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Selection Rule in the Quark Model and the Real Part of the
Forward Scattering Amplitude*
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The selection rule derived from vector-meson decay is further investigated. It is found that the selection
rule can be formulated consistently in the framework of field theory, if we work. with a quark. model with
three degrees of freedom. Applying this theory to evaluate the real part of the high-energy forward scattering
amplitudes, it is found that the fit with experiment is quite satisfactory.

I. INTRODUCTION

FTER the discovery of the P(1 ) meson it was
.L soon recognized that the physical states of p and

co are not in the pure irreducible representations of
5U(3). However, the recognition of p-a& mixing' was
not enough to explain the fact that the p meson decays
mainly into a XE pair but not into p~, and this led
Okubo' to introduce the following argument to get rid
of this difFiculty.

Consider that the vector mesons form a nonet and
write them in a 3X3 matrix defined by Vs= Vs+ sv3~o1.
Then the p meson, being the Vss component of Vs, can
only decay into a EI4 pair if one type of interaction,
Tr(V,PsPs), out of the possible SU(3)-invariant inter-
actions, is dominant and those such as Tr (Vs) Tr (PsPs)
and Tr(Vs) Tr(VsPs) do not exist.

Glashow and Socolow' applied this principle to the
decay of the 2+ meson and successfully explained the
fact that the f' meson only decays into a EK pair. It
was Iizuka' who expressed this principle in terms of
the quark coupling, by requiring that Fig. 1(a) should
be dominant while Fig. 1(b) is suppressed.

Assuming that the meson decay takes place through
the decay of one of the quarks or antiquarks in the
meson, Figs. 1 (a) and 1(b) are the same as Figs. 1 (a')
and 1(b'). In Figs 1(a') and 1(b'), respectively, it is
understood that 8-p and 8-8 form one of the decay-
produced mesons. The selection rule which forbids Fig.
1 (b) while allowing Fig. 1 (a) is hard to understand
field theoretically, since the antiquark in the final state
hardly knows which of the two quarks was in the ini-

tial state. This is clearly seen in the special case of y =5.
Ke would like to point out in this paper that this

kind of selection rule can be easily formulated in the
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framework of Geld theory if we work with parafermion
quarks' or three-triplet quarks. '

A quark field in these models is decomposed into t,",
where the upper suffix denotes the (P, X, or P and the
lower sufFix represents a Green's' component for the
parafermion quark or specifies a triplet for the three-
triplet model. The meson and baryon states are ex-
pressed in these theories' as

meson:
~

Ltr, P])= P g;* (k)b, *&(k')
~
0),

j=1

where we have omitted the properly weighted integra-
tions over 0, 0', and k" for the sake of simplicity. The
f,;& in Eq. (2) takes a nonzero value only when i&j&k.

Now let us supply the lower subscripts for quarks
participating the process of Figs. 1(a') and 1(b').
Since by Eq. (1) the decay-produced boson has to
be summed for quark-antiquark pairs with the same
lower subscripts, Figs. 1(a') and 1(b') should be ex-
pressed as Figs. 2(a) and 2(b), respectively. We can
now distinguish Fig. 2 (a) from Fig. 2 (b) because each
corresponds to different processes in terms of the de-

composed quark components. It is, then, not difficult
to build up a Hamiltonian model which leads to the
desired selection rule.

In Sec. III, such a Hamiltonian is actually derived
in the parafermion quark model. The equivalence of
this model to the three-triplet quark model is proved
in the Appendix. In Sec. II we discuss a possible conse-
quence of the selection rule. It is shown that high-

energy behavior of the real part of the forward scatter-
ing amplitudes can be well understood with this selec-
tion rule.

'H. S. Green, Phys. Rev. 90, 270 (1953); O. W. Greenberg,
Phys. Rev. Letters 13, 598 (1964).' Y. Nambu, in Proceedings of Second Coral Gables Conference
on Symmetry Principles at High Energy, University of Miami,
1965 (Freeman, San Francisco, 1965).
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II. REAL PART OF FORWARD SCATTERING
AMPLITUDES

Because of the crossing relation we have two types
of scattering diagrams (Fig. 3) which are obtainable
from Fig. 2(a). The characteristics of these two dia-
grams are that (a) there exist only exchange scattering
in terms of lower subscripts for quark-quark. scattering,
and (b) there exist p-quark and 8-antiquark scatter-
ing only when p=b. We would like to apply these
restrictions to high-energy forward scattering where no
complication~ of the quark distribution in the baryons
and mesons comes in. For this purpose we also assume
that (c) the forward scattering amplitude (FSA) is
given by a sum over the scattering amplitudes between
constituent quarks.

A remark should be added, however, before applying
the selection rule to the FSA, namely, that the restric-
tions (a) and (b) cannot be imposed on the theory in
general since the imaginary part of the FSA of the
nonexchanged process y;8,—&y;8, has to exist, owing to
the unitarity of the 5 matrix when there exist elastic
and inelastic processes of the exchanged type p,b,~,b;.
In other words, the restrictions (a) and (b) are masked
in the imaginary part of the FSA and the result derived
from only the assumption (c) was already discussed
by Lipkin and Scheck. ' For the real part of the FSA,
on the other hand, the restrictions may survive.

Since only y= tt processes in both (a) y;5,—+p,8, and
(b) y,y,—&8,6; can contribute to the elastic scattering, '

FIG. 2. Same as Figs. 1(a') and (b') but here the participating
quarks have lower indices. In (a) Z;y,4; and in (b) 5;5;5; form
the mesons.

the real part of the FSA can be expressed with the aid
of tao amplitudes A and A de6ned by

ReT (yy +yy) =—A,

ReT(yy~yy) = A,
(3)

Re (pp) = 5A,

Re(pg)) = SA.Re(E+p) = 2A,

We wish to note here that the rearrangement model
proposed by Rubinstein and Stern" corresponds to our
model with A=O except for Re(pp). The Re(pp) is
given in the rearrangement model spin dependently by

Re (pp) J=t ——(31/9) 2A, ,

Re(pp)g p
——(2/9)2A.

The ratio of the real part to the imaginary part of
the FSA is given from the optical theorem by

where we have assumed SU(3) invariance and spin
independence of the amplitude at high energy. The
real parts of the FSA for processes in which we are
interested are explicitly expressed as

Re(tr+p)=2A+A, Re(lt. p)=2A,

Re(tr—
p) = 2A. +A, (4)

n= ReT/2MPI o;.t, (5)

FIG. 1. Diagrams for a meson decay. In (a) each decay-
produced meson contains one of the quarks of the parent meson.
In (b) the created quark-antiquark pair forms one of the daughter
mesons. One of the quark lines is omitted from (a') and (b')
according to the assumption of the additivity of the quark model.

where M is the nucleon mass of the target and I'I, is
the momentum of the incoming particle in the labora-
tory system. The values of n calculated from Eq. (4),
using experimental values of n(tr+p) as inputs, " are
given in Table I. There we also show the theoretical
values calculated in the rearrangement model (n~).
For n~(pp) we took the spin-averaged value

fl Re(pp)~=t+l «(pp)z oj/2~I I~tot

It may be seen from Table I that the rearrangement
model is clearly in disagreement with experiment.

We may also consider a model which has no restric-
tion like (a) and (b). This is the kind of model con-

7 H. J. Lipkin, Phys. Rev. 183, 1221 (1969).
'H. J. Lipkin and H. Scheck, Phys. Rev. Letters 18, 347

(1967).
'In some elastic processes, such as pe —+pn and pA.—+pA, the

y=b scattering of 7;8;~y;5; can also contribute.

0 H. R. Rubinstein and H. Stern, Phys. Letters 21, 447 (1966);
M. Elitzur and H. R. Rubinstein, Phys. Rev. Letters 18, 417
(1967)."K. J. Foley et al. , Phys. Rev. Letters 18, 193 (1967); 18,
330 (1967); 18, 857 (1967); W. De Baere et a/. , Nuovo Cimento
45A, 885 (1966).
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TABLE I. Ratios (cz) of the real part to the imaginary part of the FSA at Pr, =g, 14, and 20 GeV/c. For experimental values of 0~,
and n„~,see Ref. 11.All n„„containsystematic errors of +0.02 besides errors given in the Table. rr„,&(E p) is consistent with 0. The
dispersion calculation gives (ops) ~—0.06 at 10 GeV/c.

FI. (Gev/c)
Experimental Our values

tot (mb) tX

Rearrangement
model Experimental

nexpt

8
14
20

8
14
20

8
14
20

8
14
20

8

20

8
14
20

27.6
25 ~ 9
25. 1

25.5
24.2
23.7

17.3
17.4
17.2

23.6
21.5
21.0

40.3
39.4
39.0

56.4
50.7
50.3

input

input

—0.30
—0.22
—0, 16

—0.06
—0.07
—0.08

—0.32
—0.25
—0.18

—0.06
—0.07
—0.08

input

—0.32
—0.28
—0.25

—0.47
—0.38
—0.35

—0.72
—0.62
—0.58

—0.15+0.02
—0.13+0.02
—0.12+0.02

—0.23+0.02
—0.19%0.02
—0.14+0.02

( u ) 0.31&0.21 at 3 Gev/c
0.45&0.14 at 5 GeV/c

f n /(0. 2

—0.33+0.01
—0.27~0.01
—0.20&0.01

—0.006+0.03+0.06 at 10 GeV/c

sidered by Lipkin and Scheck, but unlike the imaginary
part of the FSA, the real part is by no means positive
definite. Therefore we have to introduce six parameters
dined by

Re((P(P) =Re((PX) =P,
Re((PK) =P',

Re((P(P) = Re(XX)=P,
Re((P) ) =Re(X) )=P—5,
Re ((PK) = Re (X(P) = Re (KK) = Re (JIX)=P —8.

We have thus, instead of Eq. (4),

Re(n-+p) =3P+2P'+P,

Re(s —
p) =3P+P'+2P,

Re (E+p) =3P+3P' 3S, —

Re(E p) =2P+3P+P' 3S, —

tRe(pp) =9P,

Re(pS) =SP+4P'.

(4')

Reducing P, P, and P' from the experiments of n (~+p)
and n(pp), then at 8 Gev/c we get P/2MPr, 1.47—
mb, P'/2MPr, 1.1 mb, and P/2MP—r, 0.73 mb.
These values indicate that Re(IP(P) = Re((PK) and
Re((PX) are of almost the same magnitude, whereas

Re((P(P) has the opposite sign. This seems hard to
understand, because for the real part of the FSA only
the Born term is supposed to contribute, and there is
no reason for a difference in sign between Re((PK)
and Re((P(P) at high energy, which would be in con-
trast with the result Re((P(P)=Re((PX) that follows
from the assumption that there is no selection rule in
this model.

Besides this problem, if we proceed to evaluate
n(E+p), we have to assume again the value of the
parameter S in Eq. (4') and at the SU(3)-invariant
limit, that is, in the case 5=0, we get n(E+p) and
n(E p) at 8 GeV/c as —0.45 and —0.18, respectively.
In order to get values as small as our values of n(E"p),
we have to take S/P= 5/P'= 70%, which means very
large SU(3) breaking. In this regard it is highly de-
sirable to have accurate measurements of n(E+p) at
high energy.

Fro. 3. Diagrams for quark-quark and quark-antiquark scatter-
ing obtained by the crossing relation from Fig. 2(a).
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III. FORMULATION OF SELECTION RULE

We would like to construct in this section a Hamil-
tonian which leads to the selection rules (a) and (b).
For definiteness we shall assume that the t, 's are
Green's components and satisfy Green's commutation
relations, that is, fields with the same lower indices
anticommute, and those with different lower indices
commute. The coefficient in the baryon state in Eq.
(2), f;;I, », is in this case completely symmetric among
n, P, p andi, jk,, respectively.

The baryon and meson operators commute with
each other, and operators in a baryon operator also
commute with each other, because of Eqs. (1) and (2).
Therefore, the order of field operators in a baryon oper-
ator may be chosen arbitrarily, and we may write the
scattering amplitude between a meson and a baryon as

(CV', e'j('n't'
(

if&«—
( LV, ejM). (&)

Since we also assume by (c) that only one of the quarks
in each particle participates in the scattering and the
others go through without interaction, Eq. (7) can be
reduced to a sum over possible combinations of three
noninteracting quarks or antiquarks. For example, a
matrix element corresponding to a process, say, e—+~',

$—+$', 1~l' is given by

where use has been made of the property of f& that
f& „WO only if lAmAe and thus I has to be fixed
when / and e are fixed.

We shall study two types of Hamiltonian:

e,= Gf p g: (tprt p) (t.sn. t ):d'~, (9)
Zm aP

a, =Gf g g: (t,.n„-)(i.sr1P):d'x. (10)
Zm aP

A typical matrix element under the sum over /, m, e
in Eq. (g) is calculated, except for the common pro-
portionality factor —(2~)'V 'i''(k, +k&—k, —k& ), as
follows:

Q (h, 'y, '
) H

~ y,b;) 68

with only the term with 8~~ 8, ~, which leads to the
process p;8,—+p;8;. In the same way, the quark-antiquark
scattering g; (8,8 ~

if—Hdt
~
f,y ) contains only a

term proportional to 5» 8~~, which gives y,y,~5;8,.
The Hamiltonian we obtained in Eq. (13) can be

written in a form

a=-;G g (Zrl~, 1) (Zrl~, i), , g (14)

8

V„-=—Q Al, ~'& AI, &@V.
k—1

The negative sign in U«appears to be due to the
vector coupling of the Hamiltonian. Since

8

p AI, u A&&s~= —g/3 for q
—

q in the 3* representation
0=1

=4/3 for g
—

g in the 6

=16/3 for q
—g in the 1

= —2/3 for g
—

g in the 8,

(16)

it is predicted by Hori that pairs of q
—

q and q
—

g bind
only when the former is in the 3* representation and
the latter is in the singlet representation of the SU(3)
for lower suffices; namely, these are just cases given
by Eqs. (2) and (1), respectively.

The Hamiltonian (14) also leads to the nonet-type
meson-quark interactions, since a calculation similar
to Eqs. (11) and (12) shows that

(|," ~

a
~ g ~,~;~ )-~,,'~».t„.,

where g; 8,y, is considered as a representative of the
meson.

where I is the 3&(3 unit matrix operating in the space
spanned by upper indices, and At ~ As are 3X3 SU (3)
matrices for the lower indices of t; . If we take here the
vector coupling for r, the Hamiltonian (14) is the
same as the one proposed by Hori. " The potentials
among quarks and antiquarks are given, from Eq.
(14), by

8

V„=Q Ag&" AI, '2&V

k=1

&& {U(kg.)rU(ks)) {U(k, )I'U(k, ))
—25 5 (U(k, )rU(kp)){U(ks )I'U(k, )),

g (S,'~, '
~
11, ) ~,S,)-2S».S„.

X {U(k~ )rU(k&))(U(kv')rU(kv))
—6B„,g„,{U(k,, )r U(k, ))(U(k .)I'U(k, ) ).

Therefore if we take such a combination as

II=H2 —~Bl,

(12)

(13)

IV. DISCUSSION

We have shown that the strange selection rule de-
rived from meson decay can, indeed, be formulated
consistently if we work with the paraquark or the three-
triplet quark model instead of the usual quark. The
rather good fit to the experiments of our n, which is
derived under the selection rule, seems to give evidence
for the necessity of three degrees of extra freedom of
the quark, as in the case of both models.

We are aware in these calculations that the selection

the terms containing b~q. b». drop out and we are left r2 S. Hori, Progr. Theoret. Phys. (Kyoto) 36, 131 (1966).
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rule arid the nonet character of the Hamiltonian are
only true for the lowest-order calculation, so that we
can only apply our restrictions to phenomena where
the renormalization effects are supposed to be small.

The vector coupling in the Hamiltonian (14) is

equivalent to

IIg (iG/v——2 )iY„IA/.tW/, ,„', (17)
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APPENDIX

In this appendix we shall show that the selection
rules (a) and (b) follow from the same Hamiltonian

(13) in the case of the three-triplet model, ' too.
Let a, ' and u, '* be an annihilation and a creation

operator of a three-triplet quark model, and assume
that they satisfy the Fermi commutation relation. Then
the a; 's defined by

~ng ct —
g g ct' a3' ——ma. (A1)

satisfy Green's' commutation relation of the para-
statistics, where q, is an operator which anticommutes
with a, and commutes with a; if i/ j.The explicit form

mediated by vector mesons 8'I„„,which is in the singlet
of the ordinary SU(3) group and in the octet repre-
sentation of the SU(3) group for lower indices. Since
here we have no mixing of the representations in the
same SU(3) group, and also we have no renormaliza-
tion for the vector-meson coupling except for a common
Z3 factor in the limit of zero momentum transfer, the
form (17) remains unchanged in this limit even if we
take account of renormalization effects.

Therefore it may be reasonable to apply our restric-
tions to phenomena where the transferred momentum
is small and the contribution from the diagram with
one intermediate vector-boson exchange is dominant,
namely, to phenomena such as low-energy scattering
without nearby resonances, pp annihilations, and the
forward or backward peak of the quasielastic scatter-
ings. These will be discussed in forthcoming papers.

of q; is given by

g, = (—1)X;, (A2)

E'= ZZ Pa'* (k)a' (k) b'* (k)b' (k)j (A3)

and thus we have

(n )'=1
Now, in general, the Hamiltonian in the paraquark

model must be made up of products of the form

g t,'I'i, /', (A5)

in order to satisfy the causality" requirement. Indeed
our Harniltonia, n (9) is of this form, and (10) is also
reducible to products of the type (A5) by the Fierz
transformation, because iP commutes with g t„t ~.

Since from (A1) and (A4), we have

gt,-ns= gt -ri &, (A6)

we see that the Hamiltonians (9) and (10) are trans-
formed form-invariantly by the replacement t; —+t, '".

Because of the equality (A1), we have also

g a 8//b PP g a /g//b /gP (A7)

for the meson operator, and

oP Qyf //Py Q / Q// /gP ///y
g

//pp

Qk iyk

(AS)

for the baryon operator, where g;;I, » has the same
absolute value as f,,/, and has a negative sign when

(ij k) is an odd permutation of (123).Using Eqs. (A6)—
(A8) and also the relation g~g2g3

~
0)=

~
0), we are now

ready to see that

Eq. (8) = g g (a„,'&'a, '&'
~

if''dt )
a *&a '*—~)g,„„«r

lmn

&&(g-"'")*, (A9)

where H' is the Hamiltonian obtained from (13) by
replacing t—+t'.

The right-hand side of Eq. (A9) is nothing but the
matrix element for meson-baryon scattering calculated
in the three-triplet model, and this proves the equiva-
lence of the two models.

'3 V. Ohnuki and S. Kamefuchi, Phys. Rev. 170, 1279 (1968).


