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A complete discussion of the classical theory of high-intensity Thomson scattering by free electrons is
presented. Neglecting the radiation reaction, the equations of motion for an electron in an arbitrarily
intense, elliptically polarized, plane electromagnetic wave can be solved exactly. From the solutions for
the electron motion, the radiated power, momentum, and harmonics are calculated in two special Lorentz
frames: the laboratory frame and the frame in which the electron is on the average at rest. The diQerence
between the radiated power measured by an observer and that emitted by the electron is discussed for
each frame. A sum rule for the radiated harmonics is derived. The limitation due to the neglect of radiation
reaction is considered. Finally, the high- and low-intensity behavior of the spectrum and angular distribution
of the radiation is analyzed in both frames,

l. INTRODUCTION

+ ~URING the last ten years, the problem of the inter-
action of free electrons with intense electromag-

netic fields has received considerable attention. The
reason for this interest has been the development of
high-power optical lasers capable of producing radiation
fields whose power 'densities are many orders of rnag-
nitude greater than those possible with any other de-
vice. Thus the possibility naturally arises of the exist-
ence of effects that occur at large field intensities but
at low photon energies. We refer the reader to a recent
excellent review article by Eberly' for background and
for a complete list of references. It should be borne in
mind that not a single one of these effects can be said
to have been unambiguously observed —indeed, most
of these experiments have not yet been attempted.

In this paper, we present a complete discussion of the
classical theory of high-intensity Thomson scattering
from free electrons and the associated effects of har-
monic production and intensity-dependent frequency
shifts. While there have been several papers on this
subject in the literature, none have presented detailed
calculations as to what can be observed in the laboratory.
The classical calculations' have been carried out (in
perturbation theory) in the frame in which the electron
is on the average at rest (the R frame). The quantum-
mechanical calculations, expecially the one of Brown
and Kibble, ' while performed exactly, refer to the radi-
ation emitted by the electron in the laboratory frame
(the L, frame). The radiation emitted by the electron
in the I.frame is not the same as the radiation seen by
an observer in the I.frame. The difIerence is due to the
net motion of the average center of mass of the electron
with respect to the observer. The distinction between
the electron's point of view (retarded time) and the
observer's is rather subtle and has not been suKciently
discussed in the literature in connection with this

~ J. H. Eberly, Progress in Optics, edited by E. Wolf (North-
Holland, Amsterdam, 1969), Vol. 7.

2 Vachaspati, Phys. Rev. 128, 664 (1962); 130, 2598 (E)
I'1963).
~'L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705
(1964).

problem. We might mention that the classical and quan-
turn-mechanical treatments of this problem have been
shown to be equivalent for high intensities and are
reviewed in an article by Kibble. '

As a preliminary to the problem, let us recall what is
meant by high-intensity electromagnetic radiation. In
the usual classical treatment of Thomson scattering, 5

the electron is assumed to be set in motion by the
electric force eE and the radiation produced by the
subsequent motion is calculated by the nonrelativistic
Larmor radiation formula. At high intensities, however,
the full force eE+(e/c) (v xB) must be used to cal-
culate the electron motion. The motion then becomes
a nonlinear function of the driving field in addition to
becoming relativistic. The problem therefore becomes
vastly more complicated. The parameter characterizing
this high-intensity region will be called q', and is de-
fined by

q' = 2es(A'(t) )/ns'c' = 2Irs)'/7rnzc'.

The first expression is in terms of the square of the
vector potential and the second in terms of the intensity
(measured in W/cm'). The classical electron radius
is ro, the wavelength of the radiation is 'A, c is the ve-
locity of light, and e and ns are the electron charge and
mass, respectively. To get a feeling for the magnitude
of q' and the intensities involved, we list these quantities
for several typical electromagnetic-field-producing de-
vices in Table I. The high-intensity eGects are de6ned
as those for which q' is at least of order unity. We see
from Table I that the high-intensity region can be
entered if diffraction-limited focussing can be ap-
proached. The held of high-intensity laser development
is undergoing rapid expansion and there seems no
reason why values of q' several orders of magnitude
greater than those shown here could not become avail-
able.

The plan of the paper is as follows. In Sec. II we dis-
cuss the classical motion of an electron in an ellipti-
cally polarized electromagnetic wave. The wave is as-

4T. W. B. Kibble, in Carghse Lectures in Physics, edited by
.M. Levy (Gordon and Breach, New York, 1968), p. 299.' J. D, Jackson, Classical Electrodynamics (Wiley, New York,
1962).
2738



CLASSICAL THEORY OF SCATTERING 8Y FREE ELECTRONS 2739

sumed to be a pulse in the vector potential containing
a large number of optical cycles. We then specialize the
solution to two cases: motion in the R frame and motion
in the I. frame. Neglecting the radiation reaction, the
electron motion can be solved exactly for arbitrary in-
cident 6eld intensity.

In Sec. III we discuss the radiation problem based on
the solutions for the electron motion in the two frames
of reference. In particular, we calculate the harmonic
production as seen by observers in both frames and
how they are related, and we show how the intensity-
dependent frequency shift comes about. The relation
between the power radiated by the electron and the
power observed in each frame is stressed, . The section
closes with an estimate of the radiation reaction and
the conditions under which it may be neglected in the
equations of motion.

Section IV is devoted to a detailed analysis of the
results of Sec. III. We present a discussion of the an-
gular distribution of the power in each harmonic, the
distribution of harmonics, and the total power observed
in the I. frame. These results are presented for both
high and low intensities in the case of incident circular
polarization, and for low intensities in the case of linear
polarization. Some exact results, valid for arbitrary el-
liptically polarized incident radiation, are pointed opt.

In the Sec. V we consider the limitations of our work
due to quantum-mechanical and other effects.

II. ELECTRON EQUATIONS OF MOTION

We want to consider the motion of an electron, ini-
tially at rest at the origin, under the action of a laser

beam incident upon it. The incident beam will be as-
sumed to be transverse, plane, and arbitrarily ellipti-
cally polarized, and to be characterized by a wave vector
k with frequency co =c

~

k
~

= ck. In order that the initial
conditions be realistically included, the plane wave will
be multiplied by a pulse-shape factor, so that the vector
potential is written

where
A(r, 1) =A(g) P(rl),

g=cot —k r

(2 1)

(2 2)

is the I.orentz-invariant phase. We will assume that
A(rl) is periodic in rl, and P(rl), the pulse-shape fac-
tor, is zero before and after the electron interaction
withe~the, laser"beam. Thus, P(&~) =0 and P, =
1 P(0) .For mathematical convenience, we will further
assume that P(rl) is square integrable.

If we neglect the radiative reaction effects, the fully
relativistic equation of motion for the electron in
the plane-wave 6eld may be solved exactly. The
Hamilton-Jacobi equation for this problem is

—(1/c') LOS(r, 1)/W)'+m'c'= 0, (2.3)

where S(r, t) is the Hamilton principal function. We
look for a solution in the standard form

S(r, t) =n r+pct+4 (rl), (2.4)

where n and. p are constants determined by the bound-
ary conditions and C(rl) is a function determined by
(2.3) . This function is easily found to be

~(n) =l(~ k+p&) '
L

'—p'+~'~' —2(%)rt.A(n)P(~)+(e'/~')~'(n)P'(v)]de
QQ

(2.5)

The equation for the motion is obtained by differentiating the principal function with respect to the constants
0.'and equating this to the initial coordinate:

V S=ro=r(rl)+
'QQ'17Q

(2.6)

o n (e/c) A(—g) P(g) o n' —P'+m'c' —2 (e/c) O.'A(rl) P (rl) + (e'/c') A'(rl) P'(rl)
dq —2k d'gp

n k+pk (20. k+2pk) s

and, with r—ro given by this equation,

cto=as/ap= ct (k/&) (r—ro) —& —'(rl —no), (2.7)

which just reflects the definition (2.2).
The canonical momenta and energy are given by diQerentiating the principal function with respect to the

coordinates:

P„„=p+(%)A=vS
~'—p'+~'" —2(%)~ A(n) P (n)+ (e'/~') ~'(n) P'(n)

2(n.k+Pk)
(2.8)

L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, 2nd ed. (Addison-Wesley, Reading, Mass. , 1962).
7 J. J. Sanderson, Phys. Letters 18, 114 (1965).
o J. H. Eberly and A. Sleeper, Phys. Rev. 176, 1570 (1968).
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TABLE I. Characteristics of some typical electromagnetic-6eld-producing devices.

Device
Wavelength

(cm)
Power or

energy

Pulse
length

Diffraction-
focused

intensity
(W/cm') q8

Microwave tube

He-Ne laser

High-brightness Nd

Q-switched glass laser

system

6.3X10 5

10 '

104 I
50 mJ/sec

60 J

10 2sec

CW

30 nsec

105

107

10"

'7X10-5

3X10 "
0.14

High-brightness Nd

mode-locked glass laser

system

80 J 3 psec 4X10'i 3000

and, in terms of this result, The equation of motion (2.6) now becomes

E= BS/Bt=——c[p+ (k/k) ~ (n —P,.„)j. (2.9) k«(it)

The complete solutions are obtained by imposing
boundary conditions on the electron. There are two
conimon boundary conditions treated in the literature:
the lab frame (quantities denoted by subscript L) in
which the electron is initially at rest, and the "on the
average at rest" or center-of-momentum frame (sub-
script E), in which the electron undergoes periodic
motion about a fixed center. We discuss these frames
in turn.

A. Lab Frame

The electron is sitting at the origin before the laser
beam is turned on. Thus, at t= —~, P, „=0, r=0,
and E=mc'. Evaluating (2.8) at rt= —0c therefore
yields

nz= 2kz[(nz' -Pz'+m—'c')/(nz kz+Pzkz) j, (2.10)

which is consistent with re ——0 in (2.6). Noting that
0.1, xkL, =O, we see that o.J„has no transverse part and
the longitudinal part is given by

[nz (kz/kz) +pz)'= m'c'. (2.11)

nz (kz/kz) 1pz ———mc. (2.12)

Thus (2.12) and the fact that n is longitudinal are
the only constraints on these constants. This arbitrari-
ness can be traced to the arbitrary way in which the
principal function can be separated into the form
(2.4). Since nz, and pz, always enter in the combination
given in (2.12), we can, without loss of generality,
choose nz, =0 and pz, = —mc to simplify the algebra.

The initial energy condition applied to (2.9) then
6xes the sign so that

eA (q') P (g')
mc'

1 kz c~A2(g')P~(rt')

2 kl, m2c4

(2.13)

The form of r(&) looks deceptively simple —the lab-
frame time t is in fact hidden in (2.13) through the de-
fining equation rt=&azt kz, r, so th—at the orbit r(t)
may be quite complicated. In particular, although the
motion will contain no higher than second harmonic
oscillations in terms of g, r(t) may contain al/ multiples
Of Mg.

The momentum and energy are obtained by using
the nz, and pz, in (2.8) and (2.9), yielding

e k«2A2 („)P2(„)
p(n) = ——A(n) P(~)+ (2.14)

c 2kl. mc'

E(g) =mc'[1+ e'A'(g) P'(it) /2m'c4$. (2.15)

Equations (2.13)—(2.15) now provide a complete
solution to the electron motion problem in the lab frame.
As the electromagnetic wave overlaps the electron, the
electron acquires a harmonic motion transverse to the
beam direction due to the first term in (2.14), and an
acceleration along the beam direction due to the growth
of P'(q) multiplying the zero-frequency part of A'(g).
There will also be a longitudinal harmonic due to the 2q

part of A'(g) which, as we shall see, vanishes in the
particular case of circular polarization. After the P(it)
factor reaches its constant value in the center of the
pulse, the electron is undergoing various harmonic mo-
tions about a center that itself is drifting with respect
to the lab. As P(rt) turns off, the harmonic motion dies
down and the center decelerates until at g=+ ~, cor-
responding to t=+ ~, the pulse has passed and the



CLASSICAL THEORY OF SC'ATTERING B Y FREE ELECTRONS

(P(n) &
—(»/c') &E(~) &=0,

which is solved to become

(2.1'I)

vD ——(kz/kz) I q'8'(q) c/I 4+q'8'(g) ]I . (2.18)

We can follow the buildup and decline of VD with
the onset and retreat of the pulse explicitly from (2.18)
in accordance with our previous discussion. It is easy
to see that an electron at rest entering the leading edge
of the laser pulse and picking up the velocity VD takes
a time (1—z)D/c) 'T to have the trailing edge of the
pulse catch up to it and therefore it travels a distance
~~q'Tc in the lab. This motion of the center of momentum
was erst noted by Brown and Kibble' and most recently
by Eberly and Sleeper. ' Finally we note from (2.15)
that the increased velocity of the center of momentum
causes the electron to gain mass. ' When the electron
is at the peak of the pulse, (E')—(p')c'=—nz*'c', so the
new mass is (m*)'=m'+Am' where Dm'= 'q'm'—

B.Average Rest Frame

We can most easily discuss the oscillatory motion
of the electron by working in the frame in which the
average momentum is zero (the E frame) . This can be
done by imposing diferent boundary conditions on
(2.6) and (2.9) and solving for a new set of oz's and
p's. To be specific, we consider a long pulse that has
been turned on in the past and afterward remains con-
stant at P(q) = 1.During the pulse buildup, the velocity
of the E frame with respect to the lab increases until
it reaches e~.

' T. W. B. Kibble, Phys. Rev. 138, 8740 (1965).

electron is again at rest in the laboratory. It is now dis-
placed from its original position by a distance r(00) in
the beam direction. This net displacement is pulse shape
dependent but is easily calculated. For example, using
a normalized Gaussian pulse of width T))col, ', the net
displacement is

r( ~ ) = (kz/4hz) I
e'(A'(q) &/m'c'](-', ~) "'Tc~~q'Tc,

(2 16)

where terms of order exp( —1/T'o&z') have been neg-
lected, and where g' is the previously defined intensity
parameter.

To discuss the average motion along the beam direc-
tion, we defin a drift velocity (vz&) as the velocity of
the frame in which the average momentum is zero. The
time average is to be taken over a (laboratory) time
that is long compared to the optical period col. ' but
short compared to the pulse length T (since even pico-
second pulses contain about 1000 optical cycles, this is
easy to do at optical frequencies). Since p and E in
(2.14) and (2.15) form a four-vector and q is invariant
under Lorentz transformation, va is the velocity of the
Lorentz transformation that transforms the average
three-momentum to zero:

&grist (it) =— A(g') dg'

kg e'
+ „, J L~'(I ) &&'i'~)—)j n d(22'&)

The integrals have been left indefinite since the initial
value is of no consequence for the present discussion.

The motion is seen to be purely oscillatory with the
transverse motion taking place at the frequency of A()1)
and the longitudinal motion at twice this frequency.
The zero-frequency part of A2()t) has been subtracted
out in (2.21) and rid()t) is purely oscillatory.

The position, time, and frequency in the R frame
are, of course, related to the corresponding quantities
in the lab frame by a Lorentz transformation. For
example, the frequency of the laser beam in the E frame
is given by the Doppler shift of the lab frame frequency
(at the peak of the pulse):

(gz2 =~~'L1/ e2(A2 ()t) &/m2c4] (2.22)

C. Invariants

We will need some quantities that are the same in
the L and E frames —these are Lorentz invariants of
the problem. We first consider the electron proper time
and then the electron four-velocity and acceleration.

The phase g is invariant. We will show that the
proper time interval dr of the electron, also an in-
variant, is proportional to an interval d&. In any arbi-
trary frame, we have, from the definition (2.2),

de= P~(dt/dr) —k. (dr/dr) ]dr
= (1/mc) (co(E/c) ck p]dr. —

Now substituting the general expressions (2.8) and
(2.9) for the energy and momentum gives

mcdg = —
I p+ (k/k) oz]&udr, (2.23)

and we see that the form of the proportionality factor
depends on the frame we are in, although the numerical
value is the same for all frames.

For the specific case of the L and E frame, we find

d~ =~zdr =~+ (1+zq2) i&2dr (2.24)

which simply reflects the Doppler shift (2.22).

Applying the R-frame boundary conditions that
(pic&=0 in (2.8) yields

njp pg—'pm'c'+ (e'/c') (A'(7J) ) (2.19)
crt ka+ pa4

so that 0,'& again is longitudinal, with only the com-
bination

k ) e'".oz—~+P~ I= —m'"+ —&A'(g) ) I

= m*—c (2.20)
king j c' j

being determined. The electron motion in the R frame
becomes
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We can now easily calculate the various four-vectors
by differentiating the coordinates with respect to r, or,
equivalently, q. For example, the square of the four-
acceleration, an invariant that proves useful in the dis-
cussion of the radiation, can be invariantly expressed as

a a& = (d'r /dr') (d'r&/drI)

~ n+kPI' f e dA(g)~'

kIrIc 1 &mc' dg

where (2.6), (2.7), and (2.24) have been used. This
expression can be evaluated in terms of the quantities
of any frame by using the appropriate n and P.

D. Examples

Consider an elliptically polarized plane wave travel-
ing along the +s direction:

A(g) =AOLe, 8 cosg+ e„(1 5') '~' —sing), (2.26)

where ~, and e„are the transverse unit vectors and the
constant parameter 8 characterizes the degree of elliptic
polarization. Linear polarization corresponds to 6 =0,
~1 and circular polarization to 8= ~2 '~'. In terms of
the Ao defined by (2.26), the intensity parameter be-
comes q' = e'Ao'/III'c'.

In the lab frame, we may insert (2.26) directly into
(2.6) with P(g) = 1 and obtain

kz,r =re, (—q8 sing) +e„Lg(1—5') 'I' cosg)

+—'q'e, $g+ 2 (28'—1) sin2g). (2.27)

Then, using the de6nition of g, the s motion is written

kreis vj)kgb+ (vz/2c) (28I—1) sin2g, (2.28)

and we see explicitly that the electron drifts with ve-
locity vz and has second harmonic oscillations (in g)
in the s direction. Note that in the case of circular
polarization, the oscillating s motion vanishes so that
the resulting orbit is helical.

We can perform the same operations in the E. frame
and find'

k~r~ ———2aL8, 8 sing —e„(1—8I)"' cosg)

+e,—',a'(2P —1) sin2g, (2.29)

where the motion in R frame is characterized by the
parameter

a'= q'(4+2'') —'. (2.30)

For linearly polarized laser light, 8=1, the orbit in
the R frame can be found by eliminating g from (2.29):

16k Is&= k@&g&(4a&—k~IgI) (2.31)

of the orbit and slowest on the round part. As a' gets
small, the orbit shrinks into a one-dimensional harmonic
oscillator common in low-intensity treatments of
Thomson scattering.

For circular polarization in the R frame, the orbit is
a circle of radius V2ak& ' in the xy plane and the elec-
tron orbits with constant velocity V2 ac.

Finally, we conclude this section by noting that we
can no longer apply the superposition principle to the
electron motion. We cannot describe the linear polari-
zation case, say, as a linear combination of the right
and left circularly polarized cases, since there would
be no way of generating any oscillatory s motion by

1.4—

1.2—

1.0—

,8-

.6-

kx o-

~2

-6-

-10-

-1.2-

The orbit is a "figure eight" in the xs plane and is shown
in Fig. 1 for various 6eld intensities 0&a &0.5. The
velocity as a function of orbit position is

—14-
I I

-.20 - IO
I I I I I I

0 .10 .20

v~I =c'P1 —4(1—2a') (2+2a' —k~Ix') ') (2.32)

so that the electron moves fastest on the straight part
Fio. 1. Orbital motion of the electron in the R frame for incident

linearly polarized light for various values of the intensity.
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circularly polarized light alone. The failure of super-
position is not surprising because of the nonlinearity
of the problem —we have essentially solved for the elec-
tron motion under the complete nonlinear

e[E+ (v/c) x Bj
force.

III. RADIATION

We now turn to the radiation problem associated
with the electron motion discussed in the Sec. II. As is
well known, there are two different, but equivalent,
ways of looking at the radiation problem. First, one
can compute the electromagnetic fields radiated by the
source and hence find 'the energy and momentum Sow
at a space-time point (x, t) a large distance from the
source. Second, one can calculate the energy-momen-
tum loss rate of the source directly in terms of its ve-
locity and acceleration without any reference to the
radiated fields. If the source remains on the average
at rest with respect to an observer, the rate of energy
loss of the source equals the power measured by the
observer. On the other hand, if there is a net average
motion between the observer and the source, the re-
lationship between the emitted power and the observed
power is more subtle. Both situations will arise in the
next few sections.

In Secs. III A and III B we discuss the production
and angular distribution of harmonics in the R and I.
frame, respectively. Obviously, this requires the radi-
ation-6eld point of view. In Sec. III C we calculate the
energy-momentum loss rate of the charge directly and
compare with the results of Secs. III A and III B.
Section III D discusses the radiation reaction.

A. Harmonic Production in R Frame

The general formula for the radiation 6elds generated
by an arbitrary electron motion are easily written down.
However, since we are primarily interested in the scat-
tered power, it is convenient to work directly with the
radiation intensity. Furthermore, since the electron
motion is harmonic in the R frame, we take as our
starting point the expression for the average power per
unit solid angle radiated into the mth harmonic (final
polarization not measured) ':

X(1,2,3)

with

0
(cosg, sing, cos2g)

&& exp[im(p(g) jdg, (3.6)

q (g) =g+a'(2l)' —1) sin'28 sin2g

+2a[8 sing cos(r —(1—(5') 't' cosg cosg (3.7)

and (see Fig. 2)

cosa=n e,=sin0 cosy,

cosP=n e„=sino sin(p,

cos0=n e,.

(3.8a)

(3.8b)

(3.8c)

In general, xp is a rather complicated function of
a, 0, q, and 8, and is not expressible in simple form.
Making repeated use of the generating function for a
Bessel function"

exp(ip cosf) = P (i)"exp(in/) J„(p), (3.9)n=
one can express the integrand in (3.6) as a triple sum
over Bessel functions. The integral over g then collapses
the triple sum to a double sum, with the result

Since our equations of motion are expressed in terms
of the parameter g, it is convenient to change the time
variable to q, i.e.,

e)gt=g+k~ rn(g). (3 2)

We then define a vector J representing the integral

dpi(g)
k~

0

&( exp fi[g+k& r&(g) —k&n r&(g)]Idg, (3.3)
so that

dp~(~)/did, = (e'cdirt'm'/87r'c) [I J I'
I
n' J I'j (3 4)

If the general solution for kiter(g), (2.29), in terms of its
x-y-s components is substituted into the above integral,
the components of the integral J become

Jz = 2u~vxlm) (3.5a)

J — 2a(1 (2) 1/2~x m (3.5b)

Z.=a'(2e —1)~x,-, (3.5c)
where

dna(~)/dQ~ = [e'(ei,'m'/(2e. c) 'j
2m/ca~ dr& . f n

&& n x n x exp ime)I(
I

t —rii(t) dt-
dt & c

(3 1)

Xi[ma'(2P —1) sin'(-'0) $

The vector n is a unit vector in the direction of observa-
tion and rir(t) is the electron coordinate in the average
rest frame. The Fourier transform in (3.1) is with re-
spect to the observer's time in the R frame; however,
the integral is expressed in terms of the retarded time
of the source. -. This"accountszfor the (n/c) rii in/the
exponential. ~& is the frequency of the incident Geld.

G. N. Watson, 2 Treatise on the Theory of Besse/ Functions,
2nd ed. (Cambridge U.P., Cambridge, England, 1965).
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n ( SCATTERED BEAM DIRECTION)

ez ( NCIDENT BE M DIRECT ON)

FIG. 2. Angular geometry. 8 is the scattering angle of the scattered
light.

where sr ——2are(1 —0s)'Is cosP and ss=2am8 cosa. One
now applies the Graf addition theorem" to the sum
over e,

Z (—i)"J-(&)J-+n(»)

=P(st+iss)/( sr sss)—)&I'J ((sr'+zs') 'I') (3.11)

and this reduces y( ~ to a single sum over l. The final re-
sult is

xi™

g J~Lmas(20s —1) sins(-'0) j
&,.-)

'

~ ~

~

j +'+"&~n+r(p) + i + ' ~~ & (P) )
X if"+"+'J„—+,(+r (p)+if"+" 'J„+s( r (p—), (3.12)

~ ~

~

(a)+ f " '~~ i (I))-
where

f= —i(st —iss) /(sr+ iss)

= —(i/p') (2am sin0)'L(1 —0s)'I' siny —i8 cosy7s (3.13)

RIld

p' =s '+ ss' ——(2am sin0) '(0' cos'2y+ sin'y) . (3.14)

Substituting the expressions for J into (3.4) gives the
power per unit solid angle radiated into the nth har-
monic in terms of the previously given p's:

dP &"&/de = $A ((ss') e'/(1+-'q') $

XLas
) x," )s+ (1—0')

J x,- [s

gras(20s —])s
[

xs~ )s

—
~

8 cosy sin0x, "

+ (1—0')'~' siny sing xp
—-', a cos0 (20s—1)xs" i'$, (3.15)

where A (ce~s) = es~~'qs/Ssc. We note that in the limit

."W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas
and Theorems for the Special Functions of Mathematical I'hysics
(Springer-Verlag, New York, 1966).

qs~G, (3.15) reduces to

dP~&"&/dQ~ A——(res)8 rLbs sinsn+ (1—bs) sin'Pg, (3.16)

which is the usual classical Thomson scattering result.
Our general result (3.15) therefore constitutes the in-
tensity corrections to ordinary Thomson scattering in
the R frame and is exact to all orders of q', the intensity
parameter of the incident laser beam.

Because the expressions (3.12) contain infinite sums,
the general result for eth harmonic scattering cannot
usually be expressed in a tractable form. Only for the
case of a circularly polarized incident laser beam does
the sum in (3.12) collapse and in this case to a single
Bessel function. Thus, for incident circular polarization,
the result becomes"

dP~ &"&/dojr 2''A (c——o~s) /(1+ —',qs)

Xf (cot'0/2a') J '(2'~'am sin0)

+J "(2'I'am sin0) j (3.17)

which corresponds to synchrotron radiation from an
electron in circular motion with radius V2 ah~ ' and
velocity V2 ac.

It is important to realize that even though the elec-
tron motion is periodic in the proper time with fre-
quency csz (0s= s) or cs& and 2&os (Is=1, G), the radi-
ation contains all the harmonics. This is due to both the
retarded time factor n r in the exponent of (3.1) and
the relation between the retarded time and the proper
time.

The closed form expression (3.17) for incident circu-
lar polarization can be summed over e and integrated
over solid angles to give the total power radiated in the
R frame:

dI'g&"~
dQ& =8 cop' 1 2q' 3.18

de
where B(o&s) =esa&sqs/3c. This result provides us with
a convenient sum rule for the harmonics. While for
arbitrary incident polarization this summation and
integration cannot be carried out explicitly, we will de-
rive an expression for the total power radiated in the
R frame. Equation (3.18) will then be a special case of
this more general result.

B. Harmonic Production in L Frame

In the Sec. III A we calculated the angular distribu-
tion of the harmonics radiated in the average rest frame
E. In the L frame, the motion of the electron is sot
periodic and hence one does not have pure harmonic
generation. We could again calculate the radiation from
the fields generated by the motion in the L frame, but
since the motion in the L and R frames differ only by
a drift velocity in the incident beam direction, we can
more simply I.orentz-transform the E-frame results
into the L frame.

"J.Hanus and J. Ernest, Phys. Letters 16, 262 (1965).
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Consider the expression for the total average power
observed in a solid-angle element dQ~ in the R frame:

dPz/= g (de(")/dna)dQ~.
n=l

(3.19)

one 6nds
pD

—0Dc 1—q2 (4+q2)
—1 (3.21)

yD (1 P 2) —1/2 (1+2q2) (1+ tq2) —1/2 (3 22)

The frequency seen at the angle 0L, in the L frame

satisfies

o)z,' ——&0/2'(1+-'2q') [1+-',q' sin'(-'28z) j ', (3.23)

wh, ereas the relation between the incident frequencies
(8=0) is

~ 0—~ 0(1+1qs)1/2 (3.24)

We must now distinguish the frequency of the incident
radiation from the scattered frequency in each frame.
We will only use the notation oP for the incident fre-
quency when confusion is likely to arise.

Angles in the two frames are related by

Associated with this energy per unit time is a momen-
tum per unit time given by c 'dP&. But we know that
energy and momentum per unit proper time are the
components of a four-vector. Therefore, to transform
(3.19) into the 1.frame, we first Lorentz-transform the
energy-momentum per proper time interval and then
correct for the time intervals.

The L frame moves uniformly with a drift velocity
e~ in the negative s direction with respect to the R
frame. Hence the Lorentz transformation requires that

dPL —rDdP/2(1+pD cos8B)de/dtz. (3.20)

We now evaluate the right-hand side of (3.20) in
terms of the L-frame quantities. With

dtz/dt/2 yD (1——Pz) co—s8z,) . (3.31)

This distinction between the transformation for an
observer's time interval and the corresponding elec-
tron's retarded time interval was recently pointed out
by Ginzburg' in connection with interpreting syn-
chrotron radiation in astrophysical problems.

The Anal expression for the average power per unit
solid angle observed in the L frame becomes

dPz (1+-',q') ' " dPz/'")

diaz, [1+-',q'sin2(28z)$'„=, do/2

where all quantities inside dPz2(~)/dQ~ are to be ex-
pressed in terms of their L-frame values.

Similarly, if we calculate the average power per unit
solid angle radiated by the electron in terms of its own
retarded time in the L frame we do not correct for re-
tardation but use dhz,

' instead of dtz in (3.20). This
yields

dPI, '

dQI,

(1y &q2) 2 (1+2q2) 1 ao g—P (m)

(3.32b)
[1+-',q' sin2(-'28z) j' „, dQ/2

The frequency spectrum of the scattered radiation
in the L frame does not consist of simple multiples of
the frequency of the incident radiation. From (3.23),
(3.24), and the E-frame result 0)/2 ——n&0~0 we obtain

while in the I frame there is a contribution to (rz, )
from the uniform drift motion to give

6hz = LUz, '(1—PD cos8z) . (3.29)

On the other hand, the time intervals associated with
the electron motion (retarded times) in different
frames are related by the Lorentz time dilation

(3.30)

so that the effective time interval ratio for two observers

in the two frames becomes

cos8/2= (cos8z —PD) (1—PD cos8z) ', (3.25) &d&(n) —220)&0[1+1q2 sin2(18&) j—1 (3.33)

so that the solid-angle ratio becomes

dQ/2/dQz= (1+12q ) [1+12q sin (128&)j . (3.26)

The evaluation of dt~/dhz is more subtle. The hh

refers to the observer's time interval, which is related
to the electron's retarded time interval dt' through

At = h2t' (1/c)n hr(t—'), (3.27)

with all times measured in the same frame. r(t') is
known from the equations of the electron motion in a
given frame and n is a unit vector in the direction of
the observer from the origin of the r coordinate system.
Since we are dealing with optical frequencies, we can
only measure energies over a time interval containing
many optical cycles—we must therefore average. In
the R frame (r/2(t') )=0, so that

which for m=1 is commonly called the intensity-de-
pendent frequency shift. The meaning of eth harmonic
in connection with the I.-frame quantity dPz, &"'/diaz,

then must be understood in the sense of (3.33). For
q'~1 any frequency ~&~1,' is radiated —we only have
to look at the appropriate angle. At large q', however,
the angular distribution in the L frame is sharply for-
ward peaked so that only a small range of 01, contributes
to the angular distribution. We will discuss this in more
detail in Sec. IV.

The relation (3.32a) between the average power
observed in the L and E frames may be interpreted in a
very physical way. Consider the number of photons
observed with frequency cu& in a solid angle dQL, and a
time interval At&. Clearly this same number of photons

htg = Et'', (3.28)
"U. L. Ginzburg, V. N. Sazonov, and S. I. Syrovatskii, Usp.

Fiz. Nauk 94, 63 (1968) (Soviet Phys. Usp. 11, 34 (1968)g.
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J.-I'~sq (3.35c)

where Pa B(~1,') = (1+———',q') B(~~') is given in (3.18) .
The reasons for the difference between I'I, and I'~ will

be discussed in more detail in Sec. IV.

C. Power Radiated by Electron

Up to now we have discussed the radiation problem
from the electromagnetic 6eld point of view and have
calculated the power received by observers in different
frames of reference. Let us now consider the source
point of view and calculate the energy-momentum loss
of the electron directly from its acceleration and ve-
locity.

We begin the discussion with the energy-momentum
four-vector rate at which radiation is leaving the
charge'4

dIII'/dr = ,'(e'/c4) age" (~—/c). (3.36)

The p, =0 component refers to the energy and the
@=1, 2, 3 components to the momentum vector. a&

and v& are the acceleration and velocity four-vectors
of the electron:

with

vl" =dxl'/dr = (yc, yv (~) ),

'Vp'V"= —'y (C V ) = C

(3.37)

(3.38)

al' =de~/dr. (3.39)

We have already calculated the invariant u&a„ from
the equations of motion. With the vector potential

'4 P. Rohrlich, Clussicul Churged I'urticles (Addison-Wesley,
Reading, Mass. , 1965).

is observed in the R frame with frequency co+ in the
solid angle dOg and time interval At~. Hence

X= (S~,/a~, ) (dP, /dn, ) dn,

= (Atgg/5(o~) (de/de) de, (3.34)

which is equivalent to (3.32a). The relation between
the power radiated and the power and number cross
sections is given in the Appendix.

For the case of incident circular, polarization, the
solid angle integral over (3.32a) can be performed by
transforming the integral back into E-frame variables.
The result for the total power observed in the laboratory
1s

Pg ——P~ I (1+ ~q') '(1+—'q') '+ 6'4 (1+~q2) —'[(23/4) q4

+—'q'+ Sq'+3 —(3v2/q) (1+-'q') 31'

&&(1+2q') l ((&l)q+(1+lq')"'nI
(3.35a)

and this reduces in the low- and high-q limits to

P&——Pp[1+ (7/80) q'], q'((1 (3.35b)

(2.26) substituted into (2.25), we And

a„a&= ,'c-'(&or, ') q'[1 —(28'—1) cos2q]. (3.40)

This then gives, for the instantaneous energy-momen-
tum loss per proper timbre interval of the electron evalu-
ated in an arbitrary frame of reference speci6ed by ~&,

dII&/dr=B(ul, ) [1—(28 —1) cos2g](v&/c ). (3.41)

The time component is related to the invariant in-
stantaneous energy emission rate

R=w„(dIII'/dr) = (c/y) (dII'/dr) =c(dII'/dt'). (3.42)

This energy loss rate is with respect to the charge's
retarded tim" we must still distinguish the observer's
time t from the electron's retarded time t'.

To obtain the average energy-momentum loss rate
of the electron, we must average the instantaneous
rates over times that are long compared to the periods
of the motion. Thus the total energy-momentum lost
by the charge along a world line containing many
periods of the motion is

(3.43)

d(~'/dr =y~ v~% = (1+——-'q') '~'[1+a'(2P —1)' cos2g]

(3.45)
and

dr~/cdr =y~ p~ (1+-,'q') '~'[———2ae. 8 cosy

+2ae„(1—8') 'I' sing+ a'e, (28'—1)' cos2q],

(3.46)

so that the average energy per unit time lost by the
electron becomes

chlI g'/htp' B((oz') [1+', q' ——Sq'(2P 1)']-(—3.47)—
and the momentum lost per unit time,

aIIa/at g' e.B((op') (q'/Sc) (2—S'———1)'. (3 48)

In the E frame there is no net average motion be-
tween observer and source. This results in equal-time
intervals for observer and source, as shown in (3.27)
and (3.28) . Therefore we can equate the average rate
of energy loss (3.47) with the total average observed
power in the E. frame given by the sum and solid-angle
integral over (3.15). Hence (3.47) furnishes us with
an exact sum rule for the harmonics even when the sum
and integral over (3.15) cannot be performed. For

&A gQp
II~(A) —II~(B) = d7.

gg d7

The average energy-momentum loss rate in a given
frame is then the value of the above integral in that
frame, divided by the electron's time interval corre-
sponding to the proper interval along the world line:

~ ~

~

~

DIP. . . '~ dII~= [f(rg) —t'(rs) ] ' dr. (3.44)dt'

We can now easily evaluate the average using (2.24)
and (2.29):
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circularly polarized incident laser radiation in the E.
frame, the identity between power loss of the electron
(3.47) and the power observed (3.18) is explicitly dem-
onstrated. We also note that the R-frame momentum
loss rate (3.42) is zero for incident circular polarization
(6'=-, ) which implies a symmetric angular distribution
of the radiated energy with respect to the 0=-',x plane.

In the L frame one again easily calculates (3.44).
From (2.24) and (2.27) we And

D. Radiation Reaction

ma" =F"+I'", (3.55)

Our equations of motion for the electron in an electro-
magnetic field have up to now neglected radiation re-
action effects. We will now estimate under what condi-
tions this neglect is justified. Our discussion is based on
the Lorentz-Dirac equation

dt's'/cdr =yr, =wro/c = 1+~~q'L1+ (2P—1) cos2g]
where

F~= (c/c) (a~A" a"A~—) v„, (3.56)

drr/cd' =yzPs, = qe, 6 c—osg —qe„(1—P) 't' sing

(3.49)
in terms of the vector potential and the four-velocity
(3.32), and

+e,—,'q'{ 1+(28'—1) cos2g]. (3.50)

The average rate of energy and momentum loss in the
laboratory frame then become, respectively,

AIIz, ' —',q'(28' —1)'c, =B(cog') 1—', (3.51)
1+4q

and

= e, '
L1—-', (2P—1)'] (3.52)

Atr,
' '

c 1+-;q'

In the L frame, the average energy loss rate (3.51) is
not equal to the total average power measured by an
observer. In (3.29) we found that the retarded time in-
terval is not equal to the observer's time interval, but
is related to it by ddI, ——LUr, (1—Pz cos01.). This implies
a relation between the emitted and observed power
of the form

~ ~ ~

~

f d Ellz ) dQz Ally
Pz c —— )c, . 3.53

kdQz Atz ) 1 Pn cos0z —Atz'

The energy loss into a given solid angle, when inte-
grated, satisfies

~IIO/At'= I { (d/dQ) (Allo/dd') ]dQ, (3.54)

and because there is a net forward momentum loss,
(3.52), the angular distribution in (3.54) is forward
peaked. This accounts for the inequality in (3.53) . The
fact that the observed power radiated is larger than
the energy loss rate of the source is explicitly demon-
strated for circular polarization, where both rates have
been calculated exactly { compare (3.35) with (3.51)
after setting P= —',].

The above situation must not be thought to violate
conservation of energy. Because of the net relative mo-
tion between electron and observer, the energy stored
in the region between the observer and the electron
continuously changes. When the electron comes toward
us, the stored energy decreases and the observer
measures the rate of energy emission from the source
plus the decrease of the stored field energy. "Because
of the forward peaking of the radiation, we always
observe more than the electron emits.

I'~ = -', (e'/c') (oz'

——'q'L1+ (28'—1)cos2g] —8q4L1 —(28'—1)' cos~2g]

qb cosg {1+—',q'Ll —(25'—1) cos2g] I

q(1—P) 'I' sing {1+-'q'L1 —(2P—1) cos2g])

——Sq'L1 —(25'—1)' cos'2g]

(3.58)

Similarly, the force due to the incident field becomes

F~=mccol, q

—(1—25') -'q sm2g

8 sing

—(1—P)"' cosg

—-', q(1—2P) sin2g

(3.59)

I'& = 32 (e'/c') f(da&/d~) —(1/c') aga"e&] (3 57)

Our previous discussion of the equations of motion cor-
responds to (3.55) without the I'&.

The Abraham radiation reaction four-vector F& con-
sists of two terms. We recognize the aiba"e& part as the
negative of (3.36), the energy-momentum four-vector
rate at which radiation is leaving the charge. Strictly
speaking, this by itself is the radiation reaction. The
da"/dr term, referred to as the Schott term, gives rise
to a nonlocality in time in the formal solution of (3.55) .
In the nonrelativistic limit of the theory, the daI'/dr
term reduces to the familiar da/dt damping force which
is derivable by considering the energy transfer from the
incident field to the scattered radiation. We note that
there have been many misconceptions about radiation
and radiation reaction which have only recently been
clarified '4

For our purposes, it suKces to calculate F& and re-
quire that its magnitude be small compared to that
of the driving force FI'. From (3.37)-(3.40) we easily
calculate the four-vector (expressed as a column
matrix)
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Clearly one cannot require that each component of F&

be less than the corresponding components of FI'. For
incident circular polarization P' and F' are zero but
not I' and I'. If we demand that the magnitude of the
nonzero components of IiI' be greater than any of the
components of F&, we obtain

ro/Xoz, &(1, q'( 1

roq'/Xoz((1, qo) 1

(3.60a)

(3.60b)

where ro is the classical electron radius and Apl, is the
laboratory wavelength of the incident field. The above
restriction must then be satis6ed if the radiation re-
action is to have a small e6ect on the electron motion.
It should be realized, however, that even if this effect
is small, it may, over a sufIiciently long time, induce a
significant alteration to the electron's motion. Such
radiation pressure corrections have been discussed by
Sanderson~ and Kibble. '

A. Circular Polarization

Next we consider in detail the low- and high-q' be-
havior of the I.-frame observed power for the specific
case of a circularly polarized incident beam. This case
is, as we have already noted, the only incident polariza-
tion for which the infinite sum over Bessel functions in

"T.W. B. Kibble, Phys. Letters 20, 627 (1966).

IV. LOW- AND HIGH-INTENSITY BEHAVIOR

We have seen in Sec. III that the power observed
in the laboratory frame is not the same as the power
lost by the electron in that frame, the difference being
due to the retardation eGect introduced by the net
motion of the electron's R frame with respect to the
laboratory. Since the observed power is the experi-
mentally important quantity, we will consider its be-
havior as a function of intensity and make specific low-
and high-q2 predictions.

Let us first note some exact results for arbitrary
polarization and arbitrary intensity for forward and
backward scattering.

In the forward direction, scattering takes place only
at the incident frequency, all harmonics higher than
e= 1 not contributing:

(dI'z&"&/diaz) (8= 0) =8,&A (o&zo) (4.1)

In the backward direction, scattering occurs only at the
odd harmonics (where n=2s+1):

(diaz"'/dDz) (8=or) =A (o&z') L(2s+ 1)'/(1+-'q') 'j
Xt (J,+J,+z)' —4',J,p&7. (4.2)

The arguments of all the Bessel functions appearing in
(4.2) are (2P—1) (2s+1)go. For circular polarization,
the expression in brackets becomes b, ,p, so that none of
the harmonics higher than e= 1 have either forward or
backward scattering.

(3.10) degenerates into a single Bessei function. Using
(3.17) and (3.32a), and expressing all angles in terms
of I.-frame angles, yields the explicit result for incident
circular polarization:

dI'z'"&/diaz A(o&—z—,') &
2&o'/1+-', q' sin'(-', 8) $'J

q' sin'8

(4.3a)
where

e = q sin8/V2L1+ oqo sin'(zo8) j. (4.3b)

If we expand the Bessel functions for low q', we And

the leading term

diaz(m& 4 (q2) n 1(&o2—)n

=A(o&zo) (sin'8)" '(1+ cos'8).
dn, 8-((~—1)!)

(4 4)

We see that the power observed at low q' is symmetric
with respect to the 0=90' plane and that, except for
n = 1, it vanishes in the forward and backward direc-
tion in accordance with the discussion following (4.2).

The integral over the solid angle in (4.4) can
be performed using the beta functions" B(x, y) =
1'(&)1'(X)/1'(&+X):

2 (sin'8)" '(1+cos'8)d(cos8) =B(o& r&)+B($, e).
0

(4.5)

The total observed low-q' eth harmonic power is there-
fore

3(~)'""(q')" '(~+1)
Pz,™=B(o&z') . (4.6)

2~—& (2~+ 1) !

We note that in the low-q' limit, the leading term in
I'I„'"' is identical to the leading term in the correspond-
ing result for the E. frame I'~&"), since the Lorentz trans-
formation between frames is itself at least of order q'.

We can expand the observed power beyond the lead-
ing term and in so doing test the prediction (3.35b)
for the total observed I.-frame power to order q'. The
results will also provide specific experimental predic-
tions for the low-intensity region. Thus, to order q', we
have radiation only at the first three harmonics:

dI'zo&/doz A(o&z') -'L1+cos'8 ————'q'(11 —4 cos8+ 6 cos'8

—12 cos'8 —cos48) + (1/768) q4 (997—864 cos8

+27 cos'8 —1248 cos'8+ 891 cos'8+ 192 cos'8

+5 cos'8) $, (4.7a)

dP«»/diaz =A (zoz') q'L1 —cos48—
o q'(13—6 cos8

—6 cos'8 —9 cos'8+12 cos'8+2 cos'8) $, (4.7b)

dI'z "&/dQz =A (o&z') q'$1 —cos'8 —cos'8+ cos'8) (4.7c)
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Integrating over the solid angle gives the total power
observed at the first three harmonics to order q'.

PL"' =B(~L')L1—(6/5) q'+ (g1/70) q') (4»)

tions" for e&1:
1/4

p )1/2
(426) =

)
E1/2(22'4i )+O(22 / )

1—02 3~')
(4.11a)

Pr t» =B(4pr, 2) [(6/5) q' —(83/35) q ),

Pr, /2' =B(4pr, 2) [(729/560) q').

/4 gbi, 2 1—82't'/4 fj„'(420) = —— —

~

—K / ( '24/' ')—+0(/2 ' '),
e

(4.8c) (4.11b)
where

Summing these three expressions gives the total power
observed in the L frame to order q':

(1+(1 ()2) 1/2

2(2/2 ln
~

— —(1—82) '" (4.11c)e
Pr, B(4dr,2)——[1+(7/80) q'), (4.9)

dgl ( ) 4 (242) n (sjn28) n 1—
dQr, (q') "+'[2 sin'(-', 8) )"+'[(I—1) !)' '=A (4pr,2)

1«~«q (4.10a)

dP~t~& 16242(12e' sin'8) ~ '
=A (4pr, ')

dQr 2r(q2)n+3[stn4(128))n+1
e~q))1

(4.10b)

=A (4pr, 2)
dQz 2rq' sin (-',8) sin'8

v2 q sin-', 8
)& exp —2e ln

sin8
-i), e&)q))1.

(4.10c)

We conclude that there are no significant amounts of
radiation at high q' for any nonforward angles.

If we look, however, at forward angles (i.e., those
for which 8 1/q), the situation changes. We will see
that at high q', essentially a/l the radiation is emitted
at the sa2/2e near forward angle 8p= (+8)/q. This situ-
ation may be traced to the inevitable forward peaking
of radiation emitted from a rapidly moving particle
due to I.orenz transformation rather than to any in-
trinsic structure in the angular distribution.

In order to analyze the region q'))1, 8 1/q, we use
the uniform asymptotic expansion of the Bessel func-

which agrees with our previous result (3.35b). Note
that if we calculate the total power lost by the electron
in the L frame according to (3.32b), we find that to
order q it agrees with the sum rule (3.51).

Turning now to the high-q' behavior, we find that if
we consider nonforward angles (i.e., angles for which
q&)1 implies q'sin'(-, 8)&)1), there is very little radi-
ation at any harmonic. To make this explicit, let us
consider the three regions in which we have approximate
expressions for the Bessel functions, namely, for e((q,
for e q, and for e))q. Using then the approximations
to the Bessel functions for small argument and fixed
order, for fixed argument and large order, and for large
argument and large order, respectively, we find

and the E's are the modified Bessel functions of the
second kind related to the Airy functions.

The observed power at the 12th harmonic (for 22 large
enough for the first term of the uniform asymptotic ex-
pansions of the Bessel functions to be valid) is

2e' 1 2=A( "), , —(V")
dQr, [1+-'q' sin'(-'8) )' 2r'

2[cosH ——'q' sin'( —'8) )'
q2 sin28(1 e2) 1/2

( 1 ()2) 1/2

+ K2/2 (242f' / ) . (4.12)
Q2

When the argument of the E functions becomes large
compared to unity, the Efunctions a'ppearing in (4.12)
become exponentially small according to"

K1/2, 2/2(s) ~(2r/2s) 1/2e *. (4.13)

We see therefore that the power radiated at the higher
harmonics will be negligible if the condition 242''2/2&&1

obtains. We can verify from (4.10c) that, as a function
of qH,

—22ip/2 is of order unity except near qH=+8. At
qH= +8, 8= 1—1/q' and 22''2/' becomes

f 2/2
~ [ (1q2) —2/2) —1—

22
—1 (4 14)

Let us consider how the condition 42-, f'2/2&)1 may be
violated. Away from forward directions, —pi'2/2 is itself of
order unity so that for e)&1 the condition holds and
there is negligible radiation [we already know this from
our discussion of (4.10)). Near 8=8p ——(+8)/q, how-

ever, there will be significant amounts of radiation for
all harmonics for which e&mp, since our condition is
there violated, but insignificant radiation for e& sp,
since there it is not. The radiation is thus confined to
the near neighborhood of 8p and occurs only for those
e's below the critical harmonic ep, dropping off ex-
ponentially above the critical harmonic.

If we look precisely at the angle 8p= (+8)/q, the
magnitude of the observed radiated power in the eth
harmonic is

/PE(s) 242 1 (1 ()2) 1/2

(8=8p) =A (4pr,2),—,K2/2'
dQI Sp

(4 15)"Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stengun (Dover, New York, 1965).
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(dPr/der, ) (0=00) =A (a)1,') (0.014) (q')'" (4.18)

The rapid increase in the total observed power with q2,

indicated by this expression, is due to the rapid opening
up of new harmonics rather than to any increase in
power radiated in the individual harmonics. The power
observed in each harmonic is constant [aside from the
trivial q' dependence in A(idr, ')) but the number of
radiating harmonics increases as q', thus leading to the
q' dependence of the observed amplitude in (4.18).
We will see below that the estimate (4.18) is quite a
good approximation to the exact result.
'

We can summarize the essential features of the
angular distributions for the observed power at high
q' as follows.

(a) The radiation is confined to the region of the
near forward angle Oo

——(+8)/q, all radiating harmonics
peaking at this same angle.

(b) Near this peak angle, all harmonics below the
critical harmonic mo ——3(—', q')3i' radiate strongly. Thus
as the intensity of the incident laser beam increases, the
spectrum of the scattered radiation shifts upward.

(c) At the angle 00, the magnitude of dPr, /dQ in-
creases as A (~i,') q5.

Let us now turn to the total power observed at a
given angle. We can in fact sum (4.3) over all the har-
monics using'

g ii'J.'(ii&) =&'(4+ e') /N(1 —O') ", (4.19a)
n=l

Q e'J "(eB)= (4+39')/16(1 —0')'i'
n=l

(4.19b)

(Note that the 6rst of these expressions is incorrectly
given in Watson. ") The angular distribution for the

where the first term of (4.12) is of order q
2 smaller

and has been neglected. Using the relation"

E'~~3(m/No) =—',I'(—,) (2rso/e) 2i' (1&&n(no) (4.16)

gives the magnitude of the observed power at Op.
.

(dPI, &"&/dpi, ) (0=Oo) =A (~r,') [(P.41]) '~@'/8$

(1«e&~,). (4.17)

Notice that this expression is only trivially dependent
on q' through the incident~beam term A(arL, '). The
power cross section corresponding to (4.17) (see the
Appendix) is, in fact, independent of q'.

We can estimate the total power at ep by summing
over e up to the critical harmonic ep using the approxi-
rnate formula (for large eo)

np

g rP~'= 5 (no)"'
n=l

to obtain

0 0 2 —5/2

+7(-' ')'I' 1+ (4.21)
(SO) 2

where 60= (Q8) jq'. We again see that the first term
is smaller than the second by a factor of q '. At the peak
0=Oo the estimate (4.18) is seen to agree quite well
with (4.21).

If we integrate over the solid angle of the dominant
term in (4.21), we get an estimate of the total observed
power

7'

PL, ——B((or,') q'
8X»~' ' (4.22)

which agrees favorably with (3.35c) .
Up to now we have assumed that the polarization

of the scattered radiation is not measured. Each term
in (4.3a) does, however, correspond to a unique linear
polarization direction. If we take n to be the direction
of the observer, the linear polarization vector corre-
sponding to the second term of (4.3a) is perpendicular
to both n and the scattering plane (i.e., it is in the plane
transverse to the initial beam direction) . The polariza-
tion vector corresponding to the first term of (4.3a)
is perpendicular to n and lies in the scattering plane.
Since as we have seen, at high q' the second term of
(4.3a) and (4.20) dominates near Oo, we conclude that
essentially all of the observed scattered radiation is
linearly polarized in the plane transverse to the initial
beam direction.

We have analyzed the observed scattered radiation,
for circularly polarized incident radiation, by analyzing
the radiation formula (4.3a). All the results we have
obtained may be simply understood by recalling that
an accelerating particle in relativistic motion syn-
chrotron-radiates along its instantaneous direction.
The motion at high q' for the case of circularly polarized
incident radiation is a helix of pitch angle g~=mpvD

where ~z is the transverse velocity and v& is the longi-
tudinal drift velocity. Inserting the previously found
values of these quantities yields 0& ——(+8)q '. It is
clear therefore that only an observer directly along
the pitch of the helix sees anything at all. This explains
the characteristic peaking at the near forward angle
(Q8) q '. Similar arguments for the width of this peak

total power observed in the laboratory frame thus
becomes

dPr, /der, A——(a&r.') {(1—0') i~ /8[1+—q' sin'(-', 0) 7 )

[1+-,'q' sin'(-,'0) )'
(4.20)

This result is valid for arbitrary q and, in Fig. 3, we
plot it for various values of the intensity.

At large q', (4.20) can be written

dPr, A (( r,') / 7 ' 50' t' (0—00)'l —'~'

dQ 128 &12 4 (AO)' j
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and for the polarization of the observed radiation can To order q', we find for the 6rst three harmonics
be given to reinforce the analysis of this section.

dP&M dQr —A ~12 1+iq2 sjn2 i0 4

B. Linear Polarization

We will briefly discuss the radiation produced by a
linearly polarized incident laser beam. The mathe-
matics for this situation is relatively intractable so that
we can write the exact solution but can analyze it only
in the case of low q'. We expect many of the features of
the incident circular polarization case to still apply
here at high q', since many of those results were char-
acteristic of the drift velocity which is the same in this
case. The exact result can of course be put on a com-
puter if more detailed high-q' results are desired.

The observed average power distribution in the
laboratory frame for linearly polarized incident radi-
ation is

de L~) e'
= A (~r,')

dQr, [1+-',q' sin'(-', 0) ]4

(1+-',q') cos'n

[1+-',q' sin'(-', 0) ]'
cosn[cos0 —2q' sin'(-', 8)]

P~ P2[1+-'q2 sin2(-', 0) ]2

where +", sin'(-', 0)

1+—',q' siii'(-', 8) j
gs cosa

p
gR cosa!+J2&~, . . . , . (4.23b)

We can expand (4.23) to low order in q' an. d find the
leading term for r&) 2. [For n=1 the leading term is
simply the linear polarization version of Thomson
scattering, i.e., (3.16) with 02= 1, 0.]The leading term
then becomes

dPi&"&/dQr. = r&'A (a)r,')

X [sin'n(Fi") 2—,'q cosn cos0 Fi"Fp

+—i-q sin 0(F2")'] (4.24a)
where

~" (—1)', (ecosn)" " "
F "=(-'q)" " Q Pe sin'(-'0) ]'

ll (B r—21) &—

(4.24b)

and I.„ is that value of 3 that makes e—r—2l either 0
or 1.

For low q' we can expand beyond the leading term.

4~ 227m+ (
——tt'+ q', &4.26a)

3 120

(14ir 138~
Pr, &» =A ((ur.')

~

q' — q' — —
q ~, (4.26b)

k5 35 15 j'
P,& =A(, )[(621 /224)q], (4.26c)

where these quantities are written in such a way that
the first parenthesis gives the result in the E. frame'~
and the second gives the corrections for transforming
into the I.frame and for the difference between emitted
and observed power.

As we go to higher and higher q', the angular dis-
tribution changes from predominantly backward to
more and more forward. This may be understood by
looking at Fig. 1. At low q', the E- and I-frame results
are the same since the drift velocity is of order q2. The
electron radiates most on the curved portion of the
figure eight, and on this portion, the electron is going
backward. The radiation of the higher harmonics is

'7 E. S. Sarachik and G. T. Schappert, Nuovo Cimento Letters
2, 7 (1969).

X I sin'n+q'(Ai ——', cosign cos0)

+q [A2 —Ai —f siil (20) cos &i!

+—', sin'(20) cos'n —~'~ cos'n sin'8

—-', cos'u sin'(-', 8) cos0+ 4 cos'n cos0

—@'~ sin'n sin'8] I, (4.25a)
where

Ai ——4[—sin'a cos'n —sin'n sin'(-', 0) + cos'n cos0],

A2= ~', sin'a. cos'a sin2(20) —~'& sin~n sin'(20)

+ (5/192) cos4n sin'n —
8 cos'n cos0

—8'2 cos'n sin'(-', 0) cos0+ ~'~ sin'(-', 0) cos'u,

dPI &2i/dQr ——4q2A (~r 2)

X[Ci+q'(C2 —3 sin'(-', 0) Ci—4 cos4n cos0

+—', cos'n sin'0]), (4.25b)
where

Ci ——sin'u cos'n —-', cos'n+ —,', sin'8,

Cg = 3 cos A cosg —3 sin A cos cx—8 sli1 8 cos A'

dPI, «/dQr, = (81/64) A ((vr,') q4

X [i~ sin'n(1 —cos0—6 cos'n) '+ sin'0 cos'a

+ cos'0 cos'u(1 —cos0—6 cos'n) ]. (4.25c)

The corresponding total powers radiated at these har-
monics are

(8ir 9ir 1311m.
Pl, &'& =A ((ol,')

~

———q'+ q4
~

& 3 5 1120
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Frc. 3. Plot of the total observed power cross section in the
laboratory for various incident intensities. The scale for the
q'=3 and 10 curves is one-Qth that shown here.

therefore backward peaked at low q'. As q' increases, the
drift velocity always increases faster than any internal
velocity characteristic of the figure eight so that the
radiation becomes more and more forward peaked. We
expect the same qualitative behavior of the high-q radi-
ation as in the circularly polarized case.

V. CONCLUSIONS

We have investigated the motion and subsequent
radiation of an electron (or any charged particle) subject
to an intense optical field. We have obtained an exact
solution (3.12) and (3.15) for the expected observed
power for arbitrary intensity and elliptic polarization
of the incident optical field. Our two major assumptions
have been that the problem could indeed be treated
classically and that we could decouple the problem into
a motion part and a radiation part within the classical
approximation by neglecting radiation reaction. We will

discuss these and other assumptions briefly in this
section.

That classical theory works for this problem has been
shown by Brown and Kibble' and been reviewed by
Kibble. 4 The incident frequency must be such that
Ace«mc, a condition that is clearly satisfied for in-
cident optical radiation. The meaning of the condition
is that the incident photons must not individually have
enough energy to cause the electron to recoil. So too in
the emission of an eth harmonic photon, classical theory
cannot account for the recoil of the electron so that we
must impose the restriction eh~((mc' in order for our
treatment to be valid. We see that for incident radia-
tion of 5~~1 eV, our theory no longer holds for har-
monics higher than about 10'. Note that this restriction
is independent of the intensity. We have already seen
that the neglect of radiation reaction requires that
q'((X/ro which means that q'((10' at optical frequencies.
This clearly is a very loose restriction and need not
concern us further.

We have made some assumptions about the pulse
length of the incident radiation that can be made more
explicit. The pulse length must be taken long enough
for there to be many optical cycles contained within it.
Thus the pulse must be"longer than about 10 " sec.
For pulses shorter than "this, the averaging we per-
formed can no"jonger be done. In addition to this
averaging problem, we must realize that a pulse in the
vector potential is no longer the same pulse in the elec-
tric field at these short times and we must begin to ask
ourselves which one really comes out, of a pulsed laser.

The pulse also cannot be too long —the longitudinal
drift distance 4'q'Tc of the electron must be small com-
pared to the scale of the experimental apparatus so
that the angle of the scattered radiation be well defined.
Since at q'=1 a picosecond pulse corresponds to a drift
distance of only 0.03 cm, this leaves us considerable
leeway. However, an increase of intensity by several
orders of magnitude would require still shorter pulses.

Finally, let us remember that our calculations have
dealt with scattering from a single electron. In an actual
experiment, an electron beam or a plasma would be
used to provide the electrons. When many electrons are
present, we might expect the usual coherence eRects in
the forward direction. Since we have seen that only the
fundamental frequency is scattered forward, we con-
clude that there are no coherence effects for the higher
harmonics. Other plasma eRects would be expected to
enter only if the density of the electron beam ap-
proached that of a metal. In most experimental situ-
ations, the density would be such that the plasma fre-
quency is far less than an optical frequency, so that
plasma eRects would not enter to change the conclu-
sions of this paper.
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APPENDIK

In the body of the paper, we have expressed our
results in terms of the power angular distribution
dP'"&/dQ. This quantity seemed the most natural one
to use since it corresponds most closely to what an ex-
periment would actually measure. Since other quan-
tities, namely, power cross sections and number cross
sections, have appeared in the literature, we will here
clarify the relations between all these quantities.

In a given frame, the power cross section is defined
as (1/I) dP/dD where I, the incident intensity, is given
as e'q'&o'/Sn. cro'. We have written the equations in the
text of the paper in such a way that replacing 2 (a&') by
r02 and B(~') by (8/3) vrr0' changes the expressions for
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dI'~"&/dQ and I""& into those for do&"&/dQ and a&"& (the
corresponding power cross sections), respectively.

The third quantity, the number cross section, appears
the least useful from the experimental point of view yet
has appeared in some of the standard papers on the
subject, since it is most natural from the point of view
of quantum-mechanical calculations. The differential
number cross section in a given frame, dZ "&&/ dQ, is de-
fined as the number of eth harmonic photons detected
in a solid angle dQ divided by the number of (first-
harmonic) incident photons all in some unit time in-
terval. In a given frame, the relation is easily seen to be

dZ "&/&dQ= (&o'/pp„, p) (da &"&/dQ)

= (&o'/&o...,) (1/I) (dI'&"&/dQ) . (A1)

In particular, in the I. frame this relation becomes

= —L1+—'g' sin'( —'8) 7 — . (A2)
dpi. n JI. dQz,

If we compare our results to those of Brown and Kibble, '
we note that it is the number cross section derived from
the power lost by the electron that agrees precisely
with their results. They did not consider the extra time
retardation that must be included when going from the
power lost by the electron to the power observed in a
given frame. It is the observed power rather than the
power lost by the electron that is actually measured
so that this extra retardation must be included when
comparing theory to experiment.
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Nonrelativistic Galilean quantum mechanics and the standard transition to relativistic Poincare quantum
mechanics is analyzed in terms of group theory. Special emphasis is given to the discussion of the relation
between dynamics and geometry. Certain unsatisfactory features are pointed out and a new relativistic
group g5 is suggested as the symmetry group of dynamics. g& contains both the nonrelativistic Galilei group
and the Poincare group as subgroups, and it is a group extension of the restricted Lorentz group. For use
in relativistic quantum mechanics, the central extension of 85 by a phase group must be employed. The
Lie algebra of this relativistic quantum-mechanical Galilei group g5 contains an acceptable covariant
space-time position operator and a nontrivial relativistic mass operator. The latter also serves to describe
dynamical development. The irreducible unitary projective representations of g5 correspond to infinite
towers of states with increasing spin.

I. GROUP-THEORETICAL ANALYSIS OF
NONRELATIVISTIC QUANTUM

MECHANICS

"NDOUBTEDI.Y, the most remarkable feature of
relativistic dynamics is that the invariance group

of the dynamical law coincides with the group of rigid
motions (essentially the group of isometrics) of the
underlying geometrical manifold. In fact, the under-
lying geometrical manifold is the Minkowski space
E3,1 where the identity component of the group of
isometrics-is the connected Poincare group containing
the identity, i.e., the inhomogeneous Lorentz group'
ISOp(3, 1)—=T4&32+t. At the same time, the laws of
motion are required to be invariant under ISOp(3, 1).
The situation is very diGerent in nonrelativistic phys-

ics. The underlying geometrical manifold is, to start
with, the Euclidean space E3, where the identity corn-
ponent of the group of isometrics is the connected
Euclidean group, i.e., the inhomogeneous rotation
group ISO(3)=Tp&3SO(3). This space does not per-
mit even the formulation of any dynamics. One there-
fore introduces the time as an additional kinematical
variable and thereby changes the underlying manifold
from E3 to E3&&E1. Note that no metric is introduced
into this Cartesian product space. Next one demands
that the laws of motion be invariant under the con-
nected component of the Galilei group. This group
we shall denote in what follows by the symbol b4.
The carrier space of &&4 is Ep&&Ei and the group is
obtained by adjoining to the transformations of ISO(3)
the additional two sets of transformations

*Work supported by the U.S. Air Force under Grant No.
AFOSR-67-0385B.

'For convenience, in this paper we shall use the symbol
SOO(3, 1) for the restricted Lorentz group 2+~, even though this
notation is not quite standard. t~t+r,

(1.1a)

(1.1b)


