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Mach's Principle, the Kerr Metric, and Black-Hole Physics*~
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The generalized Kerr solution is tentatively accepted as the description for the state of a charged rotating
mass which has undergone complete gravitational collapse. Mass accretion by such a system is demonstrated
to damp out the rotation. Even the most favorable selective capture of matter leaves the angular momentum
bounded by m', precisely the upper limit that the Kerr geometry can accommodate without change of
character. Mach s principle, exemplified by the rotation of inertial frames, is employed to obtain approximate
expressions for perihelion precession of satellites, deRection of light trajectories, and the rotation of polariza-
tion of light. Results are compared with exact expressions, when available.

I. INTRODUCTION

MAJOR problem in the investigation of gravi-
.I tational collapse is in determining an adequate

model for the final state of a completely collapsed star.
The usual model, the "black hole'" of the Schwarzschild
geometry, is balanced in its mathematical simplicity
by its lack of generality. Static and spherically sym-
metric, it has but one free parameter, mass, while stars
possess additionally both angular momentum and mul-

tipole moments of varying magnitudes.
In treating, then, the Schwarzschild solution as the

correct form for a gravitationally collapsed body, one
implicitly makes one of two assumptions. Either it is
possible to so perturb the solution that it may accom-
modate the moments of the collapsed object it repre-
sents without destroying the essential characteristics
of the Schwarzschild metric, or the object, while col-
lapsing, must in some manner invariably discard these
moments. The former possibility appears to be effec-
tively ruled out by numerous recent computations, '

* Part of this work was reported at the April 1969,Washington
meeting of the American Physical Society, Bull. Am. Phys. Soc.
14, 615 (1969).

t This work has been assisted in part by NSF Grant No.
GP7669.

f. National Science Foundation Predoctoral Fellow, 1967—1970.' B. Harrison, K. Thorne, M. Wakano, and J.Wheeler, Gravita-
tion Theory and Gravitational Collapse (The University of Chicago
Press, Chicago, 1965), Chap. 11.

'See, for example, L. M&ak and G. Szekeres, Can. J. Phys.
44, 617 (1966); W. Israel and K. Kahn, Nuovo Cimento 33,
331 (1964).
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while the latter may well violate the conservation laws
of Newman and Penrose' for quadrupole moments,
although the situation here is far from clear. In any
case, there is today no compelling reason to suppose
that either of the above assumptions should be true.

Hence, it is not at all inappropriate to seek more
general models for the final state of collapse. The most
general one to date is the Kerr solution4 as extended by
Newman et a/. ' It possesses a freely disposable mass m,
an angular momentum per unit mass a, and an electric
charge e. But it must be remembered that, since m
and u uniquely determine all of the multipole moments,
the possible objections voiced above for the Schwarzs-
child model are in part applicable here as well.

Crucial to the utility of the Kerr metric in the study
of gravitational collapse is the range of values its param-
eters may meaningfully assume. For two reasons, it
appears that

u'+ e'& m'.

Violation of this inequality has such unappealing direct
consequences as the absence of horizons and the break-
down of causality. ' There is, moreover, the theoretical
objection that, since

~
e

~
of the Reissner-Nordstrgm

3 E. Newman and R. Penrose, Phys. Rev. Letters 15, 231
(1965).

4 R. Kerr, Phys. Rev. Letters 11, 237 (1963).
~ E.Newman, E. Couch, R. Chinnapared, A. Exton, A. Prakash,

and R. Torrence, J. Math. Phys. 6, 918 (1965).' B. Carter, Phys. Rev. 174, 1559 (1968).
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PIG. 1. Photon capture cross sections for black holes of various
angular momenta. Photons approach perpendicularly to the
rotation axis with impact parameter components b~~ (along
rotation axis) and bi (perpendicular to rotation axis). The
Schwarzschild case with b[~=b~=3%3 corresponds to a=0. All
quantities are in units of m.

' A. Papapetrou, Proc. Roy. Irish Acad. 51A, 191 (1947l.' For the sun u/m = 1.26, as may be obtained from u/m =Lc/GAP.
I. is the angular momentum of the sun, M its mass, c the speed of
light, and G the gravitational constant, all expressed in some
standard system of units.

s A. Doroshkevich, Astron. Zh. 43, 105 (1966l [Soviet Astron.
AJ 10, 83 (1966lg; see also Ya. Zel'dovich and I. Novikov,
Astron. Zh. 43, 758 (1966l LSoviet Astron. AJ 10, 602 (1967l j.

mass is due to its electric charge, ~ one should expect
that (as+e')'I' of the Kerr mass is of rotational and
electrical origin. In this argument, us+e') m' becomes
an impossibility.

Many stars, including the sun, s have an a/m ratio
exceeding unity in absolute value. Can they not col-
lapse, will they break up upon collapsing, or must the
Kerr model be discarded' The full answer probably
will only emerge from detailed machine calculations of
collapse.

This paper demonstrates the stability of condition
(1), showing that an already collapsed object with

~
a/m ~(1 even by the accretion of rnatter of the

highest capturable angular momentum cannot increase
the ratio above unity. Moreover, accretion of randomly
incident particles is shown to damp out rotation.

The second part of the paper considers certain ob-
servables related to a rotating black hole, tying them
together within the framework of Mach's principle.

II. MASS ACCRETION AND DAMPING OF
ANGULAR MOMENTUM

The notion that mass accretion should damp out the
rotation of the capturing body was erst examined by
Doroshkevich. ' For a not as yet collapsed body of
radius (Schwarzschild coordinate) R)3m capturing
nonrelativistic particles arriving with random impact
parameters, he obtained on the basis of the well-known

Lense-Thirring line element' the first-order formula for
change of angular momentum I.with mass m,

dL/dm = —(L/m) t 2m/(R —2m) j. (2)

LE—Sea—(pb J.+PEa Ea) aN' ]'—
—(1—2ml+ a'I'+ e'zP)

g $(les+ psb 2N2) + (pb +pEts Eg) sls)) 0 (3)

Here p, is the rest mass of the incident particle, 8 its
charge, and E and p its energy and momentum at
inanity;

E=~(1 P') ",— (&)p=PE

At R= r the inequality becomes an equality. It follows
that the locus of the critical impact parameter is an
ellipse,

E1 2m/R+ (g +e )/R Ibll

+$1 2m/R+e'/R— 'j(bi bp)'= f' (—5)
where

f'= R'+ e'+ be' lr, 'a'/P'+ —(2m'' 2EGe) R/—P' (6)

and the shift of the center of the ellipse from the origin
ls

1+p aR(R/p ge/p)—
P R'+e' —2mR

The average angular momentum transferred per par-
ticle is thus bpp, a,nd so

dL L R' GeR/E—+ P—1
dm m R'+ e' —2mR

For e=0 and P—+0, this gives precisely (2) . The limit
for extreme relativistic velocities is

dLldm= (Llm) LR'l (R'+e' —2mR) j. (9)

A similar equation may be written for the rate of

' J. I.ense and H. Thirring, Physik. Z. 19, 156 (1918).
"The surface of the body is taken as a constant r—t surface

in the standard Schwarzschild-like coordinates. See, e.g., Ref. 6.
R must be greater than the 1/I corresponding to the double zero
of Eq. (3).

An exact formula for the same quantity may be ob-
tained by finding for what impact parameter the turn-
inging point of a particle coincides with the radius" of
the body. This is done most conveniently by setting
r'=0 in Carter's turning-point equation Lhis Eq. (63)).s
We consider only capture for a Aux incident perpendic-
ular to the body's axis of rotation, noting that such a
Qux contributes most to altering the angular momentum
of the central body. The cross section is characterized
by the components bI~ and bi of the impact parameter,
parallel and perpendicular to the axis of rotation, for
a particle that can just barely make its way in to the
coordinate value R. No point with coordinate r is
accessible unless the reciprocal parameter 1=1/r satis-
fies the inequality
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dn/dm= (bs.—2a) /m'. (12)

Hence, for any b~ the equilibrium value of n corre-
sponds to 2a=bi. Inserting this into Eq. (10) gives
the asserted upper bound.

The corresponding calculation for material particles,
again with e=O, is considerably more difficult, and so
is omitted here. From it we find that the limiting value
of n assumes a maximum of j. for nonrelativistic par-

'~ Note the invariance under the simultaneous change of sign of
a and bx. .

~3Similar diagrams are to be found in F. de Filice, Nuovo
Cimento 5'7B, 351 (1968).

change of charge with accretion. The explicit results
are, however, involved and not very informative. They
are best summarized by noting that nonrelativistic
particles of charge opposite to that of the core are
preferentially captured, much as in the Newtonian
case. For particles found in most plasmas, S/p~10M.
Therefore the approach of the body to equilibrium is
very rapid. If the captured particles are, on the other
hand, highly relativistic, more nearly even numbers of
oppositely charged particles are captured, and the
approach to electrical equilibrium is comparatively
slower.

When we turn to the case of a completely collapsed
body, a black hole, calculations become more difficult.
It is not sufficient merely to replace E in the preceding
formulas by the radius of the black hole's outer horizon,
for we soon find that Eq. (3) can be satisfied at the
horizon while at the same time not be satisfied for
slightly larger values of r. It is as though an effective
potential barrier surrounds the horizon. Anything sur-
mounting the barrier is captured.

For a given set of parameters, the barrier maximum
occurs where the derivative of (3) vanishes. We there-
fore differentiate (3) with respect to u and annul the
derivative, along with (3) itself. In this way we arrive
at two expressions quadratic in the components of the
impact parameter, to be solved simultaneously. Selected
results for the case of photon capture, found numer-
ically, appear in Fig. 1.Here too it is evident that mass
accretion damps out angular momentum. Note that
cross sections are relatively independent of e.

For e=0 the bi intercepts (bi*) are given by

(b~*+2a) '—27m'bi*= 0. (10)

By means of the convenient parametric representation"

a= —m cos3o, bs.*=Sm cos'o., (11)

this curve may be plotted as in Fig. 2."The shaded
region represents values of b~ and a for which a photon
with equatorial trajectory is captured.

From Eq. (10), it follows that even the most favor-
able selective capture of photons cannot increase the
absolute value of n=a/m above ss+6=0.926. A short
computation gives the change of a per photon as

ticles, an encouraging result in view of the proposed
limit of u~(m' given in the Introduction.

III. MACHIAN EFFECTS

Within the framework of Mach's principle it is
possible to provide simple explanations for a number
of phenomena resulting from the rotation of the central
body in the Kerr metric. Essentially, we consider the
inertial frames to be dragged along with the central
body, with objects passing through the frames conse-
quently feeling a Coriolis force. Viewed in this way, the
resulting deQections are more readily understandable,
and, additionally, can be calculated to first order with
comparative ease. The general question of Machian
effects in the gravitational field of a rotating object has
been considered in a series of articles by Brill and
Cohen. ' Here we specialize and consider three such
effects, the precession of satellite orbits, the bending
of light trajectories, and the rotation of the polarization
of light, computing their approximate magnitudes on
the basis of the rotation of inertial frames.

Before proceeding, we cite exact expressions for the
first two eGects, considered in the equatorial plane, and
with e=O. Using the technique described by Boyer and
Lindquist, " one obtains for the perihelion precession,
by a straightforward computation, "
A&=4(2mb'. '(si ss) 5 "'—

x $2—$3 $2—$3

I+—$3 I+—$3 Sy $3

+ -11i, I, (»)I —$3 Q —$3 Sy—S3

where

3+ A 1—2mbiN

u+ —u u —u 1—2m+a'u' (14)

~4 J. Cohen and D. 'Brill, Nuovo Cimento SOB, 209 (1968).
~~ R. Boyer and R. Lindquist, J. Math. Phys. 8, 265 (1967).
"The integrals and special functions involved are dealt with

in I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products (Academic, New York, 1965).

l
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Fio. 2. Plot oi o versus bi* (solid curve). Both are in units
of m. The plot is physically meaningless for 0&bed*&1, as these
values would lie within the horizon. The shaded areas indicate
values of a and b~ for which equatorial photons are captured.
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st&ss&ss&0 are the roots of expression (3). II(n, k)
is a complete elliptic integral of the third kind. For a
circular orbit set s2=s3=s, with s the orbit reciprocal
rad1us,

folmula

where
g= —XP~2VXg, (20)

h gpp)

0„=ad, (2risr —e') 11+(2ttsr —e') /p'] cosg/g,

g'= goi/g(s) ~ (»)
After lengthy but straightforward calculations, one

One may obtain Darwin's Schwarzschild metric result"
by setting a=0 and s= 1/d:

ay=2~(1 6—m/d)

To second order in s, Eq. (15) becomes

(16) 0()= aP (2mr e') r—esp'—7p sin8/x,

Qe ——a'(2mr e') t
—( r+su')' Au' —sin'8j'i' sin28/2', (22)

2~(1+3rns 4a—m'I'ss)'+35m'ss/2+3a's /2). (]7) @=P'fP —(2mr —e') ALP (2'—e )']' ',

Sy $3 $2
sin28 =

$2 $3 $1

$2—$3
q2

Sy —$3

hrt)=4$2mbi'(st ss) 7 "—' A+

(u+—si) (u+—ss)

f u~ —six (s,—s,)II
~

I,q', q) + (u+—s,) p or)
uy —ss

u— si
(ss—si)II 8) (t ) |I i

(u —si) (u —ss) u —ss j

With )s'= m/s, the first three terms reproduce the result
of Boyer and Price."For the precession of the perihelion
of Mercury, only the effect of the second term, 3r)s/d,
is measurable.

The expression for the deflection of light, derived
explicitly by Boyer and Lindquist, is given here in
slightly altered form:

0„=2ma cose/r',

Q()
——ma sine/r',

Qp
——0.

(23)

Near the equatorial plane the unit 6 vector is anti-
parallel to the angular momentum vector L (L points
out of the paper for a&0 in Fig. 3, while e points in)
and therefore, interestingly enough, the rotation of
inertial frames is retrograde'4:

p= «'+u' cos'8,

5= rs+ os+ es 2mr. —

We note that the expressions for angular velocity be-
become infinite precisely on the infinite-red-shift sur-
face, where the timelike Killing vector becomes null. "
Within this surface the formula is no longer valid, since
the metric is not stationary.

In the limit of large r, 9 takes the form

+ (u —ss) F(b, q), (18)
0 —L/r' (24)

where F(a, k) and II(n, ts, k) are incomplete elliptic
integrals of the first and third kinds. Note that now
Sj&$2&0&$3. To first order in the impact parameter
st~1/d, this yields the well-known result" 's ""

4m(1 —a/d)

v= 2Q)(v,

or, for large r and in the equatorial plane,

(23)

With these results we can reproduce expressions (17)
and (19). Because of the differential rotation of inertial
frames, photons experience a transverse Coriolis accel-
eration given by"

i) = 2ma/rs (26)
Mach's principle asserts that inertial frames near the

origin of the generalized Kerr metric should be dragged
along in the direction of rotation of the central body.
Since the rate of dragging varies with position, a differ-
ential rotation between adjacent frames results. "This
differential rotation is expressed by the Landau-Lifshitz

and to the right in the sense of Fig. 3. Incidentally,
Fig. 3 shows well the dramatic eGect of rotation upon
photon trajectories. At small distances the whole pat-
tern is swept around to the right, accounting for the
asymmetric capture cross sections already mentioned.

Equation (26) may be used directly to obtain the

"C.Darwin, Proc, Roy, Soc. (London) A249, 180 (1969)."R.Boyer and T. Price, Proc. Cambridge Phil. Soc. 61, 531
(1965).' J. Plebanski, Phys. Rev. 118, 1396 (1960).

'0 G. Skrotskii, Dokl. Akad. Nauk SSSR 114, 73 (1958}LSoviot
Phys. Doklady 2, 226 l1957l j.

21 I an indebted to Professor James Bardeen for pointing up
and explaining this situation.

2~ L. Landau and E. Lifshitz, Theoria Polka, 5th ed. , (Nauka,
Moscow, 1965).

"C.Vishveshwara, J. Math. Phys, 9, 1319 (1968).
24 First pointed out by J. Cohen, Phys. Rev. 173, 1258 (1968).
"A minus sign is inserted into the standard formula since Q

measures rotation of the inertial frames relative to the global
metric, rather than the reverse.
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first-order deflection of light due to rotation,

v ds) (27)

= —4ma/d', (28)

in agreement with Eq. (19).Similarly, the lowest-order
correction due to charge is

AP =z ae'/d'. (29)

A like calculation for the perihelion precession is
not so simple. Merely inserting (26) into the standard
formula"

d'u/dqP+ u = m/h'+3mu' (30)

h'—&h'(1+ 4mau/h) . (32)

with h the classical orbital angular momentum, to
obtain

d'u/dy'+u= m/h'+3mu' 2m—au'/h (31)

gives a result for circular orbits too small by a factor
of 2. The diKculty is that not h but Carter's' C is the
conserved quantity. A brief computation reveals that
the following approximate substitution is therefore
appropriate: +/////~c A PT U R E/

8 6 4 2 0 2

lMPACT PARAMETER

SCATTER
I I

6

The resultant equation

d'u/dP'+ u = (m/h') (1—4mau/h) +3mu' —2mau'/h

(33)

then yields the result of Boyer and Price PEq. (17)
and subsequent comments).

The rotation of a photon's plane of polarization may
also be computed to first order based on the rotation
of inertial frames. For instance, consider a photon
emitted from a body of radius R along its rotation
axis. Assuming its polarization vector to be dragged
along by the rotation of the inertial frames (i.e.,
rotated at a rate 0,), we obtain a net rotation, measured
at a great distance, of

FIG. 3. Equatorial photon trajectories for the Kerr metric
with e=0 and a= 1. Photons enter from the bottom of the figure.
A photon with impact parameter —8 is captured into an unstable
orbit at r=4. A similar fate befalls a photon (not shown) with
impact parameter +1. All quantities are given in units of mass
m.

an interesting cancellation, the result is zero. On the
other hand, Skrotskii obtains 8L/d', Balazs~ finds
2L/d', and, of course, Plebanski predicts no rotation.

Since the polarization vector is parallel transported
along the null geodesic, "one in principle may compute
exactly the two rotations given above. However, only
in the first case (a photon on the symmetry axis) is
an analytic expression readily obtainable,

"2mu
, dr)

z
=L/E'.

(34)

(35)

A%= L/(E'+a'), (36)

which reduces to (35) in the limit of large E, thereby
lending credence to the Machian approximation as
opposed to the cited results of other methods.

Other approximate results include 3L/R' by Skrotskii"
and 0 by Plebanski. " The latter, indeed, . obtains no
rotation for any trajectory in the vacuum outside a
slowly rotating body.

In a similar manner, one may calculate the rotation
for a photon traveling parallel to, and at some distance
from, the rotation axis from minus to plus infinity. By
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