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Generalizations of W Spin*
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The generalization of 8' spin to orbital extensions of the quark model is discussed. Ke point out the
Lorentz-invariant properties and the predictive power of the assumptions, and discuss a possible manifesta-
tion of the breaking of the rest (and collinear) symmetry.

N a recent paper, Lipkin' pointed out difhculties
. . that arise in spin treatments in the quark model.
As expected, the results that stem from 8'-spin' con-
siderations do not contradict general properties that
are due to Lorentz invariance. The S' spin can be de-
Qned in terms of the quark fields; however, it can also
be abstracted and put into a general algebraic form. '
In the present comments, we point out that this can be
achieved also for orbital extensions of the problem and
analyze some possible consequences and implications.

The SU(6) p generators are defined in terms of eight-
fold extensions of a spinlike quantity, usually identified
as the quark spin S. All that one has to require is that
S forms an SU(2) and behaves like 1++ under J
To it we add now another SU(2) axial-vector operator
with opposite charge conjugation R behaving like
1+ . S and R constitute together an SO(4) that can
be identified with the LSU(2) XSU(2)]p defined by
the quark field generators fd'x.'Pro'P: and fd'x.'PtPa'f:.
We note that if we want the complete Dirac SU(4)
algebra, we have to add the vector operators V= fd'x'.
it'tycho'ii' and N= fd'x QtiPysoifr:, . both 'behaving like

under J~~. These were also sometimes used in a
non-Hermitian form to generate an SU(2, 2); however,
the J~~ properties remain unchanged. Note that none
of the generators has the quantum numbers of a Lorentz
boost, 1 +, and therefore cannot represent it in any
SU(2, 2) version. This point was often overlooked in
the early days of "relativization" of SU(6).

)SU(2) X SU(2)]p can serve as a rest symmetry for
classification of particles. That is so since, in the quark
field model, 8 and R commute with the Hamiltonian.
Similarly, in order to find candidates for a collinear
symmetry, we look for the LSU(2) XSU(2) ]p genera-
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tors that commute with A„ the boost along the z direc-
tion. These operators form the 8" spin,

8',=S,.

The extension to LSU(6) X SU(6) ]p—+SU(6) s is
straightforward.

The Lorentz group is generated by J (1++) and A.
(1 +). We already saw that A. cannot have a part that
belongs to the quark Dirac algebra. J, however, does
have a part there. Following Gell-Mann, 4 we now define

J=S+L, (2)

thus denoting by L tha, t part of J not included in the
SU(6) p generators. Since S is assuined to behave like
a vector under rotations, so does L. Moreover, one Ands

P;, L;]=se,,v,Li, LS, L]=0. (3)

Thus we arrive at a rest symmetry of

LSU(6) XSU(6) ]pXO (3)r. .

Since fL„A.,]= 0, we can define the collinear symmetry
SU(6) srXO(2)r, „where W remains as defined above
in Eq. (1).

This was proposed several years ago by Freund et al.'
and by Lipkin. ' Freund ef al. used a Lagrangian ap-
proach to implement this symmetry while Lipkin ob-
tained it as a result of quark model calculations. It can
be, of course, most simply used in its algebraic abstract
form to reproduce the results of these authors. As an
example of the simplicity of the calculations and the
power of its prediction, we show in Table I the predicted
couplings of all 35 mesons with arbitrary L to a BBpair
(B is an octet within 56, L=O). Since these results are
true for all particles, they will hold for the Regge tra-
jectory to which these particles belong. Thus we predict
that the leading trajectory at 1=0 ('Lr,+t coupling of
J,=0) will couple to the BBpair with pure F coupling.
This coincides with the prediction of Cabibbo, Horwitz,
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GENERALIZATIONS OF 8' SPIN

TABLE I. W-spin predictions for 8 meson (35, L) couplings to BB (B+56, L=0) . All couplings can
be multiplied by the same arbitrary function of I..

(L,=O), J,=O, H/'=0 (L,=O), J,=1, t/t/'=1

LL+1

3L

LL 1

[(I.+1)/(2L/1) ]"'F

—LL/(2L+1) ]"'F

L(L+2) /(4L+2) 3'"(8~+D)

L(L—1)/(4L+2) 2"'(3I"+&)

(L,=O), J,=O, W=1 (L,=0),J,= 1, W nonexistent

1LL —(3~+&)

and Ne'eman~ and was discussed quite extensively in the
literature. Similarly, one finds predictions for baryonic
decays. Thus all 8* octets that belong to a 56 with ar-
bitrary L decay into BP with D/F= ,'. These p-redic-
tions can help to identify the classification of reso-
nances.

Trouble arises in the mesonic decays. If one identifies
the A~ with a 'P~, and the 8 with 'P~, one finds that A~
should decay transversely into pm, and 8 longitudinally
into Mm. This result was pointed out by Lipkin. Ex-
perimentally, the A& question is not 6nally settled, but
the 8 looks definitely transversal and not longitudinal. '
It is very simple to see how the selection rule for 8—++z
comes about. A 'P~ state has J,=L„and since both co

and m have L=O, it turns out that L, conservation
implies that the decay can proceed only from a J,=O
state. Therefore, a possible explanation of the paradox
is that 8 is not a pure P~ state. This would seem at-
tractive if other similar states are discovered nearby.
It might also mean that an L=O qggq classification is
better than the L=1 gg. However, the most natural
way out of this dilemma is to attribute- it to a genuine
symmetry-breaking eGect. Gell-Mann4 showed that a
natural choice for the symmetry-breaking Hamiltonian
is a 35 with L=1. The existence of such a breaking is,
of course, most strongly felt in violations of selection
rules. This will obviously affect the above-mentioned
decay modes.

Indeed, we note that the situation here is different
from the usual decays of 56 or 35 with L=O. Usually,
the prominent p-wave couplings (e.g. , A~Err and

p~xvr) are forbidden by the rest symmetry

[SU(6) XSU(6)] XO(3)

even to first order in the symmetry breaking. They are,
however, allowed by the collinear SU(6)s XO(2)r„
Here we deal with couplings that are allowed to first
order in the symmetry breaking even at the level of
the rest symmetry. Therefore, we should not be as-
tonished to find such a big eGect in the 8com system.

The generalization of the decay symmetry to ex-
tended quark models is straightforward. By adding
internal degrees of freedom, the discussed structure of
the decay symmetry remains untouched. ' The usual
L-excitation scheme adopted in quark-model assign-
ments involves at least an orbital SI.(2, C) spectrum-
generating algebra with generators L and Q (another
1 set). Additional collinear symmetries may exist
in Q, depending upon the explicit structure's of these
operators.

In summary, let us point out that the decay sym-
metry based on W and I., does not lead to contradic-
tions with Lorentz invariance. This can be directly
checked in the free-quark. field theory. It is the natural
extension of the 8'-spin symmetry defined for L=O
and can be formulated in an abstract way independent
of any particular model. This leads then to predictions
for collinear processes and can be simply generalized
for more complicated models. Its usefulness will become
clear as the structures of the various decay modes be-
come experimentally available.
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