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Scattering Theory of Resonance "Mixtures"
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The scattering amplitude for scattering through several resonances is derived and shown to be always a
sum of simple Breit-Wigner terms even for nontrival "particle mixtures. "The formalism affords a partic-
ularly simple interpretation of the nonexponential decay or "dipole" phenomenon.

& &HE intriguing problem of particle mixtures con-
tinues to be of physical interest, in the original E

meson problem' as well as in various analogies inspired

by the E system. ' For certain of these problems, such
as e+e ~p, or', where p and co are mixed by electro-
magnetic interactions or excitation of atomic levels
mixed by external fields, ' it would seem more natural
to have a version of the theory treated as a scattering
problem, rather than as, in the usual approach, an un-

stable particle problem. Thus a E' meson is thought
of as a resonance (a rather narrow one it must be
admitted) in 7ror, t tt, 3s, scattering.

It has been stated4 that the natural result one would

expect, namely, that the scattering matrix T is simply
a sum of Breit-Wigner resonance forms, is not generally
correct. It is cia,imed that in the case (such as seems to
apply for the E mesons) of nonorthogonal eigenvectors
of the "mass matrix, " the corresponding T matrix
would have to violate unitarity if it were just a sum
of Breit-Wigner forms. We will show that this is not
correct and that there exists a very simple, general
formulation for the T matrix for the resonance-mixture
problem which covers all cases and which aheays cor-
responds to a simple sum of Breit-Wigner forms.

To clarify the discussion, we start with the simple
single-resonance problem and then add on the compli-
cations.

SlMPLE RESONANCE

We proceed by solving the Schrodinger equation for
a Harniltonian Hp+V. The Hp operator has a multi-
channel continuous spectrum I i, k), . . . , I f, k) cor-
responding to initial and final plane-wave states of
momentum k, and a discrete state I n) Hp I n) = Z~ I n).
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(summed over all repeated indices).
Application of the Schrodinger equation and com-

parison, of the coeKcients of I i) and I n) lead to

~,(~-~.) =p„(k) &-I Vlj, »,
p"(k)L&—~(k)3=q'&k, jl Vln). (2b)

The solution to (2b), p q Vjl Z—E(k) $, is ambiguous
at 8= L~"(k); to have outgoing waves in (1) we use the
ie prescription, and to have an incoming plane wave
in channel i we add 8;;h(k —k;), giving

p,, (k) =8;tb(k —k;) +(p; (3)

Putting this p in (2a) then gives, for po,

(n I Vli, k;)
E &n I

V
I kj )&k—j I

—V
I n)/t:E —Z(k) Pie

(4)

Now, having found f+, we use 2'= (f, kr I
V

I
f+) to

get the scattering amplitude. Since V only connects
with

I n) in P+, we have

2'1'(&)

&f, kr I
V

I n) &n I
V

I i, k')
&—&-—&n I

V
I k, j& &k, j I

V
I n)/R —&(k)+iej

(3)

The integral in the denominator is

dk
' '

. (using V Hermitian),Z;I & I vlj, k)l'
E Ek +ie-

the real part being the level shift h(E) and the imagi-

nary part one-half the total width, ~~I'(E), giving the
usual Breit-Wigner form with the slight generalization
that 6, and p can depend on the energy.
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This is the assumption that there is a particle or level
which will give rise to a resonance when we "turn on"
V. For the moment, V only connects the continuum
states with I n) but not the continuum states with each
other.

We now look for a solution to (Hp+ V) P;,s,+=EP;,s,+

with P+ in the form

4*.s'+=9'I n)+p'(k) I j, k)
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FINAI -STATE INTERACTIONS

We can drop the restriction that the potential does
not interconnect continuum states by splitting a com-
pletely general potential into two terms, one (V) con-
necting only to

I n), the other (U) connecting contin-
uum states. If we now call the scattering solutions of
the P+ type for Ho+U, I i, k+), etc. , we see that the

above manipulations go through until Eq. (5) just as
well for Ho+ U+ V, by replacing I i, k&~

I ik+) E.qua-
tion (1) for f+ will again have the correct boundary
conditions since the term

I ik+ ) coming from the 8 func-
tion in p contains the plane wave. A detour is necessary
in the step before Eq. (5) since T= ( f, k

I
U+ V

I
P+&.

Using the two-potential theorem, ' the U dependence
can be brought into the wave functions, giving

f, kr—
I

V
I

~&&~
I

V
I
i k+&

(~ I V
I

—k,j+&&+k,j I
V

I ~&/t:&—&(k)+ie7
(6)

T is the scattering due to U as if V'were not present
at all, To (f, kr——

I
U

I
k;i+). We then have a com-

pletely rigorous form for the unstable particle resonance
in the presence of other interactions; it is again a simple
Breit-Wigner formula if the effects of U are smoothly
varying near E .

SEVERAL RESONANCES

In this case, instead of one discrete state in the spec-
trum of Ho+U, we have several:

I
o.&, I P), I y&, . . . ;

these are the ordinary orthogonal states, e.g. , E'L',
or the levels of an atom in the absence of coupling to
the radiation field. The calculations above can be re-
peated, keeping track of the additional index. Thus,
finally we arrive at T= To+Ta, where To is the "U-
only" scattering and the resonant scattering is

Tf"(E) =
& f kf

I
V

I
~—

&t.1I(~—E)7-s &l I
V

I
k'i+ &,

(7)

where 5R is a matrix in the discrete state subspace

&-I Vlk, j+&&+k, jl Vl~&'' =~."'+ ~-E(k) ';,

or
OR.l (&) =~-l (&)—sl'-s(&)

We have put the real level shift together with the 3P
which comes from the original resonance energies and
from V connecting I a&, I P& directly. Note that since
V is Hermitian, M and I' are Hermitian. We shall
assume that the number of eigenvectors (with nonzero
eigenvalue) is equal to the dimension of the discrete
subspace. This implies that M has an inverse. Aside
from this, it is clear that 5K is a completely arbitrary
matrix and that its eigenvectors are not necessarily
orthogonal. In particular, the expansion of the identity
in terms of eigenstates

I ri& of OR is not I rs&(n I, but
rather I=

I ri)g„(ni I, where g„(rn I p) = 8„„.The vec-
tor g (sn l is like the "dual" (si"

I
used by Sachs. '

Inserting this in (7) we get, with E„ the complex

eigenvalue for
I si&,

( f, k, I
V—I ri& (ris I V

I k, , i+ &
T sing

jV

9( f, kr I
V—

I e)g„„(ni I V I k, , i+ )
-E —E

which is the general solution to the problem and is
evidently just a sum of Breit-Wigner terms. Note,
however, that the numerator does not have exactly the
form supposed in Ref. 4.

Whether we wish to call the nonorthogonal eigen-
states I rr&, I sn), . . . of OR "particles" or not is some-
'what a matter of taste, but their physical significance
is clear; either as poles in T or from the time-dependent
point of view, they are those "directions" in the dis-
crete state subspace which do not get "rotated" as
time progresses. Since our S matrix is unitary, it of
course leaves orthogonal states orthogonal.

UNITARITY

Since our T comes from solving the Schrodinger
equation with a Hermitian Hamiltonian, it must neces-
sarily have unitarity, that is, S=1+iT is unitary.
Forgetting again for a moment the potential U and
thus the +, —signs in the wave functions, it is easy to
show by matrix manipulations that the form (7) gives
unitarity automatically if

-',
t OR —ORt7.,

= —i~(~ I
V Ij, k&(j, k I V I P&b(&—&(k)) (10)

That this condition holds is seen from (8). Now with
the "final-state interactions" U included, (1+i')
alone is not unitary, since (7) has a (—I

state on the
left and a, I +) on the right, while the same states on
both ends are needed to get (10). Using, however,
So= (—I +), we can write for our total scattering
matrix that

S= 1+iT +i' = 1+iTo+i T'~S'= (1+iT'a) S . (11)

' M. L. Goidberger and K. M. Watson, Collision Theory (Wiley, New York, 1964), p. 202.
SR. G. Sachs, Ann. Phys. (N.Y.) 22, 239 (1963).
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T'~ is (7) with
l

—) states on both sides, the I +)~
l
—) resulting from the application of S'. Now 1+iT'~

is unitary so S, the product of two unitary operators,
is also unitary.

BELL-STEINBERGER CONDITION

This condition is firstly a statement about the rela-
tion between the anti-Hermitian part of a general ma-
trix and its eigenvectors and, as such, has nothing to
do with unitarity. If

l
rt& and

l m) are eigenvectors of
matrix 5K with eigenvalues E„and E, it follows that

(rt I OR —KZt I m&= (8 —8 *)(I l
m). (12)

Unitarity now comes in since it has to do with the anti-
Hermitian part of our mass matrix, as explained above.
Now substituting

-,'Lm —mtj. ,= — s(z—A'(k) )

&& (~ I
V

I 7,j+&(+7,j I V
I p& (13)

for the left-hand side of Eq. (12), we get the Bell-
Steinberger conditions. Note that for N=m, (12) gives
ImE„ in terms of the matrix elements of V.

5R SYMMETRIC, T INVARIANCE

So far we have used no symmetry properties of H
(except, of course, that it is Herrnitian). In general,
there may be further simplifications; in the E' problem
with CI'T invariance, for example, the two diagonal
elements of 5R are equal. An important case is when we
have T (time-reversal) invariance. Then (oe I V I k, j+)
has the phase of the U-induced scattering in the channel

j (taken to be an eigenchannel of the U scattering),
and 3f p and F p are real and symmetric, and so 5K is
symmetric. Of course, in problems with atoms in ex-
ternal magnetic fields this may not be true, even though
T is not violated. If BR is symmetric, the general
formalism with the g„ is too complicated, since it can
be shown directly that the eigenvectors of a symmetric
matrix are "orthogonal" in the sense U(rt) U(m) =8„
(normalizing appropriately), where tilde means transpose.

Now going back to quantum-mechanical notation,
suppose that we have an eigenstate of BR expressed in
terms of the discrete level subspace

l
m)=a

l n)+
foal P)+ ~ ~ ~ . The transpose vector U(m) that we want
is then (n l a+(p l

b+ ~ ~ ~, that is, the vector (Tm l,
where T is the usual time-reversal operator' and where
we have chosen

l n), p) to be eigenstates of T. Now
we have I=

l m)(Tm, so (7) becomes

(-f, ~
I vl &(T lvl~. ', +&

E —E

' J. S. Bell end J. Steinberger, in Prooeedhegs of the Oxford
International Conference on Elementary Particles, 1965 (Ruther-
ford Laboratory, Chilton, Berkshire, England, 1966).' 6, C. Wick, Ann. Rev. Nucl, Sci. 8 (1958), Eq. 53,

Now using
l
T+)=

l

—), the nature of T operation, '
T invariance for V, and finally the Hermiticity of V,
we get

(—f, u, l vlm)( —t, u,
l vlm)

E —E
Here, time-reversal symmetry Ty; ——T;y is explicit. Note
again that the numerator, even without final-state inter-
actions, does not have the form suggested in Ref. 4.
Because of the special character of the intermediate
states

l m), essentially the imaginary parts of the

(f l
V

l
m) are correlated, so that unitarity is fulfilled

without the numerator being a projection operator.
Attention should be paid to the fact that although
with T invariance the (f l

V
l

n&-type matrix elements
are real, the (f l

V
l m) are not, because of the mixing

effects.
TIME DEPENDENCE

To assure ourselves that these results correspond to
nothing unusual from the time-dependent point of
view, let us see briefly how to arrive at the analog of
the conventional results. We start from a vector,

l y&,
lying entirely in the discrete "particle" subspace. This
represents the state at t=0. After a time t, it becomes
exp( —iHt)

l y), and we want the probability ampli-
tude for a component, say, l 8), remaining in the discrete
subspace, namely, (8 l exp( —iHt)

l p&. Expanding in
terms of the P,t, we have

(8 l exp( —iHt) l y& = (8 l 4,') exp( —iE,t) Qr,' l y),

where E is the energy of the state i.
Now from the generalization of Eq. (1) to the

several-resonance case, we have

(h I 4")=~'.e,

and from the generalization of Eq. (4), we have

&,=L1/(Di~:—z)g,.(~ l v [t). (16)

Equation (15) now becomes, using the Hermiticity of V,

exp( —tE't) Il:1/(~—&') 3V I t&(' I
Vl:1/(Sit' —» jIe .

(17)

Now the continuum state
l
i) in the sum has the

energy E;, so that V
l
t')(i

l
V is just, from Eq. (10),

the anti-Hermitian part of the mass matrix at energy E.
Then with

mz —mt = (mz —z) —(mzt —z),
we have

Le
—'~')/2tvr

&& IL1/(~-~) j—L1/(~~E)]I,. (»)
Equation (18) corresponds to the conventional re-

sult, since with the assumption that E can be taken to
run from —~ to +~ and the assumption that 5K(E)
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is approximately constant, the 1/(O)Z —E) term gives
an exponential in the Fourier transform while the 5R+
term gives zero. We have then the anticipated time de-
pendence. In terms of the

~ n) eigenvectors of OE, so
that

~
y)=C„~ e), we have, for the evolution of the

state vector in the discrete "particle" subspace,

exp( —iBt)
~
y)~exp( —iE„t)C„~ e) .(19)

DEGENERACY OF EIGENVECTORS)
NONEXPONENTIAL DECAY

So far we have assumed that eigenvectors of 5K span
the space of BR, i.e., if BR is age then there are rI,

linearly independent eigenvectors. Now it can happen,
as we vary some parameters of the system, that two
eigenvectors come closer and closer together and in
the limit merge into one or, more generally, the num-
ber of eigenvectors becomes less than the dimension of
the space. This can occur because of the special kind
of "orthogonality" used between diferent eigenvectors.
Note that even for the case of 5K svmmetric, the vectors

((
1

I ((
1

&~+8
'

\
—1/(~+8))

obey U&U2=0, although in the limit 8~0 they become
identical.

This kind of behavior is not necessarily related to
the invertability of 5R, incidentally. Observe that even
if 5K does become singular, meaning that there is a
vector v such that 5@@=0,5K—E will generally have
an inverse, which is suKcient for the operations used
above. This corresponds then to a stable state with a
purely real eigenvalue (E=O), but (12) and (13) with
m=m tells us that states with real eigenvalues are,
naturally, not coupled to the continuum. Thus the
singularity of 5K or, more generally, the existence of
real eigenvalues (for then a simple change of energy
scale make OR singular) is related to the question of the
existence of stable states.

The degeneration of eigerlvectors, however, is related
to the "dipole" or nonexponential decay phenomena'

' For a recent discussion and a report of experimental work on
the eBect in atoms, see J. Dupont-koc, These de 3e Cycle,
Laboratorie de 1'Ecoje Normale Sup6rieure, Paris (unpublished);
J. Dupont-Roc, N. Polonsky, and C. Cohen-Tannoudji, Compt.
Rend. 266, 613 (1968). A general formula for scattering through
two atomic levels in an external Geld is given by K. E. Lassila
and V. Ruuskanen, Phys. Rev. Letters 17, 490 (1966); see also
M. L. Goldberger and K. M. Watson, Phys. Rev. 136, S1472
(1964); Collision Theory (Wiley, New York, 1964), Ch. 8; J. S.
Sell and C. J. Goebel, Phys. Rev. 138, S1198 (1965);H. Osborn,
r'bid 145, 1272 (1966).; L. Mower, i br'd. 142, 799 (1966).

in which the scattering amplitude has a double-humped
structure as a function of energy and, correspondingly,
the system has a nonexponential decay in time.

Consider two eigenvectors which are very close to-
gether, but not exactly degenerate —that simp1y being
a mathematical "point" without physical realizability.
Being nearly "parallel, " they have almost exactly equal
eigenvalues also. Now consider the system placed in a
state which has .components outside of the limiting
degenerate vector which the two vectors approach.
These components must be resolved in terms of the
two almost. degenerate vectors, and the decay of the
system in time will involve the difference of two almost
equal exponentials, which for a 6nite time acts like a
linear term in t times the exponential; as the limit is
approached, this time becomes longer and longer. Thus
physically, in eGect, we always have two states with
ordinary exponential decays but, as they become paral-
lel, there is only one "direction" which decays as a
amplitude as they have.

Note that the term dipole "state" is therefore some-
thing of a misnomer, since there is actually no state
in a direction outside of that of the degenerate vector
which remains invariant as t increases even in the limit.
If we start the system with a vector in a general direc-
tion, it is continually rotated and projected on the
degenerate vector as time goes on.

From the point of view of the scattering amplitude,
our Eq. (14) with two resonances can be manipulated
into the form of Eq. (1) of I.assila and Ruuskanen, '
with appropriate changes in notation, so we arrive at
the same description of the energy dependence of the
amplitude as they have.

Finally, we note that if two eigenvalues were to
become the same while the eigenvectors remained dis-
tinct, then any vector in the corresponding subspace
would be an eigenvector and then 5R is a multiple of
the identity there. Thus, in terms of the BR matrix, a
criterion for the eftect is a degeneracy of eigenvalues
while the corresponding part of 5R is not proportional
to the identity matrix.
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