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The rate of energy transfer due to Compton collisions from a photon gas to a Maxwell electron gas is

calculated to fourth order in the expansion parameters bT./rac' and bTa/rac' The p. hoton distribution is

taken to be Planckian at a temperature T& not equal to the electron temperature T,. It is found that the
nonrelativistic expression is accurate only for kTz&2.5 keV and kT, &20 keV, while the fourth-order
expression is accurate for k T~ & 10 keV and 0 T,&80 keV.

I. RATE OF ENERGY TRANSFER

We wish to calculate the rate of energy transfer due

to Compton scattering from a gas of electrons at a
temperature T, to a gas of photons at a temperature
Tg. We will assume that the electrons are in an iso-

tropic Maxwell-Boltzmann distribution rt. (p) and that
the photons are in an isotropic Planck distribution

ea(co) . It is convenient to de6ne

Og=—kTg, x=—fico/mc' x = AN /mc )

where co and co' are the initial and final photon frequen-
cies in the laboratory frame for a single scattering.
Using the Klein-Nishina formula to obtain the energy
transferred in a single collision, we get the following

~ Work performed under the auspices of the U.S. Atomic
Energy Commission.' R. Weymann, Phys. Fluids 8, 2112 (1965).' F. C. Jones, Phys. Rev. 137, 31306 (1965).

INTRODUCTION

t lHE inverse Compton effect is a major energy-loss.mechanism for energetic electrons interacting with
lower-energy photons. This process has been recently
discussed in the literature both in the context of a
plasma interacting with Planck radiation' and in the
astrophysical situation of a cosmic-ray electron inter-
acting with an isotropic thermal radiation field. '

In this work, we include relativistic corrections to
the Compton rate of energy exchange from a Maxwell-

ian electron gas to a Planckian photon gas. In Sec. I,
the correct relativistic formula for the energy exchange
rate is written down dnd the integrand is expanded in

powers of n/c and kco/mc'. After integration over the
appropriate distributions, the rate is proportional to
the energy density in the radiation 6eld multiplied by
a series expansion in the parameters kT, /mc' and
IcTrc/mc'.

In Sec. II, the results of the expansion are given and
compared with "exact" calculations which have been

completed recently. There is agreement to within 3%
for 0&kT,&92 keV and 0&kT~&7.2 keV.

In Sec. III, the convergence of the series expansion
is discussed, and the results of the calculation are sum-

marized in the concluding section.

expression for the rate of energy transfer:

dE/dt =mcsfdQod'PdQsdx{ (1—P Ic) rt~ (x) c

&& (-',rs'L1+ (1—cos8o) xp] '

X L(xo' —xs) '/xs'xp+1+ cos'8sg)

Xr4(P) L1+-,'(2xfi/mc) sled(x') j
X[1——', (2~5) s~.(P') ]x'(x' —x) I. (1)

In the above expression we have

ntt (x) = 2(mc/2~5) sr exp(xmc'/8~) —1j ' (2)
alld

r4(P) = A exp( —e/8, ), c= electron energy (3)

with the normalization condition

jd'p rt, (p) =p„ the electron density. (4)

The subscript 0 refers to variables in the frame of
reference in which the electron is initially at rest. In
this frame the Klein-Nishina formula can be used to
give for the collision cross section the term in the bold-

P

face parentheses. The factors (1—P Ic) rig(x) c give the
incident photon Aux in this frame, where a factor of
7= (1—P') —'t' has been canceled by the time-dilatation
factor y ' relating reaction rates in the two frames.

P is the incident electron velocity in the lab divided

by c, and A; is a unit vector in the direction of the
incident photon momentum in the lab. The density-of-
final-states factors for the electron and photon, respec-
tively, are

t 1—-', (2m-fi) 'rt, (P') j and L1+s (2x.fi/mc) stttc(x') g.

In this paper we will ignore electron degeneracy effects
and replace the first factor by unity.

We will concern ourselves only with temperatures
which satisfy the conditions

8./mc'&(1 and 8g/mc'(&1. (3)

By expanding the various factors in the integrand of
the expression for dE/dt in powers of p and lice/mc'= x
and integrating over the distributions (2) and (3), we
obtain an expansion of dE/dt in powers of 8,/mc' and
8~/mcs. We handle the rt~(x') appearing in the photon
final-state factor by making a Taylor expansion about
the point x. We handle rt, (p) as follows. First we write

N, (p) p'dp =A exp( ymc'/8, ) py'm'c'p'—dp dp/dpj.
I 2731
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bracket. The first-order correction terms are in agree-
ment with those obtained earlier by Sessler and Riddell. '

To evaluate Fs; in (6), the variable of integration
was changed to P. The upper limit of integration was
then taken to be rather than 1, in order to obtain
a simple series expansion for the integral in powers of
8,/mes. By numerical integration, the error was esti-
mated to be negligible with respect to the highest order
of 8,/mc which was retained in the approximation.

II. RESULTS

The range of validity of the approximate series in

(7) can be estimated by a comparison with other cal-
culations of dE/df which involve approximations of a
different character. Warham4 has calculated I., the ratio
of dE/dt to the nonrelativistic approximation to dE/Ch
Lobtained by replacing the quantity in brackets in (7)
by unity), for several values of 8,/mc' and 8z/mc' by
performing a multiple numerical integration using the
exact integrand. Also Corman' has calculated dE/di
by a Monte Carlo simulation of the Compton inter-
action of a Maxwellian gas of electrons with a Planckian
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in MeV/sec cm' for p, = 1 cm ' and sn ——5 keV
as calculated by Warham (circles), Corman (squares), and Eq.
(6) (solid line).

The right-hand side can then be expressed as a product
of A exp( mes/8, —P'mc'/—28,) dP and a power series in
the two parameters P' and mc'/8, . Integrating both
sides and using the normalization condition (4), we

therefore produce an expansion for A exp( —mc'/8, ) in
the parameter 8,/mes. We need to evaluate integrals

(6)

Using the expansions for t4(p) p'dp and 2 exp( —mc'/8, ),
we then obtain expansions for the F~, integrals in the
parameter 8,/mes.

The calculation is extremely tedious and yields the
result

ZE/Z&= (32/45) + Pr sc/(sic) sjp.8,'P(8. 8,)/mc'—j
&& f1 000+2 50. 0(8,/m. c') —19.74(8n/mc')

+1.875 (8,/mc') ' 122.2 (8,—/mc') (8n/mc')

+410.7 (8g/mc') '—1.875 (8./mc') '

10'
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80, 100

—292.0 (8,/mc') '(8&/mc')

+4357 (8,/mc') (8&/mc') '—8995 (8&/mc') 'g, (7)

where we have retained corrections to third order to
the nonrelativistic result, which stands outside the

Fto. 2. ( dE/d$ ( in MeV/sec cm' for p, =1 cm ' and On=10
keV as calculated by Warham (dashed), Corman (dashed and
dotted), and Eq. (6) (solid).

g A. M. Sessler and R. J. Riddell, Jr. (private communication).
A. Warham, Atomic Weapons Research Establishment

Report No. 003/68 (unpublished) .' E. G. Corman, following paper, Phys. Rev. D 1, 2734 (1970).
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photon gas. The values of dE/dt so obtained' are com-
pared. with values obtained from Eq. (7) in Figs. 1—3.
When Og is 5, 10, and 15 keV, our series over the range
0&0,&100 keV agrees with Warham's results to 2.5,
4.5, and 14%, respectively, and with the Monte Carlo
calculations of Corman to 1.1, 6.5, and 13%, respec-
tively. When 0& is 20 keV the series is of no use, since
it disagrees with Warham's and Corman's calculations
by as much as 40% in the range 0&8,& 100 keV.
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in MeV/sec cm' for p, =1 cm ' and Stt=15

keV as calculated by Warham (dashed), Corman (dashed and
dotted), and Eq. (6) (solid).
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g —keVe
Fxo. 5. L1, L2, L3, L for 8+=10 keV. L points as computed

by Warham are circles and L points as computed by Corman
are squares.

III. CONVERGENCE OF SERIES

0 20 4Q 60 80 100 12Q

g —keV

We now investigate the convergence of the series in
brackets in (7) by comparing the quantities I. , which
we de6ne as the sum of terms up to nth order in the
two parameters II,/mc' and IItt/mc'. A criterion for ac-
ceptable convergence of the series is that

[
L,,-L,, [ « /

I I., [ «[ I,,—1 [. —

When this condition is satisfied, we are justi6ed in
asserting that

I
(L3—I)/I-

I
&

I (L3—1-2)/L2 I

FIG. 4. L1, L2, L3, L for 0@=5 keV. L points as computed
by Warham are circles and L points computed by Corman are
squares.

The values from Warham's report have been interpolated
from his table.
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where L is the exact value to which L„ is an approxi-
mation. In Figs. 4 and 5, L1, L2, and L3 are plotted for
Og ——5, 10 keV and 0&O,&100 keV. The results of
Warham's and Corman's calculations are also plotted.

Convergence of the series in (7) is satisfactory over
the range 0&O,&100 keV and 0&Og&10 keV. When
Og is as large as 15 keV the convergence of the series
is not so strong, since the (( signs in (8) can no longer
be taken so strictly. Ate, =0 and 0,= 100 keV,

~
I3 L2 ~—

is more than half
~

L2 L& ~.
—

This analysis indicates, using Eq. (9), that Eq. (7)
gives dP/dh to within about 3'P~ of the exact value for
0&O,&92 keV and for 0&O~&7.2 keV. The limit on
Htt can be raised to 10 keV if we desire only about 10/o
accuracy.

IV. CONCLUSIONS

The rate of energy transfer from an isotropic Maxwell-
Boltzmann electron gas with temperature T.=8,/k to
an isotropic Planckian photon gas with temperature
Trt=ett/k can be accurately calculated using the series
expansion in Eq. (7) when 0, & 100 keV and Ott & 10 keV.
The size of the relativistic corrections incorporated in
the higher-order terms in (7) indicates that the non-
relativistic rate cannot be used when O,)20 keV or
when Og) 2.5 keV.
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A relativistically accurate table of values is calculated for the Compton energy exchange rate between
photons in a Planckian distribution at temperature T~ varying from 5 to 50 keV and electrons in a non-
degenerate Maxwell-Boltzmann distribution at temperatures T, varying from 0 to 100 keV.

INTRODUCTION

f IHE Compton energy exchange between electrons.and photons (both direct and inverse) has been
discussed in recent literature. ' Such calculational
methods have involved series expansions in % and
ht /ntc' or numerical integration procedures.

In this treatment Monte Carlo techniques are ap-
plied in lieu of series expansions or multiple integra-
tions to obtain the Compton energy exchange rate.
At any given temperature as much accuracy as desired
can be achieved simply by using a large enough sample
of photon "bundles", each bundle representing a large
number of true photons of a given energy E. For these
calculations a sampling size of 100 000 photon bundles
was selected, which required approximately 10-sec com-
puting time on the CDC 7600 computer, for each dE/dt
value.

I. METHOD OF CALCULATION

The photons were selected from a Planckian distribu-
tion at temperature Tg. Each photon of energy E
collided with an electron of velocity v approaching the

~ Work performed under the auspices of the U.S. Atomic
Energy Commission.

' R. Weymann, Phys. Fluids 8, 2112 (1965).' F. C. Jones, Phys. Rev, 167, 1159 (1968).' A. Warham, Atomic Weapons Research Establishment
Report No. 003/68 (unpublished) .

4 P. Woodward, preceding paper, Phys. Rev. D 1, 2731 (1970).

point of collision at an angle whose cosine is yr (see
Fig. 1) . The electron velocity is selected from a relativis-
tic Maxwell-Boltzmann distribution exp( —e/kT, ) P'dP,
where the electron kinetic energy

e =ntc'/(1 —p') 't' —etc' p= e/c,

and I' is the electron momentum. The normalized dis-
tribution used for selecting p was a third-order expan-
sion'

where
f(rt) drt= (Pr fr+ P4 f2+Pe fe) drt,

p=—e/c= (1.—(]+(kT,/mc') j'g-')"',

f2= (8/3+m-) rt4 exp( —rP),

fe (16/15+m) rte exp——(—rP),

D= 1+(15/8) (kT,/ntc')+ (105/128) f(kT,)'/tN'c4j,

Pt —D', P2= (15/8) (kT,/—ntc'-) D ',

Pe = (105/128) L (kT ) '/rrt c jD-'

each f; being separately normalized to unity. Note that
fr is the nonrelativistic velocity distribution, f2 and fe
being relativistic corrections.

'A. M. Winslow, UCRL Report No. UCIR-141, 1967 (un-
published}.


