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Now using

we see that the second term on the left-hand side of (89) is positive. Let us therefore concentrate on the first term
on the left-hand side of (89). Now

[K'] [X']
Z Z (21+1)(2~+1)[Pz(s)—Pt(s)][Pz (s) —P-(s)][Pi(s)—P-(s)]
t=o m=o

[&'] [&']
(2l+1)(2rtt+1) [Pz(s) —Pz (s)][Pz (s) —P~(s)][Pi(s)—P~(s)]

l 0 m=0

[Xr] [Z']
+ p p (21+1)(2rrt+1)[Pz (s) —Pi(s)][Pz (s) —P (s)][Pi(z)—P (s)]

l=0 m=0

[&'] [~']
=LP (s) —Pz (s)]2 Z (2l+1)(2~+1)[P-'(s)—P (s)P-(s)],

l=o m=o

and this is easily seen to be positive by using Pz(s) ~&Pz (s) and Schwartz s inequality. This proves Lemma 2
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Relations among total muon-capture rates in nuclei and the equal-time commutators of the space and
time components of the strangeness-conserving weak hadron current are derived. Using the quark Geld
algebra and the closure approximation, this relation yields a total muon-capture rate in He' oi I'(He')
=2.36X10' sec ', in very good agreement with experiment. We demonstrate that application of the gauge
Geld algebra to our relations does not yield a result that can be compared with experiment, since we cannot
justify the use of the closure approximation in the context of this algebra. Using the quark Geld algebra
and the closure approximation, similar relations are also derived for the total "elastic" differential cross
section for forward scattering of neutrinos oB nuclei.

I. INTRODUCTION
' 'N a recent series of Letters, ' ' we have discussed the
i - application of the Gell-Mann algebra of currents4
to the calculation of the total muon-capture rate in
complex nuclei as well as the derivation of relations
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4 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

(1964).

between cross sections for elastic neutrino and anti-
neutrino scattering by nuclei.

The purpose of the present paper is twofold:

(i) To reproduce in all detail the derivation of the
results quoted in Refs. j.—3. This was not done in our
previous brief communications and is essential for the
proper understanding of our results.

(ii) To investigate how results are modified when the
quark ield algebra' is replaced by the gauge ield
algebra. '

5 T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (196/); T. D. Lee and B. Zumino, Phys. Rev. 163, 1667
(1967).
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Section II is a brief review of the current-current
formalism commonly used in weak-interaction calcu-
lations. In Sec. III we reproduce in detail the muon-
capture calculation' in which differences of total muon-
capture rates within nuclear isospin multiplets are
related to current commutators. The quark4 and gauge
field' algebras are very brieQy reviewed in Sec. IV.
In Sec. U both algebras are separately applied to the
relation for muon capture derived in Sec. III and the
results compared with experiment. The relations be-
tween cross sections for elastic scattering of neutrinos
and antineutrinos from nuclei are reviewed in Sec. VI.

Throughout this paper we use natural units (A=c=1)
and a Minkowski metric x=(x,it) for space-time co-
ordinates and p=(p, iE) for four-momenta. Greek sub-
scripts can assume the values 1, 2, 3, and 4 while Latin
ones are restricted to 1, 2, and 3. Summation over
repeated indices is always implied.

II. CURRENT-CURRENT WEAK-INTERACTION
HAMILTONIAN FOR STRANGENESS-

CONSERVING PROCESSES

It is well known' that leptonic and semileptonic
strangeness-conserving weak interactions can be de-
scribed by the following "phenomenological" interaction
Hamiltonian:

where

V. & &(x) =V t"(x)—iV ~'&(x),

A ' '(x) =A i"(x)—iA i"(x),
(6a)

(6b)

and the V &'&(x), i=1, 2, 3, are identified with the
components of the isotopic-spin current (conserved-
vector-current hypothesis"). The A &"(x) are assumed
to transform like the components of the isotopic-spin
current. The interaction Hamiltonian (1) is "phenome-
nological" in the sense that it is nonrenormalizable
and therefore only useful in calculating transition ampli-
tudes to order G.

III. RELATION FOR TOTAL
MUON-CAPTURE RATES

Consider the muon-capture reaction

&Li +1V,—+ 1Vb+&„, (7)

2(m„+i&i,)

where 2V, and Eb represent initial and final nuclear
states, respectively. Neglecting the muon momentum
and binding energy, it is easy to show that in the rest
frame of nucleus E„the neutrino energy is given by

where
X,(x) =(—G/K2)g. (x)g.(x),

g.+(x) =g.t(x), n =1, 2, 3
= —g i(x), n=4 (2)

where v is the neutrino momentum and m„, m, and
mb are the masses of p, E„and Eb, respectively. In
practice, reaction (7) is dominated by low-lying nuclear
levels Sb for which

and G= (1.02/m„') X 10 b is the p-decay coupling con-
stant (i&t„ is the proton mass). Within the framework
of this theory it is generally conjectured that

mb —ns,((m„. (9)

Since also m„ i&ib))m„, Eqs. (8) and (9) imply that for
the dominant transitions

where J & &(x) is the strangeness-conserving weak
hadronic current and'

j-(x)=i 2 4'n'-(1+Vs)4 ~

l e, p

(4)

is the weak leptonic current. The hadron current
J ~ '(x) isusuallv separated into vector and axial-vector
parts as follows':

J.~
—

& =cosec! V.&-&(x)+A.i-&(x)),

(10)

i.e., the neutrino absorbs most of the energy released

by the disappearing muon. From Eq. (1), the muon-

capture rate is readily found to be

O' Z($.) ' C($,)
F(C'V, ~ 1Vb)—

2m' a» 2J,+1

'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958); ¹ Cabibbo, Phys. Rev. Letters 10, 531 (1963).' H. Primakoff, in High ErIergy Physics and Euclear Structure,
edited by G. Alexander (North-Holland, Amsterdam, 1967),
pp. 409—445.

8/~{x) {l=e or p) is the lepton (electron or muon) field and
P„&(x) is the corresponding neutrino field. We adopt the following
Hermitian representation for the Dirac matrices:

VJ- ~ —
~ 0 V4-0 —I V5- I 0

where o; are the 2 &&2 Pauli matrices and I is the 2)&2 unit matrix.
'The angle Hg is the Cabibbo angle (see N. Cabibbo, Ref. 6).

We assume that cos0~0.98.

dQ„
Z&,.K,&,(X.—b Xb), (11)

where

~~.=(1/~s~)L(P. )b(P.) +(P.) (P )~—(P. P )5~.

+e~-t (P.)-(P.)t 1 (12)

' R. P. Feynman and M. Gell-Mann, Ref. 6; S. S. Gershtein
and J. B. Zeldovich, Zh. Kksperim. i Teor. Fiz. 29, 698 (1955)
)Soviet Phys. JETP 2, 576 (1955}j.
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K.),(N. ~ Ng)

=n (N. ; k.=o, M.
l
J.i+&(0) IN, ; k, = —., M, )

X(Nt„kt, ———v, Mt, l
Ji' '(0) IN„k =0, M ), (13)

p„=(p„=o, im„) = four-momentum of muon,

p„= (v, iv) = four-momentum of neutrino,

The integration in Eq. (11) is over the neutrino solid
angle, and C(N, ) is a correction factor arising from the
nonpoint character of the charge distribution of E .
We have chosen our wave functions to be normalized
in a box of volume Q. Note that since we are neglecting
the muon momentum and binding energy and working
in a reference frame in which nucleus E is at rest,

0,= (k, =0, im, ) = four-momentum of 1V„

kg= (k~, iraq) =four-momentum of 1Vb and

(16a)

The nuclei Ã, and Eb have spins J, and Jb, and the
summations in Eq. (11) extend over the third com-
ponents of the nuclear spins M, and Mt, (since kq/0,
M& refers really to the- helicity of 1Vb). The number of
protons in the N nucleus is Z(N, ), and

Et,+v =m, +m„. (16b)

The total capture rate r(N, ) is obtained by summing
Eq. (11) over all possible final hadronic states 1Vb, sub-
ject to the constraint Et,(m„+m„ i.e.,

r(N )=
Nb (Eb &&m1i+ma)

I'(1V, ~ N t,) . (17)

The summation in Eq. (17) is over all independent
is the Bohr radius of the muon. n 1/137 is the fine- quantum numbers distinguishing Nq (aside from kt,
structure constant. Also we have and M~). Introducing

J '+'(x) =J ' '*(x) =cos8e! V i+&(x)+A '+&(x)], (14)

where Q '+&(v) = J i"&(x, )=0)e+'"'*dx,
V. i+&(x) = V.i'&(x)+iV i'&(x)

A. '+'(x) =A."&(x)+iA &"(x) .

(15a)

(15b) one can readily show that

G' Z(N. ) ' C(N.)
r(N. ):—

2' — G&& 2J +1 M~

dQ„ ZE" 1—
Nb(Eb &~ m&+ma) ~b kb

!

v

m„+m.i
(N ' k =0) M

I Q i+&(v) INg' kg Mg)(Ngj kb)M/I Qi' '(v) IN. ) k.=o) M.) ) (19)

where kt, is no longer restricted by Eq. (16a), and use has been made of the periodic boundary condition

e—'(k —"'—' "dx=b .,ka, kb+v ~ (2o)

In the spirit of the closure approximation, "we can rewrite Eq. (19) as follows:

G' Z(1V,) ' C(1V,)
r(N. )=-

2gr — g&& — 2Jz+1 Ma

dQ„
-Zg. (p'I 1 /( &+m— )m]).

4m

X Q Q Q (1V„k,=o, M, IQ, i+&((v),) INg, kg, Mg)(Ng, kt„Mb!Qii &((v),) IN„k, =o, M,), (21)
Nb(Eb~& mv+ma) kb ~b

where ( .), denotes an appropriate weighted average over possible final states Nt, . Defining

Q2-g g —3

C(N.) (& 'I 1—v/(m„+m. )])., (22)

Eq. (21) becomes

r(N. )

D(1V.) 2J.+1 ~. p p (N; k, =0~ MoIQ. '+&((v).) INt; kb, M~)
Nb (Eb ~& m~+ma) kb ~b

X(1Vb k&, bMl Qg ((v),) !1V,; k, =o, M,). (23)

"H. Primako6, Rev. Mod. Phys. 31, 802 (1959).
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Consider now the nuclear isotopic-spin doublet (He', H'). Applying Eq. (23) to these nuclei, we have

r(Hes)
=2 E

D(He ) MHei

and.

g g (He'; kH. =0, MH. ~Q. (+&((v)H. ) ~N(„k&,M))
Nb(&b ~& mp+mHe3) kb Mb

X(N („k|„Mb
~ Q&,

—
(( )n. ) ~

He'; kH. ——0, M n, ) (24)

r(H')
--=2 Z

D(H') ~Hi

=2 2
MH3

dQ„
&&.{[

4x
Q p (H'; kHi ——0, MH ~g, (+)(—(v)H. ) ~N„k„M,)

Nc(&c&mp+mH3) kc Mc

X(N„' k„M, ~Q&,
( )(—( ),) ~H'; k =O, MH )]+6, ("), (25)

dQ„
z&,. p p Q (H'; kHi ——0, MHi~g. (+&((v)Hi) )N. ; k.,M.)

Nc(Ec&~mp+mH3) kc Mc

X(N„k.,M. ig&, (—)((v)n ) iH'; kH ——0, Mn )

where

s„('&=/ (II;kH =o, MH ~g.&+&((v)H) ~N„k, ,M, )(N„.1„M.~g, ( )((.)H) ~II3;kH =o, MH)

—(H; kHi=o, Mn ~g, (+&(—(v)H, ) ~N„'k,pI, )(V, i k,iM, ~Q&,
( )(—(v)H, ) ~H; kHi=o, Mii ). (26)

Note that (v)H, i and (v)Hi are slightly different since the accessible final states in &((, capture by He' and H' are not
the same.

Using the closure relation

g P g ~N„k„M,)(N, ; k, M,
~

=1,
kb Mb

(27)

we can write Eqs. (24) and (25) as follows:

I'(He') ~1
D(He')»r Hei

ancl

dQ„
Z&, [(He'; kH, =0, Mn, ~Q (+)((v)ii, )

4x
Xg&, ( )((v)ii.*)

~

He'; kii. ——0, MH. )—A.&, ('&(He')] (28)

r(H3) —=2 2
D(H') )&rai

where

D.&,
('&(N,) =

dQ„
&~.[(H'; kH =o, MH

i Q."'(—(v)n")Q~' '(—(v)H") IH' kH'=o MH)

+dL ('& —6 &'& (H')], (29)

p p (I&7.; k.=0, M. IQ.(+)(a(v)H, ) IN(„kb, M&)
Nb (Eb &~ mama) kb Mb

X(Nb; kb, Mb~g&, ( '(+(v)n, i) ~N; k, =o, M ) (N, =He' or H'). (30)

In Eq. (30), +(v)H, i and —(v)H, i correspond to N, =He' and H', respectively.
Applying the relations

e' ""~He'; kH. i ——0, MH. i)= ~H'; kH =O,MH ),
eiiiI(i&g (k)(~)~—ii'I(~&

g (w)(g)

ancl
(ii iiI(i&Q +)(v) 8

—in'r(i& —
Q

2) ( v)

where I= (I&",I&'&,I&'&) is the total isotopic-spin operator, one can readily show that

(31a)

(31b)

(31c)

r(H )

D(H')

dQ„
(He'; kH, i =0, MH, i

~ Q, ( &((v)H, &)g&, (+)((v)H, i)
~

He'; kH, i =0, MH, i)
4~ MH, S

+ E [~"")—~-~("(H')]& (32)
MHs

Since we have set p„=0 and are surruning over both He polarizations, it is easy to see that only the sym11Mtric
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part of Zz, contributes to the first term in the curly brackets of Eq. (32). We can therefore write

I'(H')

D(H')

dQ„
2" ( P &He', kn, 4 ——0, MH, 4IQ" & &((v)H, 4)Q, &+&((v)H,4) IHe'; kH, 4 ——0, MH, 4&

MH~a

+ 2 [A- '"-A'"'(H')3}. (33)

Combining Eqs. (28) and (33), we Gnd

r(Ht) an„
— '.{ 2 &H '; k .*=o M "I[Q."'(& & .*),Q ' '(& & ")3

D(He') D(H') 4x ~n«4
XIHe', kn, =0, M'H. )—A.g

—P A.g&»}, (34)

where
A.), &'&(He') —Q A.g&'&(H'). (35)

The quantity 6 z~'~ depends on the difference of the weak form factors evaluated at values of the average four-
momentum transfer squared

and

Since

&q'&H*=( —(m, —m, )'+2m, [m, '+&«&H4']'t'}

&q'&n. 4 ——( —(m, —m.)'+2m. [m, '+&«&H.4']'"}.

I &v'&H" —(q'&H'1=2 «lm' m l«m„',
A," '& can be estimated as being no more than 1%,7 and we shall therefore neglect it. After this approximation and
substitution of Eq. (12) into Eq. (34), we Gnally obtain

F(He') I'(H')
—=2Z

D(He') D(H') ~n.4

dQ„
("&H";k-. =o, M.. I[Q, &+ (&.&..),Q.&-&(&,&..)jlH";k...=O, M...&

4x

where

+&()t«e' k *=o M "l(LQt'+'(()H. *),Q '-'(() .*)j+[Q &+&(() .),Q' &((v), )))
XIHe';kn, 4 ——O, Mn, 4&

—A}, (36)

(37)
4x

and «= v/«.
Relation (36) can be readily generalized to the case of an arbitrary nucleus &(A,I'I&'&) of mass ""~her A,

isotopic spin J, and third component of isotopic spin I&'&&0. The result is

F(1V(A,I,I&'&)) F(E(A, I, —I&")) 1

D(E(A,I,I&'&)) D(Ã(A, I, —I&'&)) 2J+1 ~
dQ„

(a".P(A II"') k=o MI[Qi"'(&v&) Q ' '((v&)j
4m

X IS(A,I,I&");k=O, M&+Z(P) &N(A, I,I&") k=O, Ml([Q &+'(( )),Q & &(( ))j
+[Q4&+&(&v&),Qt&-&(&v&)j) liV(A, I,I&'&); k=o, M)}—A, (38)

where (D1V(A,I,I &)t)&is given by Eq. (22) with Z
replaced by 1V(A,I,I&t&), and k, I, and M are the
momentum, spin, and third component of spin, re-
spectively, of 1V(A,I,I&'&). Also, A in Eq. (38) is given
by Eqs. (30), (35), and (37) with He' replaced by
X(A,I,I&'&) and H' replaced by N(A, I, —I&a&).

transforms of the weak hadron currents. Two field-
theory models for determining these commutators have
been widely discussed in the literature. They are (i) the
quark field algebra, 4 and (ii) the gauge Geld algebra. a

In this section we simply quote the well-known values
of these commutators in the two models. Introducing
the following Fourier transforms of the vector and
axial-vector SU(3) currents":IV. WEAK HADRON-CURRENT EQUAL-TIME

COMMUTATORS "In the quark field model, v &'&(x,t}=', tg~(x, t}pe x&»q(x't}-
To evaluate the right-hand side of Eq. (38) we have

q{x,t) is the quark Geld, X() the 3)&3 unit matrix, and
to know the equal-time commutators of the Fourier p, (~&'{j=f, . . ., 8) the 3&(35U(3) matrices.
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Q&,„&~'&(k) = V„o&(x,O)e' "dx,
Le~ 4'+'(k) Qv, i' '(k')] =Le&,4'+'(k) Q~, ~' '(k')1

(39a)
=2ie~t&, '& (k —k'), (40f)

where

Qv, „&+&(k)= V„&+&(x,O)e+""dx, (39c)

g~, „&+&(k)= A„'"'(x,O)e+' '*dx,

then4 '

(39d)

I:Q~.i"'(k),ev,-' '(k')1= Le~, i"'(k) Q~,-' '(k')1

= —2j»{g& Qi, 4'"(k —k')+Ei 4[-,'Qg, "'(k—k')

+(&8)e~,-"&(k—k')]), (4«)

Le. . "'(k),e...'-'(k')]=I e.. &(k),e.-- (k')]

2ig—{g~&Q+4&' &(k, k')—+a& „4I ,'Q&„-&'&(k, k')—

+(&l)Q,-'"(k—k')]), (40b)

Lev, 4"&( ),Qv, 4' &(k')]=l:Q~,4"&( ) Q~, ' '(k')]

=2ig&, 4 "(k—k'), (40c)

Le. ,«"(k),e.,
'-'(k')] =I Q. ,«"(k),Q. ,

'- (k')]
=2igg, ,&'& (k —k'), (40d)

Lev, 4"'(k) Qv, i' '(k')]=Le~, ~"'(k) Q~, t' '(k')]

=2ig& i&3&(k —k') —2iki e""— '& 5(x)dx

e"" "' "c&iS(x)dx, (40e)

Q~ „U&(k) = A„'»(x,O)e'~'"dx

(j=0, I, 2, . . . , 8), (39b)

g =1, quark field model

=0, gauge field model (41)

and the terms depending on S(x) are the so-called
Schwinger terms" in momentum space. In the quark
filed model, S(x) is really ambiguous and its value de-
pends on the limiting procedure adopted in defining
the currents. If the original definition adopted by
Schwinger" is used, then S(x) is an infinite c number.
Kallen" has demonstrated, however, that if the electro-
magnetic current is properly regularized, the Schwinger
terms vanish in quantum electrodynamics. In the gauge
field model, 5(x) is a well-defined constant, namely, '

5(x) = (mp/gp)', (42)

where m, is the physical p-meson mass and g, the re-
normalized p-meson strong decay coupling constant.

V. APPLICATIONS

In this section we wish to apply the current commuta-
tion relations in the nonrelativistic impulse approxima-
tion and the two models of current commutators re-
viewed in Sec. IV to relation (36). Before proceeding,
however, we wish to point out that it is to be expected
that I'(H')(&I'(He') since there exist low-lying bound
and partially bound states such as H' a,nd H'+e that
contribute to muon capture by He', while only unbound
states such as the three-neutron state contribute to
muon capture by H'. Muon capture by H' will there-
fore be suppressed considerably relative to capture by
He' because of the very poor spatial overlap between
initial and 6nal hadron states. In fact, estimates by
Primakoff' " indicate that I'(H')=0. 004I'(He'). It is
therefore quite reasonable to neglect the I'(H') term
in relation (36) to write

I'(He')

D(He')

dQ„
{g~.(He'; kH. *=o, ~H *ILei'+'((~)H.*),g. ' &((v)H")] IHe'; kH"=o, ~H")

4x

+i(~) i(He'; kH. *=O, ilfH" I(I:ei"'((v)H.*),Q4' '((v)H. *)]+LQ "'((v)H *) Qi' '((~)H")))

&& I
He'; kH, *——0, 3fH.~)) —A. (43)

As a first application, we will first evaluate the right-hand side of Eq. (43) using the nonrelativistic impulse
approximation.

A. Nonrelativistic Impulse Approximation

By nonr. lativistic impulse approximation we mean here the approximation in which the hadronic weak currents
are replaced by sums over single-nucleon weak currents, and terms of order i&/c are neglected (i& is the nucleon
velocity). This approximation serves as the basis of many successful calculations. "With this approximation and

'3 T. Goto and T. Imamura, Progr. Theoret. Phys. (Kyoto) 14, 396 (1955);J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
'46. Kallen, in Particles Currents Symmetries, edited by P. Urban (Springer, Berlin, 1968), pp. 268—319.
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neglecting the weak magnetism and induced pseudoscalar terms, "we can write

and

PQ~'+'(k), Q. '(k)$=2&g~'(1 —S 4) —gv'5, ,4) P sr "e'" "''"
(& notsummedover)

n=l

A

LQ&'"'(k), Q4 -'(k')) = 2—g& gg P si(o&)„e'l"—"'." (I =1, 2, 3),
n=1

(44b)

where gv = 1 and g~ = 1.23 are the weak vector and axial-
vector renormalization constants, respectively, A is
the nuclear mass number, and r is the radius vector of
the eth nucleon. The subscript n denotes the fact that
the matrices only act on the nth nucleon. Substituting
relations (44a) and (44b) into Eq. (43), we find tha, t

B. Quark Field-Theory Model with
c-Number Schwinger Terms

Ke shall assume that the Schwinger terms appearing
in the quark field-theory current commutators are c-
number functions. Substituting relations (40a)—(40f)
with &I =1 into Eq. (43) and using"

F(He') —D(He')[2(3gg'+g ')I "&(He') —Aj, (45)

where I&'&(He')=rs is the third component of isospin
of He'. In the spirit of the nonrelativistic closure ap-
proximation, "we can neglect A. This approximation is
entirely justified here since we are calculating rates for
muon capture by nuclei and treating the weak. hadronic
current as a sum of single-nucleon currents (all meson
exchange and baryon resonances, pair states, . . ., con-
tributions are neglected in the nonrelativistic impulse
approximation). As a result, contributions to A only
come from free-nucleon intermediate states whose
wave functions overlap very poorly with the wave func-
tion of the initial bound nucleon state. With this ap-
proximation, we finally obtain

(He', krr, =0, Mn,
~

A4U&(x, 0)dx
3fHes

)&
~

He', kH. S ——0, MH, ~) =0, (51)

g &He', kH. =0, MH.
~

W&&'&(x,o)dx
3/IHe3

we find that"
X

~
He'; kn, ~ ——0, MH. ~) =0, (52)

(He'; kng* ——0, Mn. a~ V&&»(x,0)dx
~He3

&(~He'; k+e~ 0 MH ~) 0 (50)

F(He')=5. 55D(He') .

Using the estimates"

46
F(He'):—s 2
D(He')

dQ„
g&,g(He', kH, =0, MH,

~

4x

C(He') —0.965,
~
(~)n.

~
=0.95m„,

Eqs. (22) and (46) yield

F(He') —1.64X10' sec '

(47)

(48)

XIQ."'(() .*),Q ' '(() ")j
&( i

He'; kH. =0, MH. )

+8i( ) . i
S(x)dx —A

This result is somewhat lower than the experimental
values

F(He'), n„= (2.14&0.18))&10' sec ' (Dubna")
= (2 17 +s'r) X 10' sec '

(Berkeley" ) (49)

Better agreement with experiment is achieved if we
introduce a factor' X=1.08 on the right-hand side of
Eq. (46) to correct for neglect of the weak-magnetism
and induced-pseudoscalar terms.

"It is well known that the weak-magnetism and induced-
pseudoscalar contributions to total muon-capture rates are of
opposite signs and practically cancel one another."J.V. Falomkin et al. , Phys. Letters 6, 100 (1968)."L.B. Auerbach et al. , Phys. Rev. 138, 8127 (1965).

=s Z
MHe3

dQ„
16(He', kH, ~ ——0& MH, (

&(I"&~He, kH, 3=0, MH, S)

+8(v)n, ~
S(x)dx —A, (53)

"Equations (50) and (51) follow immediately from the trans-
formation properties of the vector and axial-vector currents under
the parity operation. The left-hand side of Kq. (52) vanishes,
since no pseudovector can be constructed out of the only available
vector kH, I=0.

'~ We are discarding the term proportional to J'B~S(x)d'g. If
S(x) is a constant, then this term is obviously zero. If it is not
a constant, we assume that S(x) vanishes at infinity so that
1'OgS(x)d'@=0 (this is trivially seen by transforming the volume
integral to a surface integral using Green's theorem).
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where I&", the third component of the isotopic-spin
operator, is given by

Therefore
I(s) = fgv, (s)(0) (54)

I'(He') —16I("(He')+8
~ (v) rr. *

~
5(x)dx —&

D(He')

=8+8
i (v)n. ~

i 5(x)dx —6. (55)

I.et us separate 6 into two parts as follows:

~=~conn+~dis ~ (56)

By delnition, Ad;, gets contributions only from dis-
connected diagrams, i.e., diagrams in which the initial
nucleus (He' or H') in relation (30) does not "interact, "
while h„„„gets contributions only from connected
diagrams. In the Appendix we show that

A~;, ——8~(v)rr. ( 5(x)dx. (57)

I'(He') —2.36X10s sec ' (60)

in good agreement with the experimental values (49).
In addition to using several well-established approxi-
mations, we have made the following two crucial as-
sumptions in deriving this result:

'0 A. Wolsky (University of Pennsylvania) is currently investi-
gating the magnitude of 6„ in the case of muon capture by
proton (private communication).

Together with Eq. (55) this implies

I'(He')/D(He') —8—6,.„„. (58)

As defined previously, the quantity A„„„contains sums
of squares of matrix elements of Q (+) between the
state ~He') and the states ~1Vb) which are inaccessible
energetically in the actual muon-capture process, e.g. ,
the nuclear states with one nucleon replaced by a
nucleon isobar, the states with a particle-antiparticle
pair (the so-called Z diagram), etc. As already men-
tioned, it seems that the neglect of 6„„„is quite justified
in the nonrelativistic approximation. Since the values
of the commutators in the quark model are not very
much different from those of the nonrelativistic impulse
approximation )see Eqs. (40), (41), and (44)j, it is not
entirely unreasonable to neglect 0 „„„in the case of the
quark model. In the absence of a more convincing proof,
however, this to to be taken as an additional ad hoc
assumption. "With this assumption, we finally obtain

I'(He')/D(He') —16I (') =8. (59)

One of the remarkable points to note is that the right-
hand side of relation (59) depends on only one nuclear
parameter, namely, I("(He'). Substituting Eq. (22)
and the estimates (47), Eq. (59) yields

(a) The weak hadronic currents satisfy the quark field
algebra.

(b) The closure approximation (i.e., d „„„is negligible)
is valid in the context of the quark field algebra.

It is quite clear that if one of these assumptions could
be verified independently, our result would provide the
necessary justification for the other assumption within
the limits of the approximations introduced. In the
absence of such independent verification of either of the
assumptions, our method serves as a probe testing both
assumptions together. Because of this, one cannot rule
out the possibility that both assumptions are wrong in
such a way that the mistakes they introduce cancel to
yield the good result. To test assumptions (a) and (b)
further, it is therefore imperative to look for applica-
tions of relation (38) to other nuclear isodoublets such as
(Be', Lir), (C",B"),etc. , This, however, is not feasible
in practice since one of the members of these isodoublets
is always very unstable and the required muon-capture
experiments cannot all be carried out. In the absence of
further tests of assumptions (a) and (b) in muon cap-
ture, we shall focus our attention on elastic neutrino
(antineutrino) scattering by nuclei in Sec. VI. Using as-
surnptions (a) and (b), we will derive a, relation between
cross sections for elastic scattering of neutrinos and
antineutrinos by nuclei. This relation will be not as
restricted in its experimental applications as relation
(38), in the sense that it involves one nucleus only and
is therefore applicable to a variety of stable nuclear
targets.

I'(He')/D(He') —4I 's) (He') —6„„„=2 —6„„„.
Using the estimates (47), this gives

(61)

I'(He')=0. 59&&10' sec ' —6„„. (62)

If we also assume here that 6„„„is negligible, we end up
with a result in violent disagreement with experiment.
However, since the values of the commutators in the
gauge field algebra are, in contrast to the quark model,
quite different from those of the nonrelativistic im-
pulse approximation Lsee Eqs. (40), (41), and (44)j,
the neglect of 6„„„,which has, after all, always been
justified on the basis of the nonrelativistic approxima-
tion, is quite unjustified in the context of the gauge field
algebra. Thus it is clear that we cannot reach any con-
clusions regarding the validity of the gauge field algebra
from our calculations. At any rate, it can be concluded
that the validity of the gauge field algebra necessarily
implies a large contribution of 6,.„„to the capture rate,
in contrast to the case of the quark model. This differ-
ence will enable us to distinguish between two algebras
when and if the calculation of A„„„becomes possible.

C. Gauge Field Algebra

If we now substitute relations (40a)—(40f) with )) =0
into Eq. (43) and use Eqs. (50)—(52), (54), and (57),
we find that
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VI. NEUTRINO (ANTINEUTRINO)
REACTIONS IN NUCLEI

In this section, we shall investigate the possibility of
applying assumptions (a) and (b) of Sec. V 8 to neutrino
(antineutrino) elastic scattering by nuclei.

Consider the "elastic"" reaction

vi+1V, —+ I+1Vb,

where E is the initial nucleus and S& any allowed 6nal
state of hadrons excluding pions, baryon resonances,
and strange particles. The lepton / can be either an
electron or a muon. We work in the laboratory frame
of reference in which the nucleus E, is at rest, and
adopt the same notation for the kinematical and dy-
namical variables associated with the neutrino and
hadron states g and Et, as the one used in Sec. II.
The charged lepton four-momentum is pi=(l, iEb) and
its mass is m~. We restrict our attention to values of
&= ill such that (mi/t)'«1, and terms of order (rni/l)'
are neglected so that E~=l. From energy-momentum
conservation, one can then show that

q=v —1. (67)

We shall be particularly interested in the total
"elastic"" differential cross section

do. &"&(1V v 8)

d(cos8) Xb(Eb & E)

do. t"&(1V,—+ 1Vb v 8)
(68)

d(cos8)

If we restrict ourselves to the case when the charged
lepton emerges in the forward direction (8=0), then

do &"'(1V.; v, 8)

d(cos8)

62

g=p 2s- 2J,+1

2 { 2 2 2 L1'(&-1)/m. jg-s'"'
iVrg Nb(Eb(~ E) Mb kb

X(1V,; k, =0, M, lgsi '(q) l1Vb, kb, Mb)

where

~. '"'=(1/ l)L(P.)-(Pi)p+(P )-(P.)p
—(P .Pi)8-s

+ (P.) (P ) 3 (66)

(m.'—nb') +2vm.

2(E vcos8)— (64) where

lql = —1=(1/2m. )(~ ' —~.') (70)

X(1V,; k,gr, lg. t+&(q) l1V.; k.=O, m.)}, (69)

where E=nz, +v is the total initial energy and 8 is the
angle of the 6nal charged lepton relative to the original
neutrino direction.

Using the interaction Harniltonian given by Eq. (1)
and the definition (18), one can readily show that the
differential cross section for reaction (63) is

do &"&(1V —+ 1Vb v 8)

d(cos8)

Q2 P(E—l)ZZE
2s. 2J,+1 br. br»b E—v cos8

X(1V.; k.=o, m. lg, t-&(q) l1V„k„~,)
X(»b kb ~blQ. '+'(q)

l
1V.; k.=0, ~.), (65)

8- '"'=(1/1 )L(P.)-(Pi)s+(Pi)-(P.) j. (»)
Ke have dropped the 8 p and e p„ terms in 2 p(")

since we are neglecting terms of order (mi/l)', and they
do not contribute for 8=0.

In practice, the main contributions to relation (69)
come from low-lying nuclear states X& since the wave
functions of such states overlap well with the wave
function of the initial nuclear state. This is the assump-
tion on which the closure approximation is essentially
based. It implies that only those states E& for which
(mb —m, ) is less than 20 MeV contribute appreciably
to relation (69). It subsequently follows from Eq. (70)
that the values of l for those states X~ that contribute
substantially to relation (69) differ from v by at most
20 MeV. Therefore, (mb), t"i —rib,«v, " and one can
write with sufhcient accuracy that

do-'"'(1V v 8)

d(cos8)

(v)-=—v' p L p p p (1V.; k.=o, m. lg, t-l((q) &"&) l1Vb, kb, Mb)
2@~+1 bra ¹(z~b(E) kb 3fb

X(1Vb, kb, Mb
l Q i+&((q), i"&)

l
1V, ; k, =0, Mo)1. (72)

Similarly, the total elastic forward differential cross section for the corresponding antineutrino-induced reaction,

(73)

"By "elastic" scattering we mean reactions in which the three-momentum transfer to the nucleus (and therefore also the energy
transfer, since we neglect terms of the order of the charged lepton mass squared and limit ourselves to forward charged lepton
production) is less than 30—40 MeV/c. This automatically excludes reactions in which pions, baryon resonances, and strange particles
are produced.

~ ) (") denotes an appropriate weighted average over possible Anal states Eq for the neutrino-induced reaction (63).
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do'("'(1V v 8)

d(cos8) g p Nc(Ec & E)

dO(")(1Va —b 1Vc. V 8)

d(cos8) ie—p

G' 8 p(")
=—v' Q I Q Q Q (1V.; k.=0, M, I Q '+&((q).&"') I1V, ;k„M,)

2pr 2Ja+1 Ma Nc(Ec&~E) kc Mc

&&(1V.; k„M. I
Qp'

—'((q). ("&)
I
1V.; k.=0, M.)], (74)

where v is the incident antineutrino energy and

8- '"'= (I/ I)l:(P.-)-(P ) +(P )-(P.-) ]
Pv

——(v, —iv), Pi=(1, —il).
(75)

(76)

{ ),("& denotes an appropriate weighted average over possible final state 1V, for the antineutrino-induced re-
action (73). In general, (q), &"& and (q) &") will be different since the final hadron states in the neutrino- and anti-
neutrino-induced reactions are not the same. Since, however, we are restricting ourselves to forward elastic scatter-
ing, this difference is very small, "and as in the muon-capture case, one can readily show that an error of less
than 1% is made by replacing (q), ("' by (q), ("' in Eq. (74). With this approximation, Eq. (74) becomes

do&"&(1V.; v, 8)

d(cos8)

G2-=—'S.p(") P L P P P (1V.; k.=O, M. IQ. '+'((q). &"') I1V„k„M,)
p=p 2W 2Ja+1 Ma Nc(Ec&~E) kc Mc

X{1V ;k.,M. Igp. ' '((q) ( &).I
"1V„k 0.,=M)] , (.77)

If we use the closure realtion (27), Eqs. (72) and (77) can be rewritten as follows:

der(")(N, ; v, 8) G' 8 p("'——v' P (1V., k.=0, M.
I

Qp&
—)((q).("&)Q &+&((q).("))I1V.; k.=O, M.)+8&(") (78)

d(cos8) p p 2K 2Ja+1 Ma

where

do'"'(1V v 8)

d(cos8)

G2 g (v)

=—v' Q (1V„k,=O, M, IQ (+)((q) ("&)Q ' &((q) '"') I1V.; k.=O M )+8 '"& (79)
&) p 27I' 2Ja+1 Ma

g (~)

2 L 2 EZ {1V.;k.=o M. IQp' '((q). '"')I»;k»Mb)
2X 2Ja+1 Ma Nb(Eb&E) kb Mb

X{lY'b, kb, MblQ &+'((q). ("&) I1V.; k.=0, M,)] (80)

g (r)

5,(')= —v' P I g g Q (1V.;k.=O, M. IQ &+'((q).&"')I1V.;k„M,)
2~ 2Ja+1 Ma Nc(Ec&E) kc Mc

~(1V.; k.,M. I
Qp(-)((q). ( )) I1V.; k.=0, M.)]. (81)

Let us choose the s axis along the incident neutrino (antineutrino) direction. Relations (78) and (79) can then be
corn.bined to give

do. &"&(1V„v,8)

d(cos8)

where

and

do &"&(1V,; v, 8)

d(cos8)

G'
2 {(1V.; k.=O, M. l(l:Q ' '((q). '"'),Q "'((q).'"')]

p p m 2J+1Ma
—I:Q '-'((q). '"'),Q "'((q).'"')])I1V.; k.=o, M )}+8+8 (82)

g&
—$&(v) g&(v)

G2

Bp i v' ———P (1V.; k, =0, M,
I ((Qb(

—)({q),(")),Qb(+)({q),("))}+(Qp(+)({q),(")),Qb(
—

&((q),&"')})
2Ja+1 Ma

&& I
1Va c ka =0, Ma) . (84)

23 &e are, of course, assurqing equal incident neutrino and antjneutrino energies,
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As for the muon-capture case, we invoke the closure approximation" here also and neglect gi I
this is equivalent

to assumption (b) of Sec. V B$. Furthermore, we shall now show that for elastic scattering g~ is also negligible. To
demonstrate this, let us first rewrite 82 as follows:

J3& '(x,O) exp( —i&q&, &"~ x)dx, J4&+'(y,0) exp(i&q), &" y)dy

Ja&+~(x,0) exp(i(q), &"' x)dx, Jg' '&yo) ~XV& —&&q).'"'y)dF )l&&'.;~.=o, ~.) &~~)

&q&. '"'x(«y) ~~
I
&q&-'"'l~ =—

I &q) '"'l~"'/~-&&1. (86)

A "dipole"-type approximation —in which the exponen-
tials in Eq. (85) are expanded and only the leading
term is kept —is thus quite feasible. Upwith this approxi-
mation,

G'
5g=i—v' Q &iV; k„=O, M,

l2J.+1.~.

J3(—) x,0 dx, J4(+) y,0 dy

~"+'(*,n)~», I '-'&Y, o)~v )
&& le, ; k, =o, M,) =0. (87)

The vanishing of the right-hand side of Eq. (87) is
easily demonstrated by using (i) the parity transforma-
tion properties of the vector and axial-vector currents
and (ii) the Wigner-Eckart theorem.

Neglecting 5~ and 6~ and substituting the commuta-
tion relations (40a)—(40d) with g=1 (quark field alge-
bra), relation (82) finally yields

dg &"'(JV v 0)

d(cose) e=o

der'"'(iV v 0)

d(cos8)

=—8I&'~(cV,)G' cos'9, i'/ir, (88)

where use has been made of the analog of Eqs. (50)—(52)
for the state IX;k =0, M,).

Ke wish to make the following remarks:

(a) The right-hand side of relation (88) depends on
only one nuclear parameter, namely, I&"(iV,) (or,
equivalently, the neutron excess).

The main contributions to the integrals in relation (85)
come from lxl, lyl &E~, where R~ A'"/m is the
nuclear radius of 1V, (m is the pion mass). This is most
easily seen by using the nonrelativistic impulse approxi-
mation. We have already pointed out that

I &q), &"'
I

is
at most 20 MeV/c. It is therefore clear that the main
contributions to 52 come from values of

I
x

I
and

I y I

such that

(b) In deriving Eq. (88), use was made of the equal-
time commutators of the space components of the weak
hadron current as well as the commutator of the time
component.

(c) Relation (88) is in a form which is very convenient
for comparison with experiment since nearly all neutrino
and antineutrino scattering experiments are carried out
on nuclei (and not on free nucleons). In order to dis-

tinguish between elastic and inelastic events, it is ad-
vantageous to test the relation for cases where the de-
tector can also serve as a target. Excellent candidates
are Al' (I=-' I&"=—-') and Fe" (I=2, I&3&= —2),
which are quite commonly used in spark chambers.

(d) It is interesting to note tha, t relation (88) is quite
similar to the one derived by Adler" for nucleons, but
the methods of derivation are quite different. Although
the Adler relation is not limited to elastic scattering or
to production of muons in the forward direction alone,
it does require taking the limit when neutrino and anti-
neutrino energies tend to infinity. On the other hand,
in our mode of derivation, relation (88) is expected to be
applicable already for neutrino and antineutrino ener-

gies of 100 MeV or more when l=e and of 0.5 GeV or
more when l=p. The 100-MeV and 0.5-GeV lower limits
that we are setting are partly due to the fact that in
deriving this relation. we have assumed the lepton mass
to be negligible. That we do not have to consider the
limit of infinite neutrino (antineutrino) energy is due to
the fact. that relation (88) applies to nuclei, and not to
nucleons, for which a closure approximation may be
meaningful and good saturation of the sum rules by low-

lying nuclear states is perhaps possible.

In view of remarks (c) and (d), we believe that tests «
relation (88) are at present quite feasible. Such tests are
very important as they can provide further veri6cation
of the quark 6eld algebra and the closure approxima-
tion Lassumptions (a) and (b) of Sec. V Bf.

A useful lower bound for the total elastic diQerential.
cross section for forward scattering of neutrinos oQ

stable nuclei E can be obtained by noting that, by
definition, do &"&(1V, ; v, 9)/d(cos8) &0, and that for nearly
all2' stable nuclei the number of excess neutrons is

A —2Z= —2I&3'(E ) ~&0.

'4 S. L. Adler, Phys. Rev. 143, j.144 (j.966).
~' The only exception is the He3 nucleus.
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do &"&(1V v 8)

d(cos8)

62 cos~g, v2)~4(A —2Z)

do &"'(e -+ p; v, 8)=1.6(A —2Z)
d(cos8)

(90)

where da &"&(n~ p; v,8)/d(cos8) is the elastic differential
cross section for scattering of neutrinos of energy v))m„
off neutrons. " The lower bound defined by this in-

equality is 1.6 times larger than the differential cross
section calculated by Goulard and Primakoff'" using

For such stable nuclei, Kq. (88) clearly implies the
following inequality:

the nonrelativistic impulse-approximation limit. It
should also be noted that if one uses in Eq. (82) the
commutation relations based on the nonrelativistic
impulse approximation LKq. (44a)] instead of the quark
lmld-algebra relations

I Eqs. (40a)—(40d)$, 8I~3~ in Eq.
(88) is replaced by 5I'~~. We therefore see that in the
nonrelativistic impulse approximation the value 1.6 in
Eq. (90) should be replaced by unity. The correspond-
ing lower bound on the cross section is then in agree-
ment with that calculated by Goulard and Primakoff.

Using essentially the same techniques as those de-

scribed in this section and in Sec. III, and in the context
of the quark field algebra, we have also derived the
following relations':

do&'(1V(A I —I"').v 8)

d(cos8) 8=0 d(cos8)

do'"'(X(A, I,I&");v, 8) do'"'(1V (A,I,I&");v, 8)

e 0 d(cos8)

do''"'(Ã(A, I, —I&");v, 8)

d(cos8)
=8I"'G' cos'8 v'/vr (I"'&0), (91)

where do. &"'(1V(A,I,I&'&); v, 8)/d(cos8) is the total elastic
differential cross section for scattering of neutrinos of
energy v))m„off a nucleus 1V(A,I,I&") of mass number

2, isospin I, and third component of isospin I(".These
relations are not as useful as rela, tion (88) since one of the
nuclei appearing in Eq. (88) is always quite unstable
(the one with the proton excess), and, as a result, ex-

perimental tests of the relations are not very practical.
It is to be noted, however, that Eqs. (91) also yield the
useful inequality (90).
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APPENDIX

From Eqs. (30), (35), and (37), and the definition of
the disconnected part, "we have

26 T. D. Lee and C. N. Yang, Phys. Rev. Letters 4, 307 {1960);
Phys. Rev. 119, 1410 (1960); 126, 2239 {1962);Y. Yamaguehi,
Progr. Theoret. Phys. (Kyoto) 23, 1117 (1960); N. Cabibbo and
R. Gatto, Nuovo Cimento lS, 304 (1960); B. Goulard and H.
Primako8, Phys. Rev. 135, 81139 (1964)."B.Goulard and H. Primako8 (Ref. 26).

"See, for example, C. W. Kim, W. Repko, and A. Sato, Phys.
Rev. D 1, 434 (1970).

dQ„"z,.E 2 P I &0IQ.&+&(&.) .) I1V;k,m)
4~ iv

x&1V; kpr I Q~ &-'(&.)H.*)
I 0)

—(0lQ. &+~( —(.) .*) I1v; k,~)
&&&1V; k,MI Qy& '(—&v)ir. ) Io)), (A1)

where IO) represents the physical vacuum state. Using
the closure relation (27), Eq. (31c), and the invariance
of the vacuum state under isotopic-spin rotations, Eq.
(A1) becomes

dQ„
~'(&0ILQ. & &(& )-")Q.&-&(& )-")

4m. —Q. ' '(&v)H *)Q~"'(&v)H")jl0)) (A2)

Since only the symmetric part of Z~, contributes to
Eq. (A2), we can write

dQ„'~..(0IIQ. «)-. ),
4x

&&Q ' '(( ) ")jl0) (A3)

Using Eq. (12) and the commutators (40a)—(40f) (with

q = 1 or 0) and using the parity-transformation proper-
ties of the vector and axial-vector currents, relation
(57) immediately follows. "


