al. ,

" to lead to an absorptive
amplitude for which the impulse approximation is
reasonably good. In contrast, the impulse approximation
for the sum o(s+He')+o(s He') is subject to un-
certainties coming, for example, from the scattering of
pions by the potential which tends to cancel in the
difference of cross sections. I.ikewise, Glauber shadow-

ing corrections" ultimately affect only the already
small asymptotic-cross-section difference. In the sum
of the cross sections, shadowing effects lead to a
violation of the linear 2 dependence following from
the impulse approximation.

The WA sum rule is related to the problem of forward
pion-nucleus scattering dispersion relations. The con-
nection involves extrapolation of the pole term in the
sum rule to q'=m ' and a similar extrapolation of 6,
together with the extrapolation of ImT, which we
have discussed. The disintegration contribution below
the physical threshold becomes just the absorptive con-
tribution in the unphysical region to the dispersion
relation, and above the physical threshold becomes the

' S. Fubini and G. Furlan, Ann. Phys. (N. Y.) 48, 322 (1968).
"Such phenomenological estimates can be abstracted from

R. Seki, Phys. Rev. Letters 21, 1494 (1968); 21, 1786(E) (1968).
In this paper it is conjectured that the earlier calculation LEarl
A. Peterson, Phys. Rev. Letters 20, 776 (1968); 20, 1134(F)
(1968)7 failed because of an inconsistent use of the impulse
approximation. This proved not to be the case—the culprit was
an incorrect use of the plane-wave approximation."R.J. Glauber, Phys. Rev. 100, 242 (1955).

difference of the absorption cross sections for pions into
three-nucleon states. The pole term becomes just the
pole term in the dispersion relation. If the unphysical
region in the dispersion relation contributes little,
then the sum rule, the Goldberger-Treiman relation,
and the forward dispersion relation give essentially the
same result (in terms, for example, of a prediction of
the 7r-He'-H' coupling constant). We have seen, how-
ever, that the Goldberger- Treiman relation should be
rather poor for nuclei, and that the extrapolation of 6
is nontrivial (though it might remain fairly small a, t
q'=m '). It is not clear to us whether or not one can
use the WA sum rule to infer anything about the strength
of the pole term (or terms) in the forward dispersion
relation. This interesting question is outside the
boundaries of this paper, however.

APPENDIX

In this appendix we consider the approximation in
Eq. (19) for T. It is necessary for simplicity to study
a two-body problem in the absence of tractable three-
body models in our problem. We replace T by

4skI(k q) = d'r Cn(r)e's'C~„. (r). (A1)

Then the fictitious 6 in this model is proportional to

(A2)

r,—1~&(r) r—1(n/2s. )ltse ar—
4'~=r 'us(r) =r '(2/vr)'" sin(kr+bs)

tan(8s) = —k/n.

The exact results are

n'j'- 2 q'
+O(q')

3 (k'+n')'"

Q +0 (tl') .
144o,4

where we might choose to think of this as the dis-
integration term for a particle with l= J=-', bound to
another particle with I=J=O via a, simple (soluble)
potential. Since the bound-state wave function C~ is
orthogonal to Ct. (r), and since we are interested in
small

~ q ~

= e = binding energy, we may make an ex-
pansion in I of exp(~q r), the lowest term of which is
O(e/n) and the next 0(e'/n'). Consider Eq. (A1) for a
zero-range potential with pure 5-wave scattering and a
bound state, where
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The approximation (19) corresponds here to 60
——0 and

I I I I I I I I
I

I ~ ~ I ~ \ ~ ~ I I ~ I ~ I ~ I
I

I I ~ I I

1/2 -q2 (3~2 k2)
+O(q'),

vr 3 (n'+k2)'

Japx = d &
(
Io,px (Iapx) q=o) [

6q4
=1 2J.-
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O.OI—

O.OOI—

—EXACT---- APPROXIMATION

A more realistic example is a finite-range square well,
where the leading term in I can be 0(e/n). Here

I

1,0
I

2.0

ARBITRARY UNITS k ~

I

3.0

I.„(k,q) =k '3 cos(8k, ,)e'" FIG. 4. Exact and approximate integrands leading to 6 in the
two-particle square-well model discussed in the Appendix.

&& d ~ q'a(r)r +&(&~)J&(p) ~ (A3) too involved to quote (see Fig. 4) but the numerical
results for J are

since the leading term of the expansion of e''l' can
combine with the p-wave scattering term. Note that
the approximation is reasonable, since the linear de-
pendence on r of the first moment of e'q' minimizes the
contribution from small r where the potential strongly
modifies the scattered wave. We choose for the numer-
ical example a (deuteron) square well (a single bound
state at —2.225 MeV) with a well depth of 38.5 MeV
and a radius of 1.93 F. The approximate integral I„~
is simply obtained by replacing I& by the unscattered-
wave Bessel function j~. The resulting expressions are

~.*(q)= (93F')q'+o(q'),

J,,„(q)= (120F')q'=1.29J, .

We expect the approximation to be better for the
higher moments but a comparison of the q4 term in the
zero-range approximation wraith the corresponding q'
term indicates that it probably does not increase in
accuracy very rapidly. AII we require is the 30/o
accuracy of the model, since the 6 calculated is very
small indeed.


