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We derive upper and lower bounds on the imaginary part of the elastic scattering amplitude of two
spinless particles in the physical region, in terms of the elastic cross section 0;l and the total cross section
0& t, using unitarity alone. The bounds derived are the best possible ones, given only the stated unitarity
constraints. The upper bound for high energies and small values of the momentum transfer squared t has a
particularly simple and "universal" form, Imt(st)/Imft'(s0) &~1—-',p+$(p/9)' —(2l/320)(p/9)'+ ~ ~ if
2.5 ~& p= ( t/4~) p—t,P(s)/a, ~(s), which depends on the particular scattering process and on the energy and
momentum transfer only through the dimensionless parameter p. We give explicit formulas and numerical
values for the upper bound up to p =8.42. We compare the experimental curve of (do/d$)/(do'/d$) t, p versus
4( t) (dp/—dt) & p/o«with the theoretical upper bound on Dmt(s t)/Imt(s, t =0)g' versus p. The quantities
plotted in the experimental and theoretical curves are the same if the unpolarized cross sections are spin-
independent and purely absorptive in the diGraction-peak region. We find that the experimental points
for pp, pp, s.+P, and s. P scattering in the lab momentum range 6-13 GeV/c fall on a curve lying only
slightly below the theoretical upper-bound curve, the difference being less than 10% for p in the range
(0,3) and less than 25% for p in the range (3,5). We further notice that this experimental curve is universal.
We also derive unitarity lower bounds on the nth derivatives of the absorptive part at t=0, and on the
absorptive part for positive values of t within the Lehmann-Martin ellipse, in terms of r, l and et,t. The
corresponding bounds if 0-tot alone is known are also derived.

I. INTRODUCTION

M NE of the important features of high-energy
elastic scattering is the presence of the diffraction

peak in the low-momentum-transfer region. UVe would
like to investigate how far one can understand this
feature in terms of restrictions arising from direct-
channel unitarity without recourse to any specific
model. 1A'e begin by recalling some earlier results which

suggest the importance of unitarity restrictions in the
di6raction-peak region.

Let F(s,t) be the elastic scattering amplitude for the
process 2+8~2+8 with the particles 3 and 8
assumed spinless (e.g. , s.s ~ s.s), with s and f being,
respectively, the squares of the c.m. energy and momen-
tum-transfer variables. Martin' has established the
following bounds, which follow from unitarity alone. En

the physical region,

4 $1+iV(N+1) sin'0$" 4 —1
ImF(s, f) & ImF(s, 0)—

3 N(/V+1) sin'0

~~& 8~&0 (1.1)

and for small positive momentum transfers,

ImF(s, t) & ImF(s, 0)

F~+i'(1+t/2k')+F~'(1+1/2k')-

(N+1) '

&p&~t) 0 (1.2)

=k'oi, i(s)/(4s-), gfp=the mass of the lowest mass state
that couples to the crossed t channel, i.e., AA. —& BB,
i.e., tp

——4m ' for s-s- and 7rN scattering, and o«~(s) = total
cross section for 2+8 at the c.m. energy square given
by s. These bounds are purely in terms of the experi-
mentally measurable quantity o.&,t(s), since ImF(s, 0) is
completely specified by the normalization and ot,„(s),
and as such are very important. The bound (1.1) is
directly checkable in terms of experimental data. The
bound (1.2), though not directly checkable since it
refers to the unphysical region, is nevertheless im-
portant since it can be used' to establish the Froissart
bound'

ot,~(s) & const| ln(s/sp) j' (1.3)

and also gives a bound' ' on the constant occurring in
(1.3). From the point of view of the experimental com-
parison we must also mention here the unitarity upper
bound on "diffraction-peak width" obtained by
MacDowell and Martin, 4

(d 1 ~...'(s) 1 )
~

—ln ImF(s, t)
~

) — ——
~, (1.4)

&dk I g=p 9 47ro.i(s) k')

where o.,i(s) is the total elastic cross section. This bound
is remarkably close to the observed experimental values
when a comparison is made by neglecting the contribu-
tion of the real part of the amplitude to the diGraction-
peak width. 4

The MacDowell-Martin result leads us to hope that a
unitarity upper bound on the differential cross section

where f= —2k'(1 —cos8), k=c.m. momentum, (N+1)'
*Some of the results of this paper were reported earlier:

V. Singh and S. M. Roy, Phys. Rev. Letters 24, 28 (1970).
' A. Martin, Phys. Rev. 129, 1432 (1963).

' M. Froissart, Phys. Rev. 123, 1053 (1961).
P L. k,ukassuk and A. Martin, Nuovo Cimento 52A, 122 (1967).
4S. W. MacDowell and A. Martin, Phys. Rev. 135, 8960

(1964).
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in terms of O.~,t, and a-,i might also be close to the experi-
mental results in the diGraction-peak region. Indeed, an
asymptotic upper bound on the difterential cross section
in terms of 0.,i has been found recently by us which
improves the asymptotic bounds due to Froissart, '
Martin, ' I' ukaszuk and Martin, ' Mahoux and Martin, '
and Bell, ~ and is given by'

squared t has a particularly simple form,

ImF(s, /) p 3 (p) ' 21 p) '
& 1—-+-I —

I

— —I+".
ImF(s, 0) 9 8(9j 320 9j

0&p= ( t)—a;.,'(s)/4s-o, t(s) ~& 2.5.

(1.7)

(1.8)
2

I

—
)

& —(ln—/

~ df ( p' 4tp o',&j
(1.5)

~ ~

1 s s «0. (1.6)
df)j s ~" 8s sgtp g t —o.r

The assumptions needed to derive (1.5) and (1.6) are
the same as in I ukaszuk and Martin's derivation' of
the Froissart bound, namely, unitarity, analyticity in
the domain derived from axiomatic field theory,
polynomial boundedness within the I.ehmann-Martin
ellipse, and crossing symmetry. These asymptotic
bounds contain smaller numbers of explicit lns factors
than the corresponding Froissart bounds and can serve
as important restrictions on theoretical models for
hadronic scattering amplitudes. Unfortunately, they
still contain some explicit lns factors, and we are unable
to test these relations directly against experiment since
present experimental accuracy is insufhcient to prove or
disprove the existence of such factors in the asymptotic
cross sections.

We are therefore led to consider bounds on the
absorptive part for which one is able to make a more
efficient use of unitarity. One is then able to derive
results valid at finite energies and not just asymptotic
energies. These, incidentally, do not contain any
explicit lns factors.

The physical-region results we present in this paper
are consequences of unitarity alone like the results (1.1),
(1.2), and (1.4). The unphysical-region results need, in
addition, the use of analyticity within the Lehmann-
Martin ellipse. In contrast with the derivation of the
Froissart bound and the asymptotic bounds (1.5) and
(1.6), assumptions regarding polynomial boundedness
of the amplitude are unnecessary for the derivation of
these results. Our most important result is an upper
bound on the imaginary part of the amplitude in the
physical region in terms of 0,& and 0-&.&. It is very close
to the experimental results for pion-nucleon, nucleon-
nucleon, and nucleon-antinucleon scattering data in the
diffraction-peak region when comparison is made by
neglecting the real part of the amplitude and assuming
spin independence of the unpolarized cross sections. The
upper bound for small values of the momentum transfer

It is enough to keep the Grst three terms in the series in
(1.7) if an accuracy of 0.5% is desired. We give explicit
formulas and numerical values for the upper bound up
to p=8.4, and discuss detailed comparison with experi-
ment in the text.

The main obstacle to obtaining good bounds on
ImF(s, 1) in the physical region so far has been the com-
plicated behavior of the required Legendre polynomials
occurring in the partial-wave expansion. The Legendre
polynomials P&(coso) for 7r) 0)0 oscillate as a function
of / (I'ig. 1).Therefore one has as a rule tended to work
with functions which majorize ~P&(coso)

~
and have a

nonoscillatory behavior in l. This entails loss of informa-
tion. Ke have obtained the best possible bounds under
the unitarity constraints stated by tackling this
problem frontally. Ke have obtained both upper and
lower bounds on ImF(s, i) in the physical region. We
are not aware of any previous significant results on the
lower bounds in the physical region, and hence consider
these to be of theoretical interest. The upper bounds in
the physical region are found to be of immediate
practical use.

The plan of the paper is as follows. In Sec. II we give
all the exact results we have obtained in the form of a
number of theorems. These are arranged as follows.
First come the upper and lower bounds on ImF(s, t) in
the physical region (Theorems 1 and 2) which involve
only the total cross sections. The upper bound is an
improved version of Martin's theorem (1.1). Then
comes Theorem 3 giving upper and lower bounds on
ImF(s, 1) in the physical region involving both the total
and elastic cross sections. This theorem is our best
result from a practical point of view. This result can be
improved under certain conditions to yield the bound

P&(co e)

s A. Martin, Nuovo CinMnto 42, 930 (1966).
P G. Mahoux and A. Martin, Phys. Rev. 1/4, 2140 (1968).
~ J. S. Bell, Nuovo Cimento 61, 541 (1969).
s V. Singh and S. M. Roy, Ann. Phys. (N. Y.) (to be published).

Fxo. 1. Oscillating behavior of E&(cose) in l for
a axed cosgg+1 is illustrated.
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given by Theorem 4. Theorem 5 gives lower bounds on
the derivatives of ImF(s, t) at t=0 and yields the
MacDowell-Martin result (1.4) as a special case. Lastly
in Sec. II we give a number of theorems giving lower
bounds on ImF(s, t) in the unphysical region to) t) 0.
These are of theoretical interest.

The exact results given in Sec. II are evaluated and
discu. ssed in the high-energy diffraction-peak region in
Sec. III, and finally we compare these with the available
experimental data in Sec. IV.

II. UNITARITY BOUNDS ON ABSORPTIVE PART
OF ELASTIC AMPLITUDES

We have the following expansion for the elastic
scattering amplitude F(s, t) in terms of the partial-wave
amplitudes oi(s) in the physical region:

valid for ir& 8)0, which implies that if lg V(L,H), then
l(2/ir sinHLPz, (COSH)7'. Similarly, the set II(L,H) is a
finite set if Pz(COSH))0 and the set W(L, H) is finite
if 0)Pz(COSH).

A. Upper and Lower Bounds on A(s, t) in Physical
Region Involving Only Total Cross Section

Theorem 1.An upper bound on A(s, t) in the physical
region is given by

(k(+s)oi, i,(s)).4(s, t) &
i iPz(COSH))

gs
+—P (2l+1)LP i(COSH) —Pz(cosH) 7, (2.6)

l QU(I. ,O)

F(s,t) = — P (2l+1)ai(s)Pi(COSH).
P

The absorptive part is defined by

ImF(s, t)=A(s, t) . (2 2)

where the positive integer L is to be determined by

k'o «( i)s/4n. = Q (2l+1)+P P (2l+1) (2.7)
l +U(I.,8) lgV(l. ,e)

1&~Pz(cosH))0, 1)$&~0.

The normalization is fixed by stating the unitarity
restriction on a&(s), i.e.,

We then have

1& Imai(s)) ~ai(s) ~'&0. (2.3)

o„.„(s)= (4m/kgs) ImF(s, 0)

4x ~—P (2l+1) Iznai(s),
k' l=p

(2 4)

4g ~
~.i(s) = —2 (»+1) l «(s) I'

» l-O

' G. Szego, Orthogona1 Eolyeomials (American Mathematical
Society„"Colloquim Publications, New York, 1959), p. 163, Eq.
(7.3.8).

When we consider the unphysical region of t, we will use

the fact that the partial-wave expansion (2.1) is valid
within the Lehmann-Martin ellipse whose size is 6xed
by the value of tp.

We shall now state our results on the unitarity bounds
in the form of a number of theorems. It is convenient
for that purpose to divide the set of all positive integers
(including zero) into three nonoverlapping sets as
follows:

Defiriitiorz 1. Let L be a positive integer and ~)8&0.
The positive integers l (&~0) are said to belong to the
set Lz(L, H) if they satisfy Pi(COSH)&Pz(COSH); to the
set V(L, H) if P~(COSH) =Pz(COSH); or to the set W(I, H)

if Pz(cosH))Pi(cosH).
The set V(L,H) is finite. This follows from the

inequality9

~
P~(cosH)

~
( (2/m l sinH) 'i',

where

Immi ——1 for lg II(L,H)

for i+ V(L,H)

=0 for i&W(L,8),

1)(,&~0,

(2.S)

l QV(L,8)
(2l+1)]i/ Q (2l+1) . (2.9)

l gV(l. ,e)

(iii) All the summations in Theorem 1 and in Eq.
(2.7) are finite summations and are therefore well
defined.

(iv) The upper bound given by (2.6) and (2.7) is the
best possible given only 0.«and the unitarity restriction
0~& Imai~& 1 since it is achieved by the choice (2.8). In
particular, it is better than, the upper bound (1.1) given

We shall make a few comments on Theorem 1 before
proceeding to give the proof.

(i) The introduction of the fractional number g, which
does not appear in the bound (2.6) but occurs in (2.7),
is necessary to take into account the fact that k'o«t/(4ir)
is in general not integral, which it would be if $ were
taken to be zero. At high energies this becomes a,

peda@tie point. The reader can also easily verify that
(2.7) always leads to unique determination of L and f,
since the right-hand side of (2.7) takes all possible
values as Pz, (COSH) and $ vary in their allowed ranges.
In particular, the value Pz(COSH)=1 corresponds to
1)k'o«i/(4ir) &&0, while Pz(COSH) -+ 0 leads to values
of k'o«i/(4n) -+~.

(ii) The upper bound (2.6) will be achieved for the
following choice of the values of Imai.
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l QV(M, 8)

where

by Martin. A direct proof of this assertion will be given where the positive integer 3f is to be determined by
in Appendix A.

We now proceed to give the proof of Theorem 1. We h'«ot(s)/«= 2 (2l+1)
shall use the direct subtraction method.

Proof of Theorem 1.Let

We now use (2.4) and (2.7) to obtain

(2l+1) Ima, = Q (2l+1)(1—Ima, )
lpga (L,8) l QU{L,8)

+ Q (2l+1) ($—Ima ~) . (2.12)
l +V(I.,8)

Using then (2.12) in the inequality (2.11), we obtain

Ao(s, t) —A(s, t) & Q (2l+1)(1—Ima, )
l QU(I, 8)

X[Pt(cosH) —Pq(cosH)] . (2.13)

We now use unitarity in the form

1~&Immi~&O

to conclude that

A o(s,t) —A (s,t) & 0. (2.14)

Ao(s, t) = P (21+1)Pi(cosH)
l QU(L, 8)

+f P (2l+1)Pr, (cosH) (2.10)
l QV(L,8)

and consider the difference

Ao(s, t) A(s, t)—= P (2l+1)(1—Ima~)P~(cosH)
l QU(L„8)

+ Q (2l+1)(&—Ima~)PI. (cosH)
l gV(L, 8)

(2l+1) Ima~Pt(cosH)
l QW'(L, 8)

)~P (2l+1)(1—Ima~)P~(cosH)
l GU(L.8)

+ Q (2l+1) ($—Ima~)PI. (cosH)
l C~(L,8)

—Pl, (cosH) P (2l+1) Imai. (2.11)
l gW(L, 8)

0&P~(cosH), 1&g &&0.

This theorem can be proved in exactly the same way
as Theorem 1. We shall therefore omit the proof and
forbear similar comments.

B. Upper and Lower Bounds on A(s, t) Invo1ving Both
Total and Elastic Cross Sect&ops

Let the set of positive integers (&~0) be divided into
two nonoverlapping sets as follows:

DefimtiorI, Z. The positive integers l belong to the set
U(n, A, H) if they satisfy

(Pt(cosH) —A)
ni — i&0

1—A )

and to the set V(n, A, H) if they satisfy

(P i(cosH) —A
0&ni

j.—3

where n and A are determined by

h'«..(s) o.[P t (cosH) —A])
(2l+1) (2.18.)

l QU (a,A. ,8) i

Our next result can then be stated as follows:
Theorem 3. Let (h'/4~)«. t2/g. q~) 1 and ~)8&0

and let

Qs
A& ~'(s, t) = —Q (2l+1)

l QU(a, A,8)

tre[Pt(cos8) —A])
— iP t(cos8), (2.17)

This concludes the proof of Theorem 1, since Az(s, t) is h'&el(s)
easily seen to be identical to the upper bound given
there.

We now give a lower bound on A (s,t) in the physical
region involving the total cross section.

Theorem Z. A lower bound on A(s, t) in the physical
region (m) 8&0) is given by and

(n[P)(cosH) —A]) '
(»+1)l (2.19)

l+U(a, A,g, ) k 1—A

A(s, t) ~(A & ~&(s,t) if n/(1 —A)) 0 (2.20)

A(s, t) & A t~ "&(s,t) if n/(1 —A)(0. (2.21)
A(s, t) & [(Qs)/h] Q (2l+1)

l QW{M,8)

X [P~(cosH) —P~(cosH)]

+k[(gs)/4~]«. tj'~(cosH), (2.15)

Further, both the upper and the lower bound on A(s, t)
do exist and are nontrivial. We shall need only the
positivity of Ima~, i.e., Ima~~& 0 for proving this
theorem.
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Proof. We have

l& =—(k/Qs)[A(s, t) —A&~ ~&(s,t))

(2l+1)(Ima& —Ima&&'&)P&(cos8)
l gU(a, A,e)

+
l gV(a, A,e)

(2l+1) Ima&Pi(cos8), (2.22)

Imai&'&—=0 for /g V(n, A, 8) .

Further, using (2.4) and (2.18) we get

(2.23)

l +U(a,A,e)
(2l+1) Ima&+ Q (2l+1) Imai

l gV(a, A,e)

(2l+1) Imai&'&, (2.24)
l QU(a, A,e)

and from (2.5) and (2.19) we get

P (2/+1) (Rea&) '+P (2l+1)(Ima&)'
L=O l=o

where

Ima&& &=—[o/(1 —A) )[Pi(cos8) —A] for /g U(n, A, 8)

This concludes the proof of the theorem except for a
discussion of the existence of solutions of (2.18) and
(2.19) for n and A such that both the upper and lower
bound do exist and the theorem is nonempty. The
relevant result is given by the following lemma.

I.er&tria l. Equations (2.18) and (2.19) have solutions
for the pair (a,A) if [(k'/4m)&r~, t2/o. &j&~1 with the
general properties given by

(i) n)0, 1&A)0;
(ii) n(0, 0)A &min[Pi(cos8) j.

This lemma will be proved in Appendix B.
As mentioned earlier, we need only the positivity of

Imal for a proof of Theorem 3. It may be of interest to
take into account both the boundedness and positivity,
i.e., j.~&Imul~&0. Ke state the improved result as
Theorem 4. For this purpose we split the set into two
subsets as follows:

Def&&tition 3. The integers /& U(n, A, 8) belong to the
subset Ui(n, A, 8) if they satisfy

Pi(cos8) —A
EX & 1 for /g Ui(n, A, 8)

1—A

(P&(cos8) —A )
l~&0 for /2U2(o, A,8).

iWe now eliminate Pi(cos8) in the first sum on the
right-hand side of (2.22) by using (2.23) in favor of
Impel(o) to obtain Theorem 4. Let

=Q (2/+1)(I &'&)' ( 5)
and to the set U2(n, A, 8)',if they satisfy

l 0

6=[(1—A)/2nj{ P (2l+1)[(Imai)' —(Imai&'&)'
l QU(a, A,e)

—(Imai —Ima&&")'j)+A P (2l+1)
l +U(a,A,e)

X(Imai —Imam&0&)+ Q (2/+1) ImaiPi(cos8).
l +V(a,A,e)

We now use (2.24) and (2.25) here and obtain

Q (2/+1) (Reai)'
2o,

S
A &e i» (s,t) = (2l+1)Pi(cos8)

k l CU1(P.&,e)

where p and 8 are determined by

&I& 0 tot
(2l+1)

l +Ua(p, &,e)

tP &(cos8) —B~-
+P Q (2/+1)Pi(cos8)l , (2.26)

l QUg (P,B,e) 1—a i

+ Q (2l+1)(Imai —Imai&'&)'
lgU(a, A,e)

+ P (2/+1)(Ima, )'
l +V(a,A,e)

and

(Pi(cos8) 8—
+p 2 (2/+1)l

l QUg(P, B,e) 1—8

Pi(cos8) —A—2 Q (2/+1) (Imai)n
lQV (a,A,e)

The expression inside the square bracket is positive
definite. It therefore follows that

(2l+1)
4x lG»(p.&.e)

l 6»(p.&,e)

Then

P i(cos8) —8) '

((2l+1) l
. (2.28)

1 8 i—
A(s, t) & A & "&(s,t) if o/(1 —A) (0
A(s, t)~(A& ~&(s,t) if I/(1 —A))0.

and,
A(s, t) ~(A&t& i»(s, t) if p/(1 —8))0 (2.29)

g(s t) &A &e &(s,t) if p/(1 —B)(0. (2.30)
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Q (2l+1)= (2+1)'

It may be noted that Theorem 4 is an improvement Incidentally, all the sums over / occurring in Theorem
over Theorem 3 only if the set U&(P,B,O) is non-null. 6 can be evaluated in closed form by using

The theorem can be proved in the same way as Theorem
3, so we shall omit the proof.

C. Lower Bounds on Derivatives of A(s, t) at t=0

Theorem 5. A lower bound on the eth derivative with
respect to t of A(s, t) at t =0 is given by

(d"[A(s,t)]) h(+s)ot. ~

dt" i ~0 4s-

2 (2i+1)P~(s) =P~+~'(s)+P~'(s)
L=O

P (2l+1)[P~(s)]'= (X+1)'[P~(s)]'
L=O

+(1—")[P~'(s)1'.

(2.35)

We can also give an explicit but somewhat weakerr=n rr 1x
)(j[ g

l
~ )(2~+1) (2 31) lower bound on A (s,t) using the following lemma.

j iemmu Z. Let S(E,s) for E)0, s)1 be given by

for e~& 1, where R„ is given by

(2m+2) ( gg.g' ( m+1iz„=l ll l z„+ l. (2.32)
(2m+1) E16wa. i 5 8h')

[K]
S(E,s) = 2 (2l+1)[Px(s)—P~(s)]P~(s)/

L=O

g (2l+1)[P~(.)—P,(.)];
L=O

For e=i this theorem reduces to the MacDowell-
Martin result (1.4) on the "diffraction-peak width. "We
were able to prove Theorem 5 by a direct subtraction
Inethod. This, incidentally, also provides a neater proof
of the MacDowell-Martin result.

D. Lower Bounds on A(s, t) in Unphysical
Region (to) t) 0)

Martin has already given one such bound, given by
(1.2), which involves only ot,„.We here give another
involving both 0~,~ and 0,~. The following bound follows
from only the positivity of the Ima&(s)'s. The proof is
by a direct subtraction method and will be omitted.

Theorem 6', A lower bound on A(s, t) for to) t) 0 and
(h'/4~) O.~.t2/0. ~ &&1 is given by

A (s, t) &iri

& ~ (2l+1)[P~(s) -Pi(s)]Pi(.)/
A (s,O)

then S(E,s) &~S(E',s) if E~&E'. This lemma is proved
in Appendix B.

We also note the inequality, following from
Schwartz s inequality applied to the right-hand side
of (2.34),

& ([E]+1)'.
4x o-.y

(2.36)

Using Lemma 2 and the inequality (2.36), we obtain
the following theorem.

Theorem 7. A lower bound on A(s, t) for to)t)0 is
given by

A(s, t) wa&
& Z (21+1)lP-.(s) -P~(s)]P~(s)/

A(s, O)
rK0&

2 (2l+1)[Px (s) —P~(s)1, (2 37)
L=O

where

s =1+t/2h'
tK] andQ (2l+1)[Pir(s) —P((s)), (2.33)

oping

(Eg+1)'=-
4m- o-,y

L=O

(2.38)

Notice that Theorem 7 does not have the restriction
(h'/4m)at, ,~'/0, ~&~1. The improvement comes about as
follows. We erst prove a lower bound on [A(s, t)/A(s, O)]
which is given by (2.37) and (2.38), except that
Eo~ Eo' and 0-,~

—& 0.,~,;,where

0tot

4z o-,y

=(2 (2l+1)[Px(s)—P~(s)]}'/
L=O

where s=1+t/2h', [E] is the largest positive integer
less than or equal to X, and E is determined by the
relation

fKl

& (2l+1)LP (s) —P~(s)]' (2.34)
L=O

4x
0,); = —p (2l+1)(Imu()'&0. ).

P2 L=O
(2.39)
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We then show that use of the inequality o-,I&~o-,l, ;
allows us to replace 0.,I,; by O-, I since it only worsens
the bound.

Finally we state without proof the theorem on the
lower bound on A(s, t) in unphysical region when one
takes into account 1~) Ima~ ~& 0.

Theorem 8. For to&t&0, we have

k [K1]—A(s, t) &&Q (2l+1)Pt(s)
z=o

Let us order the set of extremum values of Pt(cos0)
as follows:

Pzi(cos0) &+Pr, ,(cos0) &~ Pr.i(cos0) &+

Let us now consider the various possible cases.

l. PI (c0$0)&Pz, (cos0)

The set U(L, 0) now becomes the set (L—1)~&l~&0
and the set V(L, 8) contains only l=L. Therefore,

[K] -PrC(s) —Pt(z) ~ t (k

+. 2 (2l+1) P,(,), (2.40), ( t)
[K1]+1 Pir(s) —1

L—1

Pr, (cos0)+ P (2l+1)
l=o

with

L=O

k'o. .i(is) lail
= P (2l+1)

4

X[Pt(cos8) —Pr, (cos0)7 =Pr, i'(cos0)+Pr, '(cos0)

~ Ogog

+p (cori) c'I (3.1)—
4x

and

[K]
+n Q (2l+ 1)

l= [K1]+I

Px(s) —Pt(s)

Ptr(z) —1

where the positive integer L is determined by

= r, (2l+1)+5(2L+1), (3.2)

P gel [Ky]
= P (2l+1)

E=O

with

l.e.,

1)$&0,

where

[K] -P&(z) —Pt(z)- '
+a' Q (2l+1), (2.42) L = [(k' tr,it/4s)r"'7=—the largest integer equal to

or less then (k'a , i/4ir)s' ' t(3 3)

and

Px(s) —Px (s)
Q —=1

Ptr(s) —1

z = 1+t/2k'.

The bounds (3.1) and (3.3) are exact as long as the
(2.43) condition Pr, (cos0)) Pl, ,(cos8) is satisfied. We now take

the high-energy diffraction-peak. limit, i.e.,

8 —~ 0, t = —2k'(1 —cos0) = finite.

III. HIGH-ENERGY AND LOW-MOMENTUM-
TRANSFER BEHAVIOR OF

UNITARITY BOUNDS

It is of practical interest to evaluate the upper bound
given by Theorem 3 as a function of a.&,&, O-, I, and t in
the diffraction-peak. region. In order to illustrate the
procedure, we shall first concentrate on the simpler case
of the upper bound given by Theorem 1, and then
quote the diGraction-peak-region results for Theorem 3.
We also note the high-energy limit of Theorem 5, which
again may be of practical use, and of Theorem 7, which
has a theoretical interest.

A. Upper Bound on A(s, t) given by Theorem 1
in Diffraction-Peak Region

As mentioned earlier, Pt(cos8), sr&0) 0, is an oscil-
lating function of l for a given value of 0 (see Fig. 1).
We have a number of extremum points given by

BP t (cos0)/0l = 0.

2 (s,t) Ji([(—t) a,„,(s)/4~7't')

A(s, 0) ' "
—,'[(—t)o .(ii)/s4r7)' ' (3.4)

3.46 &&( t)o,.i(s)/4sr, —

where (3.5) comes from the condition

Pr, (cos0))Pre(cos0) .

(3.5)

We could have obtained this final answer more
directly by using the approximations

Pt(cos0) =Jo((2l+1) sin20),

M W. Magnus and P. Oberhettinger, Formulas and Theorems for
the Functions of Mathematical Fhysics iChelsea, New York, 1954),
p. 72.

In this limit, the Legendre functions can be replaced by
Bessel functions, "and we obtain



UNITARITY UPPER AND LOWER BOUNDS 2645

and ignoring the pedantic introduction of the fraction We are now ready to give the answer for the general
g and simultaneously allowing L to assume nonintegral case in the diffraction-peak limit.
values. Then we have

3. General case

A (s,t) &~dl (2l+1)Jp((2l+1) sinzo8),
s s

t fixed

~ gtog

Denoting by X, and X,
' the values of (2l+1) sin-', 8 at

the beginning and end, respectively, of the various
pieces in the l summation, we have

(2l+1)dl. A(s, t)
dX uo(X) P dX X, (3.9)

This leads to (3.4).
If (—t)atot, does not lie in the range (3.5), then we

have to consider the cases Pzp(cosH) )~Pz(cos8).

Z. Pzp(GOSH) )+Pz, (casH) )Pz, (c0$8)

o=z, & X,'&),&Z,'&),&)„', (3.10)

Jp(X') =Jp(X' ) =Jp(kp ) for all i/0, (3.11)

The set U(L, H) now consists of two pieces given by
0&~ l&~L~z~&" and Lt»~') &~l&~L&»&" satisfying P&(cosH))Pz, (cosH). Again the diffraction-peak limit is given by

and

(—t)a ~.~(s)= =2+ (3.12)

k—A(s, t)
L(I)(2)

dl(2l+1) Jp((2l+1) sinzo8)
The number of pieces i necessary in the summations
occurring in (3.9) and (3.12) depends on the value of
the left-hand side of (3.12).

Here

+ dl(2l+1) Jp((2l+1) sin —',8) . (3.6)
L(2) (2)

B. Upper and Lower Bounds Given by Theorem 3
in DiGraction-Peak Region

L(1)(2)

dl(2l+1) +
L (3)(2)

(2)
(2)

Having illustrated the procedure, we now just quote

dl(2l+ 1) (3 7) the final results in this case. In the diffraction-peak
region,

where we allow L~,)
~" (i = 1, 2, 3) to assume nonintegral

values and
A(s t) 1

& Jo( o')+ —Z I:t '"Jp( '') —
t "Jp(t ')1, (3.13)

A(s, 0) p
Jp((2Lp+1) sinzoH) ~& Jp((2L&.) &')+1) sin-,'8)

=Jp((2L+1) sinoH)) Jp((2Lz+1) sinoH).

This case covers the range, putting in numbers,

where

0=ppwtzp ~pzwtz& wpowtz& ~ (3 14)

Jp(p, ) =Jp(p, ') =Jp(tzp') for all i&0, (3.15)
25.0)~( t) at,.t,(s)/47r . — . (3.8) and

{2'I:t '"Jp( '') —t "Jp(t ')3}'

2* (I:p''Jz(t '') 1'—Lt 'Jz(p')1'} —2Jo(t o')K' t '"Jp(p'') —t ''Jp(p') 3
(3.16)

where

p—= (—t) a.t.|,'(s)/4m a,i. (3.17)

More explicitly, we get

For the range 0~& p&&2.5, the above relations reduce to
A s,0 1280 9

A(s, t) tzo"Jo(po')
~& Jo(t o')+

A (s,0) P
(3.18)

for 0& p&2.5, (3.20)

with

LJp( o')1'(t o')'
P=

LJz(po )3 —2Jo(tzo )Jo(po )

a very simple formula. For 8.42~&p& 2.5, one need only

l~eep two terms corresponding to i =0 and i=1 in the

(3 19) summations in (3.13) and (3.16), and again we have
to do some very elementary calculations.
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Upper
bound on

A (s,t)/
A (s,0)]

Upper
bound on

A (s,t)/
A (s,0)

0.630
0.620
0.610
0.601
0.593
0.586
0.578
0.572
0.566
0.559
0.554
0.548
0.543
0.538
0.533
0.527
0.523

0.397
0.385
0.372
0.361
0.352
0.343
0.334
0.327
0.320
0.313
0.307
0.300
0.295
0.289
0.284
0.278
0.274

4.50
4.75
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
8.25
8.42

1.000
0.945
0.894
0.845
0.798
0.755
0.715
0.674
0.632
0.594
0.561
0.533
0.504
0.479
0.458
0.441
0.425
0.410

1.000
0.972
0.94S
0 919
0.893
0.869
0.846
0.821
0.795
0.771
0.749
0.730
0.710
0.692
0.677
0.664
0.652
0.640

0
0.25
O.SO
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25

C. High-Energy Limits of Sounds Given by
Theorems 5 and V'

From Theorem 5 we obtain

(
d"A(s, t)) k(v's) ...

Ch"
&

0'- I!(20+1)!

TABLE I. Upper bounds on the itnaginar) part A {s,t) and its exactly analogously We find that in the region
square A'(s, t) in the diGraction-Peak. region as a function of 0( (8 42 the magnitude of the uppp = ( t)—o«P.(s) /4na, t-(s) NPN ' )

A(s, t) is larger than the magnitude of the lower bound.

Upper Hence the upper bound on A'(s, t) in this region is
bound on obtained simply by squaring the upper bound on

P A (s,0)]' p
[A (s,t)/

A (s,0)]' A(s t). The values obtained are tabulated in Table I.
For comparison we may mention that the square of the
lower bound on A(s, t)/A(s, 0) goes from 0.162 to 0.138
monotonically as p goes from 0 to 11.5.

The contribution of the absorptive part to the
differential cross section is proportional to A'(s, t) and
hence, for comparison with experiment, we need an
upper bound on A'(s, t) and not just on A (s,t). For this
purpose we have to evaluate also the lower bound on

A(s, t) given by Theorem 3. The calculation proceeds

This result may be of practical interest in limiting the
values of the coeKcients g, 5, . . . in the fits of the form
exp(at+bt' ) to the differential cross section in the
di6raction-peak region.

An amusing result follows by combining the high-
energy limit of Theorem 7 with the polynomial bounded-
ness of A (s,t) within the Lehmann-Martin ellipse.
Theorem 7 yields

A(s t) Ir'(t.«.t't/4~~ ~j"')—1o(L«.t't/4 ~.ig"')12(P«.t't/4~o. ij"')
A(s, O) ts„,q Ig(Lo h/4tro tj t )

(3.22)

Qn using

we obtain

S~ & A (s,t) for to& t& 0,
(a) We neglect the real part of the amplitude in

comparison with the imaginary part in the diffraction-
peak region. In this approximation,

(4tr/ta) (X—1)'(lns) 2 &~«,tm/o, t. (3.23) A(s, t) '

A(s,O)

(do/Ch)

(do/dt)t o

(41)

This result is stronger than the earlier known result"
and p given by 3.17 is approximated by

(4tr/tp)(rV —1)'(lns)' &~«.t(s)

but weaker than the result (1.5), which we have
established recently.

IV. COMPARISON WITH EXPERIMENTAL DATA

tA'e would now like to compare the unitarity upper
bounds on the absorptive part given by Theorem 3 and
tabulated in Table I with the available experimental
data in the diffraction-peak region. Since (i) it is the
differential cross section and not the absorptive part
which is directly measured and (ii) no precise data are
available for the scattering of spin-zero particles for
which our bounds apply, we are forced to make the
following two approximations.

(do/Ch)t p

p= —4/
&el

(4.2)

(b) We neglect the spin dependence of the unpolarized
cross sections in the di6raction-peak region. This
enables us to assume that our results derived for the
scattering of spinless particles hold also for the un-
polarized cross sections for the scattering of particles
with spin.

For a discussion of the experimental validity of these
two popular approximations, we refer the reader to the
paper of MacDowell and Martin. 4

Under these approximations the theoretical upper
bound on the curve of L'A (s,t)/A (s,O)7' versus p
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Fzo. 2. Theoretical upper bound on the curve of )A(s, t)/A(s, 0)g' versus p is compared with the experimental curve of
(do'/d$)/(do'/d$)g o versus 4(—t)(do'/dl)g p/0'g in the diffraction-peak region for (a) s'+P and s P scattering and for (b) Pp and pP scat-
tering. The".quantities plotted in the theoretical and experimental curves are equal[for purely absorptive and spin-independent scattering.
We use the data of Foley et af. (Ref. 11) for n.+P scattering at lab momenta 6.8, 8.8, 10.8, and 12.8 GeV/c, n P scattering at 7.0, 8.9,
10.8, and 13.0 GeV/c, pp scattering at 6.8, 8.8, 10.8, and 12.8 GeV/c, and pP scattering at 7.2, 8.9, and 12.0 GeV/c.
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can be compared with the experimental curve of
(do/dt)/(da/df), =o versus 4(—t)(do/dt). &=0/0, ~, since the
quantities plotted in the two curves are equal according
to (4.1) and t'4. 2). Since the theoretical upper bound has

the "universality" feature of depending only through
the parameter p on the particular scattering process and
the energy and momentum transfer, there is an
enormous amount of data to be colnpared with a single
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theoretical point. To avoid overcrowding, the same
theoretical curve has been plotted in Figs. 2(a) and
2(b) and the experimental points for ~+p and ~ p
scattering shown in Fig. 2(a), for pp and pp scattering
in Fig. 2(b). We have chosen the data, of Foley et at."
in the lab momentum range 6—13 GeV/c.

We notice two striking facts. First, the theoretical
upper-bound curve is very close to the experimental
results for all these processes, the difference being less
than 10% for p in the range (0,3) and less than 25% for
p in the range (3,5). This means that in the part of the
diffraction peak. in which the differential cross section is
greater than one-third of its value in the forward
direction, it is substantially determined by the unitarity
upper bound, given o,& and (do/dt)t, =o. Secondly, we
discover a somewhat unforeseen fact. The experimental
results for these various processes, at the various
energies and momentum transfers noted, fall on a
universal curve lying slightly below the universal
theoretical upper-bound curve. We are intrigued by the
following question: Does this point to a special virtue
of the variable p?

Qs Nz

A(s, t) & [P (21+1)B~(cos8)
l=O

where
+(2tV~+3) e~B~,+~(cos8)]=—A~(s, t), (A2)

0 =P (21+1)+eg(2Eg+3),
L=O

(A3)

with E& an integer and 1)e&~&0. The bound given by
Theorem 1 can be expressed as

APPENDIX A: PROOF THAT THEOREM I
IMPROVES THE MARTIN UPPER BOUND

We wish to establish by direct subtraction that the
upper bound (1.1) on A(s, t) given by Martin is weaker
than the upper bound given by Theorem 1 for A(s, t). Let

B~(cos8)—= [1+l(l+1) sin'8] '"&~
~
P~(cos8)

~

. (A1)

The bound (1.1) is slightly weaker than the following
Martin bound:

where

A(s, t) & [(Qs)/k][ P (2t+1)P~(cos0)+$
P&(COSH) &PL, (cosH) Pt(COSH) =Pg (cosH)

(2l+ 1)Pr,(cos8)]—=A ~(s,t), (A4)

k'og. ~/4m = Q (21+1)+$ Q (21+1), 1)f ~&0 (AS)

We then have

PL&PL P APL

0—:(k/gs)[A~(s, t) —A~(s, t)]= g (2t+1)[B~(cos0)—P~(cos0)]
Pl(cosH) &PL, (cosH)

l ~&Ny

(2t+1)B~(cos8)+(2.Vi+3) eiB~,+i(cos0)— (2t+1)P~(cos8)
l ~&¹

Pt(COSH) &Pz, (cos8)

P&(COSH) =PI.(cos8)
(2l+ 1)Pi(cos8) &&

l~&¹
P)(COSH) &PL, (COSH)

Pl (cos8) &PL (cos8)
l &Ni

(2t+1)Bi(cos8)+(2 Vi+3) eiB~,~i(cos8)

—B~qyy(cos0)
P/(cosH) &PI (Cos8)

l &N1

(2t+1)—5
Pi(cosH) =PI, (cosH)

(2t+1)P t(cos8) . (A6)

In (A6) we substitute for the third term on the right-hand side using (A3) and (AS) and obtain

l~&¹
P l (CosH) ~& PL (CosH)

(2l+ 1)[B~(cos0) —B~,+~(cos8)]+$
Pt (cosH) =Pl, (cos8)

(2l+ 1)[B~,+i(cos0) —P i(cos8)]

l~&N1
P)(COS8) =PL (CosH)

(21+1)[B&(cos8) —B~,+i(cos8)]+$
Pf(cos8) =PL, (cosH)

l &~¹
(2t+1)[Bt(cos0)—B~,ii(cos8)](1—$) &&0. (A7)

l«¹
P l (cos8) =PI, (cosH)

This completes the proof that the present upper bound is better than the Martin upper bound.

' K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. Russell, and L. C. L. Yuan, Phys. Rev. Letters 11, 503 (1963).
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APPENDIX B:PROOF OF NEEDED LEMMAS

Proof of Lemma I
(n,A) exists which assures the existence of an upper
bound, it must have

Let ~&0, 1&A&0. (86)
nI Pg(cos8) —A]

C)=—— — — &~0 for l&U(n, A,9). (81)
1—A

Let us now look at Eqs. (2.18) and. (2.19) for this
range of parameters. We then have

We then have

k'o~. t/4z = P (2E+1)C(,
Cg& 0

k'o.,g/4z. = Q (2E+1)CP.
CE& 0

0 tot

(82) 4z (T pl

(83)
and

(21+1)IPi(cose) —A])'/
PE (cos8) & A

(2E+1)I Pg(cos8) —A]' (87)
PE(cos8) & A

It follows that
0 el

=L Z (2E+1)C&]'/ 2 (21+1)CP. (84) 1—A og, t, z~(«»)»
4K ac( CE&~ 0 CE& 0

(2E+1)I Pg(cosg) —A]/

(2E+1)LP ~(cosg) —A]'. (88)
The right-hand side of (84) is larger than or equal to 1.
Therefore we can have a solution of Eqs. (82) and (83),
i.e., of Eqs. (2.18) and (2.19), only if

0 toy ))$.
4x O.,y

The origin of the condition (85) is thus clear.
Let us now discuss the cases of upper and lower

bounds separately.
(i) Upper bound. We need

PE(cos8) & A

Equation (88) obviously corresponds to n)0 if Eq.
(87) does have a solution with 1 &~A) 0.The right-hand
side of (87) is easily seen to be a continuous and
monotonic function of A. It takes the value 1 as A —+ 1
and tends to +~ as A ~0+. We therefore always
have a required solution if the condition (85) is satisfied.

(ii) Lower bound Asim. ilar discussion can be given
for this case also.

Proof of Lemma 2

and therefore
n/(1 —A)) 0, The S(E,z), (E)0,z)1), is given by

P~(cos8) ~&A for /g U(n, A, 8) .
Therefore we must have 1~)A. Further, A must satisfy
A) 0; otherwise 0.&,&, given by

k'0.goy n
(2E+1)I P~(cos8) —A],

P E (cos8)&A
Now let E~&E'. Then

[K]
Z (2E+1)I:Px(z)—P~(z)].

S(E,z) &~ S(Z',z)

[K]
S(& )=2 (2E+1)LP ()—P ()]P ()/

cannot be finite. Therefore, if a solution for the pair if

[K] [K]
2 (2E+1)I:Px(z)—P~(z)]P~(z)/2 (21+1)LPx(z)—P~(z)]

L=O

[K'] [K']
& P (2m+i)LPx (z) —P (z)]P (z)/P (2m+1)IPx (z) —P (z)],

i.e., if

1=0 L=O

or

[K] [K']
Z (2E+1)(2m+1)LPx(z) —P (z)]IP (z) —P (z)]LP~(z) —P„(z)]&0

Z=0 m=0

[K'] [K']
Z (2E+1)(2m+1)LPx(z) —Pi(z)]LPGA (z) —P (z)]IP((z) —P„(z)]

E=O m=o

[K] [K']
+ Q P (2E+1)(2m+1)I Px(z) —P~(z)][Px (z) —P„(z)]LPGA(z) —P (z)]&~0. (89)

~=[K']+~ m=O
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Now using

we see that the second term on the left-hand side of (89) is positive. Let us therefore concentrate on the first term
on the left-hand side of (89). Now

[K'] [X']
Z Z (21+1)(2~+1)[Pz(s)—Pt(s)][Pz (s) —P-(s)][Pi(s)—P-(s)]
t=o m=o

[&'] [&']
(2l+1)(2rtt+1) [Pz(s) —Pz (s)][Pz (s) —P~(s)][Pi(s)—P~(s)]

l 0 m=0

[Xr] [Z']
+ p p (21+1)(2rrt+1)[Pz (s) —Pi(s)][Pz (s) —P (s)][Pi(z)—P (s)]

l=0 m=0

[&'] [~']
=LP (s) —Pz (s)]2 Z (2l+1)(2~+1)[P-'(s)—P (s)P-(s)],

l=o m=o

and this is easily seen to be positive by using Pz(s) ~&Pz (s) and Schwartz s inequality. This proves Lemma 2
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Applications of Current Commutation Relations to Muon Capture and
Neutrino (Antineutrino) Reactions in Nuclei
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Relations among total muon-capture rates in nuclei and the equal-time commutators of the space and
time components of the strangeness-conserving weak hadron current are derived. Using the quark Geld
algebra and the closure approximation, this relation yields a total muon-capture rate in He' oi I'(He')
=2.36X10' sec ', in very good agreement with experiment. We demonstrate that application of the gauge
Geld algebra to our relations does not yield a result that can be compared with experiment, since we cannot
justify the use of the closure approximation in the context of this algebra. Using the quark Geld algebra
and the closure approximation, similar relations are also derived for the total "elastic" differential cross
section for forward scattering of neutrinos oB nuclei.

I. INTRODUCTION
' 'N a recent series of Letters, ' ' we have discussed the
i - application of the Gell-Mann algebra of currents4
to the calculation of the total muon-capture rate in
complex nuclei as well as the derivation of relations

~ Research supported in part by a grant from the National
Science Foundation.

1'Research supported in part by grants from the National
Science Foundation and from~the Research Foundation of the
State of New York.' C. W. Kim and M. Ram, Phys. Rev. Letters 18, 308 (1967).
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between cross sections for elastic neutrino and anti-
neutrino scattering by nuclei.

The purpose of the present paper is twofold:

(i) To reproduce in all detail the derivation of the
results quoted in Refs. j.—3. This was not done in our
previous brief communications and is essential for the
proper understanding of our results.

(ii) To investigate how results are modified when the
quark ield algebra' is replaced by the gauge ield
algebra. '
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