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Using a double-Regge-pole model, we investigate the mp mass enhancement in the backward reaction
m p~p(mp) . Broad peaks occur in this model near the A& mass. They are found to persist under a wide
range of Regge-parameter values. Similar features also hold for the forward reaction cases. We conclude
that the mass enhancement comes from the interplay of the phase-space kinematics and the peripheral
nature of the Regge amplitude; the specific intercept and slope values of the trajectories are not very
crucial. On the basis of our findings, we discuss the implications of the duality principle, isospin complica-
tions, and the practical problem of how to describe the A~.

I. INTRODUCTION

N a recent high-energy backward scattering experi-
.. ment ~ p~pX, I X mass enhancements in the
"A" region have been observed. With the present
statistics, the data for "A1" already indicate very
interesting features similar to those of its production
in the forward direction. '

Previous studies have suggested that the forward
production of A& can be explained by the Drell-Hiida-
Deck (DHD) mechanism. s A more sophisticated model
with double-Regge-pole (DR) exchanges also fitted
the experimental data well. ' These models, as applied
to the (forward) reaction rrP —&IrpP, containing diffrac-
tion-dissociation scattering, produce peripherally an
enhancement of the m.p system in the A& region. As
to whether A1 is a genuine resonance or merely a
kinematical enhancement has therefore been a puzzle
for some time. ' By extending the duality principle to
multiparticle reactions, a resolution has been ad-
vanced. 6 Accordingly, the peripheral approximation to
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Energy Commission.

t Present address: Department of Physics, Carnegie-Mellon
University, Pittsburgh, Pa. 15213.' E. W. Anderson, E. J. Bleser, H. R. Blieden, G. B. Collins,
D. Garelick, J. Menes, F. Turkot, D. Birnbaum, R. M. Edelstein,
N. C. Hien, T. J. McMahon, J. Mucci, and J. Russ, Phys. Rev.
Letters 22, 1390 (1969).

2 See, for example, the review by I. Butterworth, in Proceedings
of the InternationaL Conference on ELementary ParticLes, HeideL-
berg, 1967, edited by H. Filthuth (North-Holland, Amsterdam,
1968), p. 12. See also M. L. Ioffredo, G. W. Brandenburg, A. E.
Brenner, B. Eisenstein, L. Eisenstein, W. H. Johnson, Jr., J. K.
Kim, M. E. Law, B. M. Salzberg, J. H. Scharenguivel, L. K.
Sisterson, and J. Szymanski, Phys. Rev. Letters 21, 1212 (1968).

3 S. D. Drell and K. Hiida, Phys. Rev. Letters 7, 199 (1961);
R. T. Deck, ibid. 13, 169 (1964); U. Maor and T. A. O'Halloran,
Phys. Letters 15, 281 (1965); U. Maor, Ann. Phys. (N.Y.) 41,
456 (1967); L. Stodolsky, Phys. Rev. Letters 18, 973 (1967);
M. Ross and Y. Yam, ibid. 19, 546 (1967).' E. L. Berger, Phys. Rev. 166, 1525 (1968); 179, 1567 (1969).' For recent discussions, see R. T. Poe, B.R. Desai, A. Kernan,
and H. K. Shepard, Phys. Rev. Letters 22, 551 (1969); A. S.
Goldhaber, C. Joachain, H. J. Lubatti, and J. J. Veillet, ibid.
22, 802 (1969).

'G. F. Chew and A. Pignotti, Phys. Rev. Letters 20, 1078
(1968).

I

an amplitude represents on the average the resonances,
although it does not contain energy poles in a given
subchannel of the final state. The Deck effect can,
therefore, be interpreted so as to predict the existence
of A1.

However, these DHD and DR models involve a
virtual diffraction vertex; they do not lead us directly
to an understanding of similar processes without
vacuum-quantum number exchanges. On the other
hand, as mentioned, the A1 has indeed been observed
in the backward direction' and many other places. 7

In the backward case, it not only has a narrow width

( 100 MeV), but also is more peripheral than ~,
p, A2, etc. observed in the same process. The latter
feature is usually associated with the DHD effect.34'

This immediately suggests to us the question of
whether these properties can also be understood in
terms of a similar type of calculation using baryon
exchanges. ' In this article, we shall apply the DR
model to the backward reaction m. p~p(s.p) and
compare it with the experimental data. This enables
us to examine possible distinctions between the present
case and that of the general forward A1 productions.
%e may also gain in our model some insight of how
duality comes into play in the backward production
processes. "

~ A. M. Cnops, P. V. C. Hough, F. R. Huson, I. R. Kenyon,
J. M. Scarr, I. O. Skillicorn, H. O. Cohn, R. D. McCulloch,
W. H. Bugg, G. T. Condo, and M. M. Nussbaum, Phys. Rev.
Letters 21, 1609 (1968);I. R. Kenyon, J. B. Kinson, J. M. Scarr,
I. O. Skillicorn, H. O. Cohn, R. D. McCulloch, W. M. Bugg,
G. T. Condo, and M. M. Nussbaum, ibid. 23, 146 (1969);D. J.
Crennel, U. Kaishon, K. W. Lai, J. S. O'Neall, and J. M. Scarr,
iMd. 22, 1327 (1969);J. V. Allaby, F. Binon, A. N. Diddens, P.
Duttell, A. Klovning, R. Mennier, J. P. Peigneux, E. J. Sach-
harrdis, K. Schlupmann, M. Spighel, J. P. Stroot, A. M.
Thorndike, and A. M. Wetherell, Phys. Letters 29B, 198 (1969).
A& has also been observed in many reactions involving four or
more 6nal particles.

s B. Y. Oh and W. D. Walker, Phys. Letters 28B, 564 (1969).
A similar type of charge-exchange Deck model for the doubly

charged Anal state (E*+x+) has been studied by F. Bomse and
E. J. Moses, Phys. Rev. 176, 2163 (1968).' Two-body reactions which are dominated by baryon Regge-
pole exchanges have been reviewed extensively by V. Barger,
University of Wisconson Report No. COO-881-216 (unpublished).
2631



C. SHIH AND S. YOUN|

U2

'2 S) where A4 ——A, (qi, q~, q4, qs) is a well-known phase-space
factor. The explicit form of A4 and its general prop-
erties can be found in the literature. "313 denotes the
effective amplitude obtained from 53 after carrying
out the spin averaging and summation. To simplify
the calculation we shall approximate M3, as usual, by

M3 ——Q fg, (ug)&;(ug) (sg/sgo)" ""

FIG. 1. Kinematic assignment and Regge behavior for
reaction i1l.

In Sec. II, we review very brieQy the kinematics,
and write down the production amplitudes in the
model of double Regge poles. In Sec. III, we present
the Chew-Low plots against an appropriate set of
variables and comment on the experimental situation.
Isospin complications and "partial-wave" projections
are also examined. A comparison of the forward (with
or without diffraction vertices) and backward Ai
production composes Sec. IV. In Sec. V we make
several remarks and summarize our results.

II. FIVE-BODY KINEMATICS AND DOUBLE-
REGGE-POLE AMPLITUDES

To establish the notation, let us denote the process
to be considered by

qi+q~~q3+q4+ qsi (1)
where q; denotes the ith particle as well as its four-
momentum. A double-baryon Regge-pole amplitude
for (1) can then be represented as in Fig. 1. Follow-

ing the usual convention, we can express the amplitude
of (1) in terms of the five independent invariants

s= (qi+q, )',

sl= (q4+q5)

s~= (qg+q4)'i

ui= (qp
—q5)',

ug: (qi —q3) .

&& g'i(u~i uii o~) (»/»o) "'""kJ(»)fii(ui) i

1+exp [Ar(n; ——',)j (5)
sin~ (a,—-', )

where o~ is the Toiler angle, and f~, , fi;, and g;, are
residue functions associated with Regge trajectories i
and j." Since we have anticipated the situation that
there is only one leading Regge pole, i, to be ex-
changed in N~, we do not sum over i. In the spirit
of the multiperipheral model, " we shall assume that
the g;, 's depend weakly'4 on co and are separable in
Qy and Ng, i.e.,

g,, (ui, u~i o~) constf~, '(u~)fg (ui). (6)

Let us consider a quantity R(s, si, u&), which is
defined as the ratio of (3) to the differential cross
section of an associated two-body reaction of the same
total energy s and the momentum transfer n&. This
two-body reaction is obtained from (2) by deleting

q~ and q5 and putting 0.~ on the mass shell, i.e.,

ni(on shell)+qi~qa+q4, (7)

as illustrated in Fig. 2. Again by ignoring the spin
complications, a similar expression of the differential
cross section for (7) can be written as

dog='A

'"(Sinai'

m ') [MQ [du2i

where m, ' is the proper physical mass of o.~, and

M2 Q g2i(u2) (s/s20) ""' kig2i (u2) ~

p0

The differential cross section for (1) is given by

1 (2m)
—'

do, = „. . . p ~r3~'d g, (3)g(2s, +1) 2X'I'(s, mr', mP) „„r.
where d43 is the three-body phase space, " s, (sr) are
the spins of the initial (Anal) particles which are
a.veraged (summed) over, and 2X'I' is the incoming
Aux. In terms of the invariant variables, we have

a„(u+

a (U

a++(U } a++(U2

do3 ——X '"(s, mP, mP) f ~ ~ ~ J ~
M3 ~'

X [ds&dsrdu&dur/( —A4)"'ji (4)
'1 See, for example, H. -M. Chan, K. Kajantie, and G. Ranft,

Xuovo Cimento 49, 157 (1967); K. Kajantie and P. Lindblom,
Phys. Rev. 175, 2203 (1968).

FIG. 2. Diagram for the reactions (a) vr +p~p+p +sr and
(b) +p p+&'+

"I.T. Drummond, Phys, Rev. 176, 2003 (1968).We consider
only the leading trajectories allowed in each channel.

' G. F. Chew and A. Pignotti, Phys. Rev. 176, 2112 (1968).
'4 R. A. Morrow, Phys. Rev. 176, 2147 (1968).
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In the present case, we shall consider a particular
reaction of (7), i.e.,

sr +p—+p+p .
Since the above reaction is dominated by a 6 tra-
jectory, we have

dos(s, si, us) /ds idus=
I
d—os(s, us)/du2j R.(s, si, us), (10)

where
R(s, s„u,) =0 [ds,du, /( —A4)

~—g (s /s)~si(~sl (si/s&&)~&~'(v&l

a =3/2

I.O—~a„= I/2

0.5—
~---&a =0

a =I/2

0
aN= -I /2

-0.5—
aA= —

I /2

—I .0——+ a =-3/2
N

I

(a)
I I

w =1.0
w= I.07

w = l.49

—1.5—

I

10 20
I I

30

The quantity E, serves as a normalization constant
such that we can define P, (0) =I8s(0) =1. In the fol-
lowing, we shall work. with R(s, si, us), which provides
us with a measure of (1) relative to the associated
two-body reaction (9).We shall see later that R(s, s&, us)
is almost independent of s."Let us emphasize that in
defining R, Eq. (10), we have departed from the
conventional treatment in which the energy variable
of the associated two-body reaction (7), and there-
fore (8), is ss. (See, for example, Ref. 16.) Our pur-
pose is not to isolate an o8-shell two-body reaction
from the three-body reaction as is usually done, e.g. ,
in the one-particle-exchange model. Here, R is a device
which enables us to compare directly the three-body
and the associated two-body reactions at the same
energy. As we shaH discuss later, this is to compare
the Ai production with that of p. Since for Axed s
and us, dos/dus is constant, R therefore gives all the
information of dos/dsrdus for given values of these
fixed variables.

Before evaluating (11), let us remark that in writ-
ing down (5), there is always an ambiguity con-
cerning the detailed form of the energy variables to
be adopted in the low-energy region (down to the
threshold value of si). In the formulation of the
multiperipheral model, the si dependence comes from'

sl' ' sl us ssts +ui . (sits sits ui) (stt4 ui us) ~

(13)
It has a pole at N&=. 0, which is in the physical region
Lsee Fig. 3(a)j. Although the singular part is to be
canceled by daughter trajectories, the Qnite part re-
mains ambiguous. We shall here restrict ourselves to
the simplest expression for s&, and similarly for s2
Las is used in (5) and (8)j. We shall comment on
some other choices later on.

'5G. F. Chew, C. Detar, and A. Pignotti, Phys. Rev. 180,
1577 (1969)."E. Ferrari and F. Selleri, Nuovo Cimento Suppl. 24, 453
(1962).

urn=0
IO 20

—a =00
30

l

P77 P

P 77'
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a =-J,Q
-I,O
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a =-2.0 e =-2.0lr

-2.0

Fio. 3. (a) Phase-space boundaries in (sg, Ni) (in units of GeV')
for different values of (sI, N2) for the backward reaction ~+
p~p+p+sr. (b) Phase-space boundaries in (ss, ti) for different
values of (s&, ts) for the forward reaction sr+p~p+sr+p. (Here
the momentum transfers are denoted by t1 and t2, respectively. )
The values of u& (t&) where the trajectory functions Lgiven by
(17) and a (t) =t m'g take integer or—half-integer values are
indicated on the N1 (t1) axis. The solid and dashed curves are for
N2 (t2}= —0.11 and —0.31, respectively. m=s1112 is in units of
GeV.

To illustrate the variation of the integration region
of (11) under the changes of si and us, we plot in
Fig. 3 the phase-space boundaries of (s2, ui) at s=31
GeV' for several values of si and N~. For comparison
we also plot the analogous region for the forward
scattering case.
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I I l l I I I I I I

RN, u~= -O. ll
( ) RN, 0~=-0,3t

(bj16—

14—

12-

10-

8-

In the numerical calculations, we parametrize the
trajectories as

nN (u) =nrr tp&+n+O&u,

na(u) =nate&+na&'&u. (15)
Our results are not very sensitive to the exact values
of these parameters. As for the center vertex, the
par ametrization depends upon the choices of the
ghost-eliminating mechanisms for the individual tra-
jectories. For example, with the choice of nonsense
wrong-signature zeros at o~———

~ and o.~ = —~, we put

2-

00.951 1.13 1.37
/

1.61 095 I.I 3 l.37 1.61

PN(ur) I nN(ut)+s3 I mr(u )1+ jsexp(vKur) &

Pa(») =Lna(»)+s j Lna(ur)+sh exp(v»t) (16)

Fro. 4. The Ifrr distribution with parameters iisted in (17).
(a) Nq ———0.11 GeV'; (b) us= —0.31 GeV'.

III. GENERAL FEATURES OF MASS
ENHANCEMENT IN FINAL mlo SYSTEM

I.et us consider specie. c cases of (1),

7r +P~P+.
p +sp

p +7l

which are illustrated in Figs. 2(a) and 2(b), respec-
tively. The symbols are self-explanatory. For the
diagram in Fig. 2(a), the trajectory on the left must
be nq++(us); on the right-hand side, two interfering
trajectories na+(u&) and are+(ut) are allowed. Because
of our lack of knowledge concerning the center vertex
and the spin complications, it is difficult to treat the
interference effect rigorously; a more detailed under-
standing of their structure is needed. Nevertheless, in
order to exhibit the essential features, we shall exam-
ine this effect in terms of their (individually) spin-
averaged amplitudes. For the diagram of Fig. 2(b),
oe/y na++(us) and nq+(uq) dominate the amplitude.

Diagrams obtained from Fig. 2 by interchanging p
and ~ are omitted. They are expected to be small. "
Furthermore, their main contributions come from a
phase-space region different from that of Fig. 2, and
therefore do not produce a strong interference effect."

-I I I

Rg, U ~= -0.11l6-
I I I I I

( ) Rgf u~ -031

14

12

Io

If the residue functions choose finite values at specific
nonsense wrong-signature points, the corresponding
zero factors should be removed from (16). Notice
that the factors e'r"' have been introduced in (16)
so as to include possible u~ dependence other than the
factor $(ut)(sr/sM) &"'&. This extra dependence is sug-
gested by two-body Regge-pole phenomenology (for
the end vertex) as well as by possible dependence
arising from the center vertex. The choices of y~, yq,
s„(—=s~p), sq (=—sap), and the nonsense wrong-signa-
ture zeros will be discussed separately in more detail
as we proceed.

Finally, the values of E, remain to be specified.
If the functional dependences of Ps(us) and P, (ur)
are given, S'; can be determined by matching the
corresponding elementary pole calculations at o&———',
(ut=m~') and nq= —,

' (ut, us=ma'). Or we can de-
termine them by fitting the theoretical results to the
experimental data at given values of s, s~, and u~.

Here we are interested in the Chew-Low plot of
R(s, st, us) obtained by integrating over ss and ur.
A typical integration region is shown in Fig. 3. For
small sr and

I
us I, small ss and large negative uq are

"For diagrams obtained from 2(a) and 2(b) with p and s.
interchanged, the phase space in u& is farther away from the
elementary pole positions of n&(N&) as compared with those of
the diagrams of Figs. 2(a) and 2(b). With comparable coupling
strengths for both cases, the contributions of the omitted diagrams
will be smaller than those of Figs. 2(a) and 2(b). Detailed
calculations (not presented in the text) showed that their distribu-
tion function R(s, si, N~) has also very different characteristics
from those of Figs. 2(a) and 2(b) and is probably not responsible
for the observed A1.

"The diagram with the final proton going out from the central
vertex is not enhanced at small values of s; and I e~ I. See L.
Caneschi and A. Pignotti, Phys. Rev. Letters 22, 1219 (1969).

P-WAVE-~--- —-~
r

J
I 0.95 I.I3

P WAVE
2--

0 I I I 1 I

0.951 I.I3 I.37 I.6
I I I

I.37
W

1.6l

FIG. 5. The Rz distribution with parameters listed in (17) ~

(a) Ns= —0.11 GeV'; (b) u~= —0.31 GeV'.
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not in the integration region, so no cut in N~ or s~

is needed in our parametrization. "
In the following, we discuss separately E&, Ez,

and E~~, which denote the respective contributions
to R from the set of exchanges (irq, triv), (trq, nq),
and their appropriate sum. Within our model, Eqs.
(11)—(16), the parameters are varied in many ways.
We also discuss the (total) s dependence of R(s, si, us),

)7the isospin complications, and the "partial-wave pro-
jections. Details of the calculations are not given here.
Only some typical results are presented.

A. Enhancement in y System

RgN, U~= —O. l I16-
I I

RgN, up=-0. 51 (b)

12

10

P-WAVE

r=2

I 0.95 1.13 127

p-M/AvE

o f-~ J
0.95 I.I 5 1.37 1.6 1.61

nor = —0.38+1.0u, 7N= 0)

1. si Spectrum (Peak arid Width)

We begin with the following parameters":

Fio. 6. The R q distribution for (a) zc2= —0.11 GeV' and
(b) N2

———0.31 GeV'. The choice oi parameters is given by ( 7).
The relations between the amplitudes are A (I=2) cc Aq+ge*&A s,
A(I=1) cc(5/v3) (Az ',qe'&A~—)—, where q=2 and p= —3s./4.
The full, short-dashed, andI, long-dashed curves are for the
(sp)I=1 system. The dot-dashed curves are for the (7rp)I=2
system.

tra ——0.15+0.9u, sg= 1) ya =0, (17)
2. us Dependence

and we assume that the residue functions have zeros
at nq = —s and niv= —s. The results for R(s, si, us) are
plotted in Figs. 4 and 5. For fixed s

I
e.g. , s=31

(GeV/. ) j .d. .» I, I I ..g, = —0.» (G.V/. ) j,
Riv alone produces an enhancement at ws (the peak
position)~960 MeV with I's 80 MeV; Rq alone
produces an enhancement at zv~ 1100 MeV with
I'~~500 MeV. In general, we find that an increase
of siv (sq) or decrease of yN (yq) pushes wis to a larger
value and at the same time increases I'~.

If we replace na(ut)+s or niv(ui)+s in (16) by
a constant, the essential features remain unchanged.
This is because only minor contributions come from
the large-negative-u~ region. " Even if we replace the
whole factor P, (ut)$(ut) by 1/(ui —mP) or by a con-
stant, a broad peak still occurs (e.g. , I'it &550 MeV)
in Eg. As far as zv~ and F~ are concerned, the occur-
rence of a broad peak is somewhat independent of
our choice of P;(ut)$(ut)

Complications do arise from the behavior of the Pq
at aa=s. A factor (tra —s) multiplying Pa gives a
valley near 10"/0 MeV. An enhancetnent in this region
is possible only if Pq/0 at re

=W

—', ."
ithh reasonable values for s~, sq, y~, and y~, we

have varied ca&'& and o.(2) over a wide range. Again
no drastic changes occur. We may conclude that
enhancement (I'~(120 MeV) at wii 1070 MeV is
difficult to produce in our model.

For convenience, let us define

b(w) =dldus ElnR(s, si, us) $» s, w = (st)'t'. (18)

B. "Absence" of I=2 ~y State and Interference
between R~ and R~

Since there are no compelling reasons for either
R~ or R~ to be dominant, we have to consider them
simultaneously in the diagram of Fig. 2(a). By isospin
crossing relations, s' Ra contributes mainly to (mp)r=t.

Then for small
I

us I, do.s/dstdus can be described by
its associated two-body reaction multiplied by the
factor expI b(w)us(. For Riv or Rq in the region
w(ws, b(w) is positive but small (e.g., &0.5 GeV ').
For w)w~, b(w) becomes negative. It is too small
according to the experimental data. Notice that an
extra n2 dependence, arising from the center vertex,
cannot be excluded. If this dependence is weak. , how-
ever, it is unlikely that any variations of the param-
eters can produce a factor b(wn) )4 GeV ' as needed
to fit the experimental data.

Other choices of si ~ ~ for (5) and (9) have also
been investigated. Although the s~ spectra are more
or less the same, b(w) is then even smaller than the
previous results.

» Here very little contribution comes from the large-negative-N1
region. Even neglecting the region

~
I&

~
(0.15 in the integration

does not change our results (for small s1) appreciably."A factor n~(n1} ——,'in p~(u1) will suppress most of the phase-
space contribution near N1~0.3, and therefore for z near 1070
MeV Lsee Fig. 3(a) j.

"As far as isospin is concerned, we treat n2++(n2) as an
external particle with isospin —,

'
~ Then we can relate the isospin

states of the Anal mp system to the isospin of n&(u1) through
isospin crossing relations. They are ~(7rp)I=1) = —,

~
I = ~&+

s(10)"'.
~
I =. s» (~~)I.=2& = (3)'"

I I~=2& —(2/15)'"
I I.=

23 &, which can be found in, for example, P. Carruthers and J. P.
Ierisch, Ann. Phys. (N.V.) 3a, 1 (1').
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For E~, the situation is reversed. The absence of the
exotic (7rp)i=2 state in Fig. 2(a) requires a destruc-
tive interference between Eq and E~. This enables
us to determine approximately their relative weight,
and therefore only an over-all normalization is un-
determined. In Fig. 6, we plot a typical example of
R(s, si, n2) for both I= 1 and I=2 sta, tes. Our optional
choice of parameters (see the caption of Fig. 6) results
in a suppressed I=2 state ((10%) for the case of
Fig. 2(a). With respect to the case of Fig. 2(b),
Rq being alone, we have a 12% contribution for I= 2."
Since we only consider the leading contributions, a
small I=2 component is acceptable.

Moreover, our predicted cross sections for p x'
)Fig. 2(a)] and p'ir LFig. 2(b)] are not necessarily
equal. "The above choice leads to 0 (p ~')/0 (p'~ ) 0.6,
which is to be compared with 0(p ~')/o. (p'~ ) =1
when xp comes from the decay of an I=1 resonance.
The absence of (harp)r q, and the branching ratio of

p x and p x, will lead to stringent constraints on
more detailed future calculations.

C. 8 Dependence

The function R(s, si, N2) is extremely insensitive to
the value of the total energy s."For instance, a change
of s from 16 to 10' GeV' produces a less than 1%
variation in R(s, si, N2), for, say, si &3 GeV2 and

~
u2

~
(0.5 GeV'. Hence our simple production dif-

ferential cross section (1) has an energy dependence
quite similar to that for the associated two-body re-
actions at the same total energy. We conclude that
if the present model is able to account for the back-
ward Ai production, then the reaction (14) will possess
the same energy dependence as that of reaction (9).
We cannot expect A~ to be either suppressed or
enhanced relative to p at very high energies.

Experimentally, A& seems to have been observed
more prominently at 16 GeV/c than at 8 GeV/c.
A possible explanation is that the background con-
tribution is more important at g GeV/c than at
16 GeV/c. Detailed identification of the missing mass
spectrum X in terms of Anal states is also needed.

D. "Partial-Wave" Analysis of "~y" System

A rigorous treatment of the various partial waves
of the mp system is by no means trivial. "Difficulties
and complications arise from the facts that the ex-
ternal particles have spins and that, in the present
model, one of the incoming particles from which the
mp system emerges is an off-spin-shell Reggeon, i.e.,

the 5 trajectory. In the spirit of our approximation
and in view of the impossibility of decomposing the
present experimental data into the various helicity
amplitudes, we hope to explore roughly the angular
momentum structure of the mp system by making a
partial-wave analysis of the spin-averaged amplitude.
In other words, to do the partial-wave analysis, we
ignore the spin of p and treat the xp system as if it
were resulting from a collision of spinless particles.
With this understanding, we project the "partial
waves" of the xp system for all the three cases Ez,
RQ p

and E+Q o

We found tha, t for w&wii and
~

u2
~

&0.3 GeV',
R(s, si, I2) and hence d03/dsidm2 are predominantly
"5 wave" (about 90%). When w increases beyond
$,25 Gev, the "I' wave" becomes more important
and eventually dominates, yet the enhancement is
much smaller than that for the 5 wave occurring at
lower ic. In general, the peak of the 5 wave (I' wave)
occurs at lower (higher) w, and the width is smaller

(bigger) than that of the total amplitude. These fea-
tures can be understood from the centrifugal-barrier
eBects. The contributions of the "S and I' partial
waves" of R~, E~, and E~~ are plotted in Figs. 4, 5,
and 6, respectively. Under variations of the param-
eters, the shapes of the S-wave and E'-wave projec-
tions are mostly stable, but their relative abundance
and u& dependence vary moderately.

IV. COMPARISON WITH FORWARD
Ay PRODUCTION

In this section we discuss briefly two forward Aq

production processes for comparison with the back-
ward case. The first one contains a diffraction vertex,
the second does not.

pimp(~p). ' Here the set (ni, n. ) is the leading
contribution, where n~ and n are the Pomeranchukon
and pion trajectories. "We have varied the intercepts
and slopes of n~ and n.. It is interesting to note
that with a wide range of the parameter values, '4

e.g. , 0.5 &n~("(1, 0&n~(') &0.5, —0.5& (+ &0, and
0.5&n.(2) &1, features similar to the backward cases
are observed: (ieii, I'ii) (1040 MeV, 450 MeV). They
are mainly "5 wave" (see Sec. III D). The analogous
quantity E. of th.; present case, where the associated
two-body reaction is the elastic vrp scattering, is also
extremely insensitive to the total energy s. I.et us
emphasize that even though a considerable slope for
the pion trajectory is necessary, i.e., the pion has to
be Reggeized in order to produce such a narrow en-
hancement (full width 450 MeV), the exact values
of the slopes of n~ and n. and the diGerence of their

"We refer the reader to the following articles on the subject
of partial-wave analysis of a two-particle subchannel of the final
state in 2-body~3-body reactions: L. Resnick, Phys. Rev. 150,
1292 (1966); 175, 2185 (1968); J. G. Rushbrooke, ibid. 177,
2357 (1969); C. B. Froggatt and G. Ranft, Phys. Rev. Letters
23, 943 (1969l.

"Here (a~, cx,) is also allowed. For simplicity we have omitted
such contributions in our calculation.

'4 Ate vary the value of a~«& for the purpose of indicating that
the shape of R is not very sensitive to it. For constant asymptotic
total cross sections of two-body scatterings, we need, of course,
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intercepts are not very crucial. This has already been
demonstrated in the case of backward scattering dis-
cussed in Sec. III.

eE ~A(7rp) . As an example, (rrrra, nil) is used.
With a reasonable choice of parameters )viz. , crrr* ——

1+(t—mice') and crrr= t mr—r', where t is the forward
momentum transfer squared', an enhancement occurs
near tt =1040 MeV with I'~ 400 MeV and b(itic) 2.
These are similar to the results of the previous case
where o.J is allowed. Strictly speaking, isospin com-
plications have to be considered but no change in the
main feature is expected. In this case the dynamic
behavior of the amplitude is analogous to that of the
backward scattering, but kinematics may introduce
diff erences.

In forward scattering for small s~, an increase in

~
ts ( (the variable analogous to

~
Ns ~) in the region

t&&0 pushes the phase space quickly away from the
nearby pole [see Fig. 3(b)). This feature coupled
with the peripheral nature of the Regge amplitude
makes b(tttii) large. However, in the backward case,
when

~
us

~

increases, the upper boundary of the
(s&, ni) phase space moves very little Lsee Fig. 3(a)j.
Therefore b(wp) is smaller than that of the forward
case, in the absence of strong center-vertex 12 de-
pendence.

V. CONCLUSION

As we have discussed in the previous sections, the
double-Regge-pole model can generate a mass en-
hancement in the final harp system of reaction (14).
The peak is at about 1040 MeV and the width is
450 MeV. This result is analogous to the forward
cases. For both backward and forward reactions, the
enhancements arise from the interplay between the
peripheral nature of the DR amplitudes and the
threshold behavior of the phase-space kinematics. The
essential features of the Chew I.ow plots for the
R(s, si, ns) spectra are insensitive to va, riations of the
trajectory and other parameters. Concerning the N2

dependence, we found that it is impossible to re-
produce the sharp (backward) peripheral behavior of

A~ production. To accommodate this behavior, a form
factor which may come from the center vertex is
required. Information about other variables (e.g. , the
Treiman-Yang angle, etc. ) is necessary in order to
further pin down this dependence.

In backward scattering, unlike the forward case
involving a diffraction vertex, both isospins 1 and 2
can be present in the xp system. We have demon-
strated that the exotic I=2 channel can be suppressed
relative to the I=1 channel.

With the over-all normalization constants E, yet
to be fixed, one cannot rule out the possibility that
the DHD or DR model accounts only for the back-
ground on which the true A~ resonance is super-
imposed. This, of course, contradicts the duality prin-
ciple and raises the problem of double counting. Under
such circumstances, the structure of the background
would be more complicated than what is usually ex-
pected for reactions not involving (virtual) diffractive
vertices.

Even with the assumption of duality for the back-
ward reactions, the DR model can only dictate an
averaged behavior of Ai. Its detailed features (i.e.,
the resonance height, width, and m dependence) are
hard to reproduce. Therefore, if A~ is consistently
observed in various reactions as a narrow-mass en-
hancement, it would be more convenient to describe
it as a genuine resonance.

In order to further establish the role of the duality
principle in backward production processes like (14),
more eS.cacious models like the five-point Veneziano
functions should be pursued. " The complications of
isospin and spin have to be incorporated properly
into the model.
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