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Broken chiral SU(3) && SU(3) symmetry is considered by extending the Glashow-Weinberg-Berdeen-Lee
scheme to include spin-1 mesons. Vector-meson decays and E&& decays are treated on the basis of the resultant
Lagrangian. Numerical estimates are made on the assumption of nonet symmetry, at the S17(3) level,
for the spin-1 mesons. It is found that Fx/F 1.10,f+(0) 0.96, r" =f (0)/f+(0) ——0.048, X+—0.022, and
P.=—0.002.

I. INTRODUCTION

MHIRAL SU(2) XSU(2) dynamics, ' which in-
& corporates the notion of chiral SU(2) XSU(2)

symmetry, the hypothesis of a partially conserved,
axial-vector current (PCAC), and vector-meson
dominance in a phenomenological Lagrangian, has been
extremely useful in correlating the low-energy param-
eters of the low-lying "particle" states. It reproduces
all previous low-energy results of current-algebra
calculations in a compact and convenient way and
provides a suitable basis for further dynamical cal-
culations. An attempt2 has been made to attach a
fundamental meaning to such a Lagrangian by as-
surning that it is actually the basic Lagrangian, valid
to arbitrarily short distances. We have no doubt that
an attempt like this, firstly, is interesting and valuable,
and secondly, will provide a simple and concrete field-
theoretical model over the whole energy range. Never-
theless, we shall hold the more conservative point of
view that the various Lagrangians in chiral dynamics
are only partial and approximate representations of
the real physical world in the low-energy region.

Generalization of SU(2) XSU(2) chiral dynamics
to the case of SU(3) XSU(3) is naturally called for.
But, in this case, one is somewhat plagued by one' s
ignorance of how to introduce symmetry breaking.
While there are the Goldberger- Treiman relations, ' the
Adler self-consistency condition, ' and the Adler-
Weisberger relation' as built-in guarantees for the
approximate validity of the PCAC hypothesis in the
case of SU(2) XSU(2), one has no comparable guide in
introducing SU(3) XSU(3) -symmetry breaking. Even
if one is willing to assume PCAC, say, for the strange-
ness-changing axial-vector current (with its divergence

*Research partially supported by U.S. Atomic Energy Com-
mission through Contract No. AT(30-1)3668B.' J. Schwinger, Phys. Letters 248, 473 (1967). An extensive
list of references can be found in S. Weinberg, Rapporteur's
Talk in I'roceedings of the Fogrteenth International Conference on
High-Energy Physics, Uienna, lP68 {CERN, Geneva, 1968) .'T. D. Lee, B. Zumino, and S. Weinberg, Phys. Rev. Letters
18, 1029 {1967).

'M. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354
(1958).

'-- S.L. Adler, Phys. Rev. 13V, B1022 (1965);139$1638 (1965).' W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965); S. L.
Adler, iNd. 14, 1051 (1965).
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dominated by the E meson), for which there is some
evidence, 6 one is still confronted with dificult questions
in regard to the strangeness-changing vector current:
Is a partial conservation of vector current (PCVC)
hypothesis to be adopted? Also, does there exist a
T= —,

' strange scalar meson?
Broken chiral SU(3) XSU(3) Lagrangians have been

discussed by various authors, 7 ' mostly on the basis of
the SU(3) o. model. Of particular interest to us is the
work of Bardeen and Lee.' One of the schemes obtained

by Bardeen and Lee assumes the existence of a pseudo-
scalar octet and a T'=~ strange scalar meson ~. This
scheme is essentially the one previously considered by
Glashow and Weinberg. ' In both of these works,
spin-1 mesons were not directly brought into the
system. The purpose of the present work is to generalize
the Glashow-Weinberg-Bardeen-Lee scheme to include
the spin-1 mesons, similar to what is done in Ref. 11.
By doing this, we expect to obtain more detailed results
than these authors did. The Lagrangian so obtained will

then provide a suitable basis for a systematic and
correlated discussion of the meson decays and X&3 and
E~4 form factors. It could also be used for further
dynamical calculations, such as the decay rate of
IC+-+x+x'. In the present paper, we shall report the
results on meson decays and E&3 form factors. In a,

subsequent paper, calculations on E~4 form factors will

be reported.
The inclusion of the spin-1 mesons has been discussed

by Gasiorowicz and Germen, ' and others. " In our
present consideration, the parametrization of symmetry
breaking is guided by the principle of simplicity, and is

'See, e.g. , W. I. Weisberger, Phys. Rev. 143, 1302 (1966);
H. T. Nieh, Phys. Rev. Letters 20, 1254 (1968).

7 M. Levy, Nuovo Cimento 52, 23 (1967).
8 S. Gasiorowicz and D. Geffen, Argonne Lecture Notes, 1968

(unpublished). This work has considerably iniiuenced our nota-
tion in this paper. An excellent review article on the subject of
phenomenological Lagrangians by these authors has recently
appeared; S. Gasiorowicz and D. Geffen, Rev. Mod. Phys. 41, 531
(1969).' W. A. Bardeen and B.W. Lee, Phys. Rev. 17'I, 2389 (1969).

S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968). See also L. N. Chang and Y. C. Leung, ibid. 21, 122
(1968)."B.W. Lee and H. T. Nieh, Phys. Rev. 166, 1506 {1968).

"References can be found in the review article by Gasiorowicz
and Germen (Ref. 8).
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introduced to reflect the underlying chiral symmetry
and the octet breaking implied. by the Gell-Mann-
Okubo mass formula. On the basis of the quantum
action principle, " a simple derivation of the char-
acteristic relations of the so-called "field algebra" is
presented. The absence of the "mass-mixing"-type
symmetry breaking for spin-1 mesons is seen to be
related to the requirement that the space components
of the currents transform as octets. After redefinition
(or renormalization) of the fields has been carried out,
explicit expressions for the various coupling and decay
constants are obtained. %e shall also demonstrate the
Ademollo- Gatto theorem' and obtain an explicit
expression for the Eis renormalization factor f+(0) .

Numerical estimates of the various parameters are
obtained on the basis of the assumed nonet symmetry,
at the level of SU(3), for the vector mesons. Using the
masses as inputs, we estimate that

F~/F 1.10, f~ (0) 0.96,

in reasonable agreement with the present empirical
result" (on the basis of the Cabibbo theory")

I"x/I"=I 19f+(o) .

Our finding indicates that the SU(3) -symmetry-
breaking effect on f+ (0) is significant but not intolerably
large.

In Sec. IX, we express the ratios

I'(E*~E+v)/I'(p~2v), I'(Ai—&p+rr)/I'(p~27r),

and
I'(E~~E*+v-)/I'(~2v)

in terms of parameter b. With 8= —4, the ratios are,
respectively, 0.39, 0.60, and 0.85. In Sec. X, we present
the results of a detailed calculation of the Eg form
factors based on the Lagrangian and currents we have
obtained. Using as inputs the values estimated in the
earlier sections for the various parameters, we obtain

~(0) =f (0)/f+(0)= 0 048, k—„=.0.022, )~=0.051.

Since our main interests, at the moment, are the
dynamical properties of physical systems involving the
hadrons m, E, A~, E~, p, and E*, and also because of
the singlet-octet mixing complication, we shall in the

"J.Schwinger, Phys. Rev. 82, 914 (1951);91, 713 (1953).For
a brief introduction to the quantum action principle, see J.
Schwinger, in Lectures on Particles and Field Theory, Summer
School Proceedings, Brandei s Uni versi ty, 1964 (Prentice-Hall,
Englewood Cliffs, N.J., 1965), Vol. II.

' M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264
(1964); C. Bouchiat and Ph. Meyer, Nuovo Cimento 24, 1122
(1964); S. Fubini and G. Furlan, Physics 1, 229 (1964)."The decay rates for E+~7I'+e++v, E+—+p++v, and ~+—+p++v
which we adopt are those of N. Barash-Schmidt, A. Barbaro-
Galtieri, L. R. Price, Matts Roos, A. H. Rosenfeld, Paul Soding,
C. G. Wohl, M. Roos, and G. Conforto, Rev. Mod. Phys. 41, 109
(1969). We also take X+=0.02, where )+ is the usual slope param-
eter for the E~3 form factor f+."¹Csbibbo, Phys. Rev. Letters 10, 531 (1963).

8S'g2=— d4x (rn'/g) 9&(x) r) bm(x)

$]

de 822 g yo x ~ 640 s
t2

+ d4x (nz'/g) r)„9"(x) bm(x), (3.)

where the spatial surface term has been neglected.
Firstly, the principle of stationary action implies the
field equation

a„9s(x) =0. (4)

Secondly, the generator which induces the trans-
formation (2) for the independent retd variables 9i(x)
(k = 1, 2, 3) is identified as

G(t) = —fd'x (ms/g) go(x) bm(x).
' C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954) .

present paper ignore the isoscalar 0 and 1+ mesons.
However, we shall assume the nonet symmetry, at the
level of SU(3), for the vector mesons.

II. TRANSFORMATIONS AND GENERATORS

The quantum action principle can be considered as
the starting point of any Lagrangian field theory. It
contains both the field equati. ons and the canonical
commutation relations. While the field equations are
obtained by requiring that the action be stationary
with respect to field variations within the boundary,
the canonical commutation relations are inferred
through the quantum-mechanical interpretation by
identifying the (time) surface term as the infinitesimal
generator for the unitary transformation corresponding
to the freedom of changing description of the quantum-
mechanical system in question. The action principle,
therefore, appears suitable for discussing the chiral
transformations and the related commutation relations.
In particular, the currents and their divergences can be
easily and naturally identified. As an illustration, we
consider in this section the massive SU(2) Yang-Mills
fields.

The Lagrangian for the massive SU(2) Yang-Mills
field'7 can be written in the form

Z=ZO ——m g
.g"

where Zo, which, in general, contains fields other y„, is
invariant under the infinitesimal isotopic-spin gauge
transformation

bg„(x) = —bm(x) &&9„(x)+(1/g) r)„bm(x) (2)

and the corresponding isotopic-spin transformations for
other fields. The change induced by these trans-
formations in the action

W= fd4x Z(x)
is given by
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This, of course, means that (x'= t)

bei(x) =it:G(t) e~(x) j
or, with x'=x",
i fd'x' L

—(m'/g) y'(x') .be(*'), yi(x) i

(6)

By specifying bm(x) to be a constant in (5), the isospin
charge is identified to be

Q.= Jd'x (m'/g) ti'(x), (9)
which sa, tisfies the SU(2) I.ie algebra

LQ-, Qp7=&e-p Q..
The isospin current is thus identified to be

(10)

which is also consistent with (8) . In virtue of the field
equation (4), the current is conserved:

a„j:(x)=0. (12)

The charge algebra (10) implies the following equal-
time commutation relation for the charge density:

Lj '(x, t), jp'(x', t)]=ie.» j„'(x)b(x x')+~„pe—o(x, x'),

(13)
where v p" (x, x') is antisymmetric with respect to the
interchange n~P, x~x', and satisfies

fd'x d'x' r p" (x, x') =0. (14)

The exact form of r pM(x, x') is dependent on dynamics,
i.e., on the equation of motion for p, '(x) .

The commutation relation (8), and the usual equal-
time commutation relations for independent field
variables (i, j= 1, 2, 3),

Lp '(x, t), pp&'(x', t) j=0,
or, on account of field-current identity (11),

t' j '(x, t),jp'(x', t) (=0, (16)

are characteristic of what is known as "field algebra, '"
which includes, in addition to (8) and (16), the follow-
ing equal-time commutation relations for the charge
densities:

p j 0(x, t), jp"(x', t) j=ie~p~j„o(x)b(x x'). (1—7)

The unique feature of this model lies in its complete
specification of the Schwinger terms as well as the
space-space current-density commutation relations.

= —be)(x) Xpi(x)+ (1/g) Bj,bm(x), (7)

which implies that

k(m'/g) P-'(x', t), (m'ig) Pp'(», t) j
=ie.p, (m'/g) p,"(x)b(x —x')+ib.p(m'/g) 8"b(x—x').

M p= (2+iII) p,

M pt ——(Z —iII).p,

(18)

where Z and II are the usual 3&(3 Hermitian matrices
for the scalar and pseudoscalar nonets, respectively.
The Lagrangian considered by Bardeen and Lee is

&= —-', TrBI'MB„Mt ',p'PTrMM—t+-Hj
+TrA (M+ Mt), (19)

where H is an arbitrary polynomial in chiral SU(3) X
SU(3) invariants. By assuming that the vacuum
expectation values of the scalar fields

(20)

are not identically zero, the model is studied in the
p,'~~ limit. With the help of a canonical trans-
formations, the Lagrangian, in the limit y —+~, can be
electively brought to the form

2 = —-', TrB"3A„Mt+TrA (M+Mt)

or, equivalently,

2= —
~ Tr(8&IIB„II+8&ZB„Z)+2Tr(AZ), (21)

where M is expressed in terms of the newly introduced
scalar and pseudoscalar octet fields S p and J' p.

M=Z+ill=exp(iP) exp(iS)F exp( —iS) exp(iP).

(22)

The number and nature of the particles present in
(22) depend upon the form of the numerical matrix Ii.
Among all the possible cases enumerated by Bardeep

While these latter commutation relations are due to the
dynamical independence of the corresponding 6eld
variables, it is clear from our derivation of (8) that the
structure of the Schwinger term is a reQection of the
structure of the gauge term in (2) .

We might mention that one advantage of our
derivation of (8) lies in its bypassing the field equations
and the canonical quantization rules for the field
variables, which could be quite involved for complicated
interaction terms contained in go of (1). (In our later
consideration, we do have complicated interaction
terms. )

III. BROKEN CHIRAL SYMMETRY FOR
SPIN-0 MESONS

For completeness, we shall briefly recount some of
the results obtained by Bardeen and Lee.' This also
serves to introduce some of the notation we need in the
present paper. These authors discuss the breakdown of
the chiral SU(3) XSU(3) symmetry on the basis of a
generalized 0. model. In this model, nonets of the scalar
and pseudoscalar fields are assigned to the (8, 8)+
(8, 8) representation of the chiral SU(3) XSU(3):
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and Lee, two are of particular physical relevance:

(i) The octet of pseudoscalar mesons is present.
The SU(3) symmetry is intriesicatly broken. The
corresponding F is proportional to the unit matrix

P= ( f/v2)1 (23)

and 3f contains only I',
M= ( f/N) exp(2'). (24)

(ii) The octet of pseudoscalar mesons and a T=
strange scalar meson a are present. The SU(3) sym-
metry is both intrinsically and spontumeolsly broken.
The corresponding E is of the form

fo]lowing changes:

~-V.= (i/&2) [~, V.j+(1/g) ~.~,

B„A„=(i/V2) [0~, A„j,
S„II=(i/v2) [~, IIj,
&-Z= ('/&2) [,Zj,

V„= (i/&2) P, , A

~».= ('/&2) P, V.7+(1/g) ~.~,

Bill= (i/V2) (X, Z},
biZ= —(1/V2) jX, II}.

(32)

P= (f/&2) (25)

The dynamics of spin-0 and spin-1 mesons are closely
correlated. , as is revealed by the study of the SU(2) X
SU(2) chiral dynamics. In this section we shall con-
sider the system, in the framework of a broken SU(3) X
SU(3) symmetry, of spin-0 and spin-1 particles.

The simplest SU(3) XSU(3) symmetric Lagrangian
for the massive Yang-Mills fields and the spin-0 mesons
can be immediately written down':

Z = 'Tr(P P—~"+-G G~") ', m'Tr(V„V~+—A-„A~)

——,
' Tr(B„IIA~II+h„ZA~Z), (26)

where, with the obvious 3X3 matrix notation,

P„„=B„V„B„V„i(g/&2)[V„,—V„$ i—(g/v2)—[A„,A„j,
(27)

G„„=B„A. B,A„—i(g/v2)[—V„, A.j—i(g/&2)[A„, V„)
=—D„A„—D„A„, (28)

E„II=B„II i (g/V2) [V„,IIj——(g/V2) I A„, Z }
—=D„II—(g/v2) IA„, Z}, (29)

D„Z=B„Z i(g/&2) [—V„, Zj+ (g/v2) {A„,II}
—=D„Zy (g/v2) IA„, II}. (30)

Under infinitesimal SU(3) XSU(3) local gauge trans-
formations, thy yprious field variables undergo the

where m&1, 0, —1.

In both of these cases, 02' and v2fS are to be
interpreted as the usual 3&3 Hermitian matrices for
the octets. In case (ii), a wave-function renormalization
of the appropriate fields is further required. In the
following sections we shall treat these two schemes on
the same basis by not restricting the value of m.

IV. BROKEN CHIRAL SYMMETRY FOR SPIN-0
A.5'D SPIN-1 MESONS

The variables F„„,G„„, h„Z, and Q„II have been con-
structed in such a way that they undergo changes in
exactly the same manner as the corresponding field
variables listed above, except that the inhomogeneous
gauge terms are absent.

There is another SU(3) XSU(3) symmetric term
one can easily construct:

~.'='(2&2)-'(~/ ') g T (P..[~"Il, ~ IIj
+P,[h~Z 5"Zj—2iG„„IA~Z, A"II}). (33)

This is the counterpart of the 5 term in Ref. 18.
The chiral SU(3) XSU(3) symmetry is broken into

the ordinary SU(3) symmetry when a term 2& is
a,dded to 20+20'. To have the PCAC equation at the
SU(3) level, 2& is simply chosen to be

Zy= 2Q TlZ.

Next, another piece Z8 is introduced to break the
SU(3) symmetry. Octet dominance together with our
intention of preserving the PCAC conditions at the
SU(2) level suggest the following simple parametriza-
tion:

&0————,$(P P "+G G ")»—g'nP(V V~+A A~)

—q(A„IIA~II+h„Zh~Z)»+2a'Z», (35)

where we have also invoked the underlying symmetry
between the 1+ and 1 states to assume the same sym-
metry-breaking parameters for both.

Our consideration of the broken SU(3) X SU(3)
symmetry is based on the-Lagrangian

~0+~0 +@1++8. (36)

Before going on, we remark that in order to account for
the phenomenological findings about the singlet-octet
mixing in the case of 0 and 1+ mesons, an additional
piece has to be introduced into the Lagrangian, thus
increasing the number of parameters. Since this mixing
is a less interesting problem, and since we are presently
primarily interested in the dynamical properties of

' H. J. Schnitzer and S. steinberg„Phys, Rev. 164, 1828
(1967).
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bosons with nonvanishing isotopic spin, we shall not in
this paper be concerned with the addition piece in g.
For the 1 particles, it is well known that the nonet
symmetry, at the level of SU(3), is good. This nonet
symmetry for 1 particles we shall assume throughout
this paper, although most results of the ensuing sections
are independent of this assumption. The numerical
estimates in Sec. VIII, however, depends on this
assumption.

According to the quantum action principle, the
(time-) surface term in the action variation bW is to
be identified with the generator for the corresponding
infinitesimal transformation. The change induced in
the Lagrangian by the SU(3) XSU(3) local gauge
transforrnations (31) and (32) is given by

(37)
where

B„L,= —(m'/g) Tr(V&B„(e) $'(—m' /g) I V+, B„re}ss

1, 2, . . . , 8)
LQ., Q,7 =if.„Q

[Q- Qs'7= &f-s~Q~' (44)

I Q-', Qs'7 = sf-s.Qv,

where (X being the canonical Gell-Mann matrices)

Q.= (1/C2) Tr).Q, etc. (45)

The currents are then identified to be

j"= (m'/g) [V"+6'I~, V"}7,

j'"= (m'/g) LA"+&'I~s, A"}7.

Ke shall now see that j& and j'& given above can trans-
form as SU(3) octets only if $'=0." Since G„and Gz
are the generators which induce transformations (31)
and (32), respectively, for the iedependemt fi eld variables,
we have

[G-(i), V"( ) 7= ( /&2) L V"7+(1/g) ~"

+ (term proportional to b~), (38)

b,Z= —(ms/g) Tr(A~a„) ) ~'( m/sg) I A~, a„) }ss

i[G„(t),A"(x) 7 = (i/&2) [re, A "7,

i[Gg(i), V"(x) 7 = (i/v2) P, A "7, (48)

+ (term proportional to Q,). (39)

For simplicity, we have not given explicit expressions
for the terms proportional to Ro and Q. Identifying the
time-surface terms in BIV gives, in analogy with (5),
rise to the following expressions for the generators of
the infinitesimal SU(3) XSU(3) local gauge trans-
formations:

G„(t) = —fd'x (m'/g)

XT.[V(*) (.)+~~,~V(.),.(.)}7, (40)

Gg(t) = —fd'x (m'/g)

X Tr[A (x) X(x)+&'hsIAo(x), ) (x) }7, (41)

where ds is the 3&3 numerical matrix

i[Gx(t), As(x) 7= (i/&2) P., Vs7+ (1/g) 89..
In particular, for re = const, we have from (47) that

[Q-, Vs"7=if-s~Vv"

This expresses the fact that V~ transforms as an octet.
It is then clear from (47) that j" will transform as an
octet if and only if $'=0. We would like to emphasize
two points: (i) j" should transform as an octet with or
wit.hout assuming $'=0. (ii) For a symmetry which is
broken, Q depends on time and there is no a Priori
reason to require j~ to have the same internal trans-
formation property as j . Notwithstanding, it is attrac-
tive, and a common practice, to assume the same trans-
formation property for j' and j".That is, we will require
j~ to transform as an octet and take

(o
$/ 0,

then the currents become

j~= (m'/g) V~,

j'~= (m'/g) A~.

(50)

(51)

Q(&) = (m'ig) fd'x [V'(x)+&'I &, V'(*) }7,

The SU(3) charges and axial charges are identified by As is clear from (46)—(48), a bY-Product of $'=0 is
the equality of all Schwinger terms for vector and axial-
vector currents. [Compare with the derivation of (8)
from (7).7 This, in turn, implies" the validity of the

Q'(t) = (m'/g) fd'x [A'(x)+P'I ha, A'(x) }7, (43)

with obvious 3)&3 matrix notiatons. The generators
must necessarily satisfy the Lie algebra of the SU(3) X
SU(3) transformation group. That is, the charges must
satisfy the equal-time commutation relations (n, P, y=

"This has previously been recognized by I. Kimel, Phys. Rev.
Letters 21, 177 (1968); K. Kang, Phys. Rev. 177, 2439 (1969).
Our conclusion is more general than those of these author's in
that the invariant Lagrangian Lo in (36) can be arbitrarily general
in so far as it is invariant under the 5U{3))& SU(3) local gauge
transformations (31) and (32).

'0 See, e.g. , H. T. Mich, Phys. Rev. 163, 1769 {1967).



H. T. NIEH AND H. S. TSAO

first Weinberg sum rules" for SU(3) XSU(3). We
shall explicitly verify these sum rules later.

V. IDENTIFICATION OF PHYSICAL PARTICLES

Because of the coupling between spin-1 and spin-0
mesons and the symmetry-breaking eGects, a re-
normalization and diagonalization process is, in general,
required to cast the Lagrangian 2 into a form having
the usual structure of the kinetic-energy term and the
mass term. Since the procedure is familiar, " we will

only present the results without giving the details.
In terms of the unrenorrnalized field variables

appearing in the Lagrangian 2, the physical p, A&, EC*,

and E& particles are represented by the renorrnalized
6elds V,&, A&,&, Vz*&, and Az, &, respectively:

(52)

(53)A„.=A„—(gf/M„') (D rr). ,

V»'4=Z» "'I V» "—Z» (gt/~»*') (I+a)
X[( —1)/2 ](&"&).}, (54)

A»."=Z» '"IA»." Z». (—gf/~». ') (1+&)

X[-', (1+w)](D 11) }, (55)
where

D&II—=8&II—(zg/&2) [Vi', ll],
n~Z= B~Z+ (g/—i/2) IA~, II}, (56)

and the expressions for the masses and the wave-
function renormalization constants will be given below.
With the definition

(57)

for the spin-0 fields, we have

Z»e=Z»„——(1+$) ', (5S)

Z.=[m'+ (gf)'7/mz=Mg '/M' (59)

Z»= Im'+ (1+v) [l (1+w) ]'(gf)'}
X I (1+q) [-', (1+w) 7'm'} —', (60)

Z. = Im'+ (I+~)[l (w —1)7'(gf)'}
X I (1+q) [-,'(w —1)]'m'} '. (61)

The masses of the various particles are given by
M'=3f '=m' (62)

M '=m'/(1+2$) (63)
~»*'= Im'+ (I+n) [z (w —1)7(gf)'}/(I+&), (64)

M~,' ——m'+ (gf) ', (65)

~ .'= ( '+(1+ ) I:—:( +1)7'(gf)'}/(1+5), (66)

M '=Z 2v2 /f,a (67)

m '= (Z /Z. ) [1+(a'/2a)][-;(1+w)]m. , (6S)

~.= (Z./Z-) I:a'/(2a) 7[2 (w —1)7~-' (69)
"S, Weinberg, Phys. Rev. Letters 18, 507 (1967); S, L.

Glashow, H. Schnitzer, and S. Weinberg, ibid. 19, 139 (1967);
T. Das, V. S. Mathur, and S. Okubo, ibid. 18, 761 (1967).

"See, e.g., Refs. 8 and 11.

We note that as x—~1, Z —'f' goes to zero and ~ &~~
We shall come back to the mass formulas later. We also
note that the mass formulas for or and @ are obtained
on the basis of nonet symmetry for the vector mesons.

VI. ADEMOLLO-GATTO THEOREM

That the isospin current is conserved implies that all
isospin charge vertices are unchanged by the SU(3)-
symmetry-breaking interactions. We wouM like to
assure ourselves of this important property within our
scheme. The conservation of isospin charge, then, does
not set any further restriction on the parameters $, p,
and zv. We shall also demonstrate the Ademollo-Gatto
theorem'4 and, as a by-product, obtain an explicit
expression for the renormalization factor for the E~3-
decay coupling constant. We shall present a more
detailed calculation of the E~3 form factors in Sec. X.

It is convenient to make use of the field equations.
In terms of the unrenormalized field variables, the
Lagrangian 4 gives rise to, among others, the following
field equations:

op'»&"ym'V„"= (zg/&Z) [11(a~11)—(a~rl) 117„

+ I (zg/+2) [+ (~ +) (~ 11)»II32]+ ", (70)

(1+~)~.~,:+m v,. =(zg/~2)[rl(~II) (&11)117„

+q (zg/v2) II» (A&II) zz

+ (1+g) (1—w) (f/i/2) (zg/42) (g&g) „+~ ~ ~, (71)
where we have neglected in both (70) and (71)
that are not relevant for our purpose here. 6&II and
A&Z are defined according to (29) and (30). When the
right-hand sides of (70) and (71) are expressed in
terms of the renormalized field variables, (70) and (71)
become (with 11»——zr+, II» ——K+, etc.)

B,F»""+m'V»~ ——(zg/V2) [II(8~II) —(8~II)II]»+

'= [z (1+w) ]'Z»/Z-, (75)

[z (1+=w) ]Z»/Z. . (76)

In obtaining (72) and (73), use has been made of the
expressions

(&"11)»=Z '"8" +~+r~ ~ ~, etc. , (77)

(~"II)»=
I (1+g) [-', (1+w) ]Z»"'}—'a~Z++-" etc. ,

and a similar, but more complicated, expression for
(h&Z)». These expressions follow from (29), (30),

(72)
(1+5) 9P'»""+~»*'V»~7

= (zg/+2) C+ (zr+8 "Ko—Ko&"zr+) + ~ ~ ~ ( 73)
where

C+=-'( '+ ) —[(gf)'/2m'7(1+v)-', (w —1)

X[l(1+ )7'"(~- —W, (74)
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(55), and (60) . In (73), we have also used the identity

AB+CD= ,' (A+-C) (8+D) +-', (A —C) (8 D)—(79)

and dropped a term of the form (/" (~K) .
A spatial integration of the time component of (72)

yields, in virtue of the field-current identity, the
following expression for the isospin charge Qi2.

Q„= (z/VZ) JP* [11(sell) —(a'll) 117»+ ". (80)

The isospin charge vertices for the 0 mesons are
thus seen to be unaltered by the SU(3)-symmetry-
breaking interaction. One can similarly check that the
hypercharge vertices are also not renormalized. Con-
cerning the strangeness-changing vector vertices, we
infer from (73) and the field-current identity that the
Kmvertex, 'a/. , sero momentum tramsfer, is effectively of
the form

m'[(1+$) M»*'I 'C+(~/&2) (8+(l"K' K'(/"8—+) (81)

At zero momentum transfer, the renormalization factor
is then given by

f+(0) =C~m2/[(1+$) M»*'j. (82)

Since w —1, n —1, and )/i —1 are all of first order in
SU(3)-symmetry breaking, one easily sees that both
factors in (78), i.e.,

C~ and m/[(1 +()M»*'&,

are equal to 1 up to the first order in SU(3) -symmetry
breaking, and, consequently, f~(0) is not renormalized

up to the same order. This is the Ademollo-Gatto
theorem. '4

VII. TWO-BODY LEPTONIC DECAY CONSTANTS

The two-body leptonic decay constants can be
obtained by expressing the weak currents in terms of
the renormalized field variables. Using the relations
(52)—(55), we obtain

j(.)"= (m'/g) I'.", (83)

j (»*)"= (m'/g) I Z» ~"'V» ~'+Z» *(gf/M» ~') (1+r/)

X [-', (w —1)]'Z. ' )"/c+)»~ ~ ~ I, (84)

7'(~ )'"= (m'lg) [A~ "+(gf/M~ ') Z-"~"~+" j, (85)

j«„)')' (m'/g) I Z»„'/'A»=„)'+Z»„(gf/M»„') (1+r/)

X[-', (1+w) ]'Z»"'c))"K+ ~ ~ ~ }. (86)

The various two-body leptonic decay constants are
seen to be

p (m2/g) (gf/MA 2) Z I/2 (87)

F»= (m'lg) Z». (gflM». ') (I+~)[2 (I+w) 7Z»"',

(88)

One can easily verify that the first Weinberg sum rules"
of a/l possible combinations, e.g.,

g„2/M, 2=P 2 (92)

fu= C&I~

This demonstrates the dynamical nature of the second
Weinberg sum rules. In a model where the field-current
identity is satisfied, as in our present one, these sum
rules are not necessarily valid.

It can be easily checked that"

and
P Z i/2=P»Z»i/2 PZ1/2 f— —

P /P —Z 1/2/Z 1/2

P /P —Z 1/2/Z 1/2

(95)

(96)

(97)

It is convenient, at this point, to make contact with
the Glashow-Weinberg formula" '4

f+(0) = (F-'+F»' F') l (2F-F»—) (98)

It is straightforward to show that, up to the second
order in SU(3)-symmetry breaking, the relation (82)
can be written in the form

/+(o)= I(~*+~ )
—

Il "2 ) (&+,) ( 2"
l

—&,

(99)
where use has been made of (59), (60), (95), and the
well-satisfied relation

(100)
It can also be easily verified that to the same order in
SU(3) -symmetry breaking,

F„2/2F.F» ——[-,'(w —1)]'. (101)
We combine (99) and (101) to obtain

f~(0) = [(F '+F»' F2)/2F F»j—

g '/M ' g» e'—/M» e' F'—— (93)

g'/M' —g» '/M» '=F»' etc (94)

are explicitly satisfied. As we have remarked near the
end of Sec. IV, all first Weinberg sum rules must
necessarily be satisfied. They are the necessary con-
sequences" of the singlet transformation property of
the Schwinger terms. On the other hand, rot all the
second Weinberg sum rules are satisfied. Since Z~*,
which is essentially determined by the E* and p mass
ratio, is difIerent from 1, the valid ones are

F.= (m /g) Z..(gf/M»*) (I+~) [-', (w —1)3'Z, '",

gp
= g&i ™/gi

g»*=g». = (m'/g) Z»*"'.

(89)

(90)

(91)

2' Our dihnitions for the Z's are different from those of Glashow
and Weinberg (Ref. 10). This accounts for the conflicting
appearences of our Eq. (91) and their Eq. (20).

24 The formula (94) was also independently obtained by L. H.
Chan (private communication) .
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which is to be compared with our result (109). With
3I~„——1330 MeV, the agreement is good.

Our numerical estimate for f+(0) differs somewhat
from those of Glashow and Weinberg. '0 Our result
indicates that there is no excessive renormalization
effect on f+ (0), and the second-order SU(3) -symmetry-
breaking e8ect is not intolerably large. This, certainly,
is comforting. Otherwise, one would have to wonder
why the Gell-Mann —Okubo mass formulas work so well.

From now on, we shall identify Ez to be Ez(1320)
and, correspondingly,

This is our counterpart of the Glashow-Weinberg
relation (98) . It reduces to (98), up to the second order
in SU(3)-symmetry breaking, if we set g=0. Thus if
there is no "vector-mixing"-type symmetry breaking
for the spin-0 mesons, i.e., g=0, the Glashow-Weinberg
relation is obtained.

VIIL F~/F AND f~(0)

We shall invoke the mass relations (62)—(66) for an
approximate determination of the parameters involved.
We recall that the mass formula (63) for p is obtained
on the basis of the nonet symmetry, at the level of

SU(3), for the nine vector mesons. From (63), we

estimate that

Frr /F. 1.10, f+ (0) 0.96. (113)

1+~0.784.

It then follows from (64) and (65) that

(1+~)r-:(w—1)7~0 0»

and from (65) and (66) that

(1+g)L-', (1+w) 7' 1.20 for Mrr„= 1240 MeV

1.52 forcVrr„= 1330MeV. (105)

(114)-', (1+w) 1.28,

1+g 0.93,

F.'/F ~0.13.

(115)(104)

(116)

The mass relations (68) and (69) .'hen imply~

(117)3f„660MeU.

Corresponding to this identification, we also have
(103)

The relation

Frr~/F 2=Z /Zz

= (1+g)P, (1+w) 7E~&P/(1+$) M

together with (99) and (101), then implies

F~/F ~1.04 for cV~~ ——1240 MeV

(106)

~1.10 for err„=1330MeV. (107)

It then follows from (95) that, up to the second order
in SU (3)-symmetry breaking,

Since M„depends sensitively on the value of —,'(w —1),
the above value for 31, cannot be taken literally. We
note that our estimate of the value of —', (w —1) depends
upon the assumed nonet symmetry for the vector
mesons, as well as the value of 3f„which is not ac-
curately known. A small violation of the nonet sym-
metry and a shift of the experimental value of M„
would considerably change the estimated value of M„.
However, our estimates for Flr /F and f+(0) are not so
sensitive to the value of -', (w —1) .

Finally, the decay constants g&* and g&„are given by

f+ (0)~0.99 for M~„——1240 MeV

0.96 for M~, = 1330 MeU. (108)

g&*=g&~—& &3gp.

IX. VECTOR-MESO' DE/&gs

(118)

To compare with experiment, we combine (103) with

(104) to obtain

LF /F 7/1/f (0)7 1.05 forMlr„=1240MeV

1.15 for 3f~„=1330MeV. (109)

Fxperimentally, the E+~s'+e++v decay rate" implies

We shall give expressions for the eGective vertices
corresponding to the decays p~2m, E*~E+~,
Aq~p+x, and E~~E*+n.. These vertices can be
obtained straightforwardly, although tediously, from
the Lagrangian Z by expressing it in terms of the
renormalized 6eld variables. We shall leave out the
details and only present the 6nal results.

Oe the @sass shell, the effective Lagrangian term for
f+(0) sino=0. 226, (110)

where 8 is the Cabibbo angle, which, according to the
Cabibbo theory, is a universal parameter. Combining
(110) with (111)we obtain

(F~/F-) Li/f+(0) 7=11» (112)

while the E+~p++ v and s.+~@++v decay ra«s"
imply

(Flr/F ) tang=0. 275,

2'A a meson around the mass value of 1080 MeV was recently
suggested by experiment. See T. G. Trippe, C. V. Chien, E.
Malamud, J. Mellema, P. E. Schlein, K. E. Slater, D. H. Stork,
and H. K. Ticho, Phys. Letters 288, 203 {1968).Since we are
unable to assess the significance of the interpretation of this
experiment (having in mind the uncertainties with regard to
the previously reported ~ meson at 725 meV), we will refrain
from taking it seriously. If the sc at 1080 MeV is confirmed by
jurture experiments, M„=1080 MeV can be used at imput for
estimating the other parameters. In such a case, the 5U(3)-
symmetry-breaking effects will be still smaller than what are
estimated in the present paper.
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p—+2m can be written in the form

&p 2 = —
gp P~ +X~"w, (119)

formulas:

&(p ~2~) =3(g.-'/4~) I p I'/M, ', (127)

with g, given by

g9.~=g)1—(Mg32 —M')/2M' '—3(M '/2Mg32) ].
(120)

~(E* E+~) =(-') (3) (gx*x.'/4~)
I p I'/Mx", (128)

p+ )=ll pll ( 4x

g'~,„ /M~, = —g(M, Mg, ) '(MzP —M„')"'8.

Similarly, for E~ -&E*+~we have"

gx.x*.Mx. =g(M, /M~ ) L(M~ ' M.') "'/(1+—&)]

(124)

X I (1+.) —~/(I+~) —L~/(I+~)](1+.) -:( —1)

X-', (m+1) $(Mg(2 —M')/M']} (125)

g'x, x* /Mx,

Similarly, the coupling constant gz~z, which is nor-
rnalized so that gx*x ~g, in the SU(3)-symmetry
limit, is given by

gx*x-= La/(1+5) "']
Fx (1+$)Mx~' Mg(2 M9'—

P ~2 23EA 2

(Fx Mxe' M9'—~(1+v) '$-'(1+~)] 'I—,(121)
(P~ 3f,' 2M

where C+ is defined by (74) and is equal to 1 up to the
6rst order in SU(3) -symmetry breaking.

On the mass shell, the effective Lagrangian term for
Ai—&p+m can be written in the form

i/ A

AI-&p+m gAIpn~~~AIPp'& P ~
+(g'~,-/M~ ) (~.p. ~.p.) X~"A", (122)

where

g, .M~, =g(M, /M„) (M~ '—M')'"(1—8), (123)

(v. v~)'
gx„. (M"2i

gA„. 3EAI 3fA,4

0(E* E+ ) 3 —0.434)'=0.344
r(p~2~) 1—0.33&

'

r(A, ~py~) =5.87
I'(p-+2m) 3

(131)

25 ( 28
X 3.13+4.50 +163l, (132)

*2
0(&. &"+ )=(-')-:~lq~l( ' '

4x

+ (~x"gx4) gx&x&~ gx*'gx~

Mx. 'Mx*' gx,x*. Mx„'

(g'x.rc.)' Afar' (q~'qrc„)'
130

gx x* Mx, ' Mx„'

where
I pI is the center-of-mass momentum of the

daughter particles in the respective reactions, and the
q are the four-mornenta of the indicated particles.

Using the numerical estimates of the parameters
obtained in Sec. VIII, we can express all the coupling
coIlstants of this section ln terms of g and B. %e then
obtain the following ratios of the decay widths:

which are normahzed in such a way that they reduce to
the corresponding expressions for Ai~p+m in the
SU(3) limit. The decay rates are given by the following X 3.09+4.35( )+3.43(

'

) (333)

For ~(~2~) =120 MeV, a reasonable choice for p is
~= —0.75. The corresponding decay widths are the
following:

TAB?.z I. Decay-rate ratios for a few different values of b.

= —g(zv/M9Mg, ) pb/(1+$)](M~52 —M9')"'3 (126) I'(E~ ~E*+vr) 1—1.2) '
~ ~ ~(~2m)

'
3—8

F (X*~X+~)/F (p~2~)

F (AI~P+~) /F (P~2w)

F (EA E*+~)/r (P~2~)

0.40 0.39 0.37 0.36 0.34

0.38 0.60 0.93 1.39 2.04

0.57 0.85 1.24 1.79 2.56

~(~2') = 120 MeV,

~(E*~Eg~)= 47Mev,

I'(Ai—+p+~) = 72 MeV,

~(E~~E*+n.) = 102 MeV.
26 One can easily write down the corresponding decay constants

for ~A~p+~. However, since the final phase space for this The ratios of the decay widths for various values of b
decay is small, one expects its branching ratio to be insignificant. can be found in Table I.
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X. K)3 FORM FACTORS

In this section we present the calculation of the E~3
form factors, in the "tree approximation,

" on the basis
of the Lagrangian and currents constructed in the
previous sections. A detailed calculation of the E~4 form
factors will be presented in a separate publication.

The interaction term responsible for the E&3 decay
is of the form

2«o= (G/3/2) sinel»[ V2j(»*+)»+H.c., (134)

where G is the usual weak coupling constant, 0 the
Cabibbo angle, and l„ the lepton current. According
to the field-current identity (51), the strangeness-

changing vector current is given by

j(»*) ——(m'/g) V»*, (135)

which, when expressed in terms of the renormalized
fields representing the physical particles, becomes,
according to (54),

j (»*)»= (m'/g) {Z»*'/'V»*»+Z»w (gf/M»w') (1+i))
X [(w—1)/2G (S"&).I, (136)

where
n~z= a»s+—(g/&2) {A», III. (137)

The field variables in (137) are still to be expressed in
terms of the relevant renorrnalized fields, with the
help of (22), (53), etc. For E+~og'+3++», the relevant
terms are

«p

(3/w')j „w"B=Zw*'&'K ++ (g/m') FB„3++(gj//w) [Z„—(w —1)17' — —(w+3) Z wZw 'B~ B—'K+)
v2f

' "
&v2

«p «p

+ (
— —,

I I

—-'*( +w)K+3„—+ B„K+
I

+ ". (133)

We also need the coupling terms for E*E~and ~Em vertices, which are

wg -~ ~Z
Z»* »B. o=i —Z»*-"'K * —[-', (1+w) $ ' —a"K+ —', (—1+w)K+—j»—

V2
" F. '

v2 F»
'

v2

+1—,(1+3)[l(w—1)]l —
) (K,)( —;(1+w))

+ —(1+~) — + [-;(1+w))-~ K * a» aK+ -(13—9)
m' F» gf' a, - m'

M~' F nz 1+3)

2„+»- o= ——,'(w —1)-, (4a+a )Z»'j'Z 'j'Z"'K K+—
2

Z
~ g 1 1-,'(w —1) —

)
Z ' Z — Z»-"[-,'(w+ 3)1[-'(1+w) g-'K a@+a»-

1 — — 1Z„'j'[-,' (W—1)j——ga»K o' (W+3) Z "Z»"a„—K+ —
2 (1+W)K+a» + a»K+

I

gf
' F, , - oio F»7ro

"
v2 m F»

' "v2 F.v2 "

z F xp p~+ Z, '"-', (w —1) —3„—B (K+ —)+ —[-', (1+w)] 'B„K+B" —3 )v2f
" '

F» "v2 F. ' " v2

+ — Z„'"a„7g- —[-', (-1+w) j-' —a»K+ ——', (1+w)K+a» ——. (140)I " F '
v2 F»

'
v2

From the structure of the terms contained in (138), it is clear that the hadron part of the Ego-decay matrix element
consists of three terms: a E*-pole term, a K-pole term, and a contact term. With the usus, l definition of the f+(q')
form factors

(ogo
~

V2j(»*+) (0)
~

E+)= (1/&2)[(p»+p. ) f+(q')+(p» —p.) f (q') j,
the contributions from these terms to the form factors f+(q') can be calculated straightforwardly. They are listed
in the Appendix. Collecting and making the usual linear approximation

f~(q') =f~(0) (1—l(~q'/M. '), (142)
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we obtain

f~ (0) =Z~. (m'/Mrr ")C~,

M 1 F» BI g

M~* 2f~(0) F Mg, m (1+ri) (1+$) (1+w)/2

Q M '—M.' (M.)' (M. )'

gf (~Ay FK
+l(w —1) l(w+3) [-'(1+w) j '—

m (m F. '

5(0) =f-(o) /f+(o) =C-/C+

(gf ' 1 Frr , F
C+= — Ll(1+w) j ' —+l(1+w) ——(I+~) l(w —1) I

— — ——l(1+w) —,
2 P. '

PK &m, -'2 F PK
5i1, FIr, F (Mjp —M ') 3IIA, ' F

C = — H(1+w) j ' ——'r(1+w) ——C+Q, +(1+0)—', (w —1)rs(w+3)
2 P PK M' m

gf
' 1 Frr, F 3II~' M'1 Frr —F,—(1+v) Ls (w —1)] — — —+s (1+w) —+, — ————s (1+w)

m 2 F~ FK 3f,' 2 F~ FK+, s(w —1) — s(1+w) —+L-'(1+w) 3 '—
F

(
* ™

)-', (~+a)tl(&+~)l-'( —
) I,

"I ~*

The parameters in these equations are those defined in the previous sections. Their estimated values have also
been given. With these as inputs, the following numerical values are obtained:

f+ (0)~0.96, $ (0) —0.048,

0.022, 'A ~0.051.

These values agree, in general, with previous calculations by Lee,"and Nieh. 28 Experimentally, " little is known
about ), and there is much controversy over the value of $(0). The situation with X+ is somewhat better. The
weighted averages from E+ and E& decays are"

)t+ =0.029&0.010 (E+ decays),

)t+ ——0.019+0.008 (Er, decays) .

From the present calculation, and from previous calculations based on various methods, " the parameter ((0)
invariably comes out small. It will be of great interest to see this confirmed eventually by experiment.
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APPENDIX

In this appendix we present the contributions to f+ form factors from the E~-pole term, the contact term, and
the ~-pole term separately. The contribution from the E*-pole term is

II' m ' 1 1 F, F~

+ —, (1+m)-:(w—1) I

—
I I

-I —:(1+w)Iq', fgf)I' I' m '1 fF~ F,
m' kmj &Mx. 2 iF Fsc j

q2 f m2 )IF~ g

iM, 2j P. m (1y~) (1+~)(1+w)/2

f m
Z «i — —L:,'(1+w) j '——-,'(1+w)

iJI~* 2 F ' Fx

The contribution from the contact term is

f m i', (gP'1 P ~X
Z *

I I (1+v)-;(w—1) I

—
I

— —l(1+w) ——;
&Mx*j kmj 2 Px' p. '

f m )'Prr (g

iM. ,j F. i (1+.)(1+~)(1+ )/2

f m fg '1 F, ~K
Za s

i (1+)t)-', (w —1) Z 'i'Zrr')'-'(w+3) —
i

— — —-', (1+w)+—
I,~z* &m 2 PJr F„

The contribution from the ~-pole term is
fg.'0;

1 Frr F„, ), (P FE. 2 'lj

X — ——"'.(1+w I+4(w —1) I

—2(1+w)+—
2 F Fx ' ) &Fz F 1+wj

q', fg '1(Fz P, i, gf 'f'F& 2 F,
—;(~+3)z. "zd' —

I

— —
I +,(&+~) I

——;(~—&) —
I

— —"-;(i+„))M„'z &m 2 ),F Frr j m &F 1+w F~

Combining the contributions, we get

fm ' 1 1 F, F~ 2~'(')= *'I'uv . &+qym. 2z '('+") .K |+~)
gP'1 Fx P. , 1 q' Prr g

'
2 F F ' 2M 'F (1+ )(1+&)(1+ )/2
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We present an eikonal model for the small-angle high-energy scattering of nucleons and antinucleons on
nucleon targets. The model uses a Qat Pomeranchon with a residue function given by a squared dipole.
We also use exchange-degenerate trajectories and residue functions for the three pairs of Regge poles (the
co and I", the p and A2, and the m and 8). Using previous work by Arnold and Blackmon and other work

by the present authors to fix trajectories and relative sizes of residue functions, we find that the model

satisfactorily describes elastic scattering. We give an interpretation of the secondary maximum in the
differential cross section of pp scattering which occurs around —t 0.9 GeV~. We find a crossover in the
differential cross sections of pp and pp elastic scattering, and we show our results for various polarizations.
We also discuss np~pn and pp —&nn, which are not described satisfactorily by the model.

I. INTRODUCTION

LARGE amount of work on models for high-
.I energy scattering which incorporate absorptive

corrections to Regge poles has been reported. ' ' (For
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a recent discussion of the difficulties of pure Regge-
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