# $\pi_{\varrho}$ Mass Enhancement for the Backward Reaction $\pi^{-}p \rightarrow p(\pi_{\varrho})^{-}$ in a Double-Regge-Pole Model\*

CHIA-CHANG SHIH<sup>†</sup> AND BING-LIN YOUNG

Brookhaven National Laboratory, Upton, New York 11973

(Received 14 October 1969)

Using a double-Regge-pole model, we investigate the  $\pi\rho$  mass enhancement in the backward reaction  $\pi^- p \rightarrow p (\pi \rho)^-$ . Broad peaks occur in this model near the  $A_1$  mass. They are found to persist under a wide range of Regge-parameter values. Similar features also hold for the forward reaction cases. We conclude that the mass enhancement comes from the interplay of the phase-space kinematics and the peripheral nature of the Regge amplitude; the specific intercept and slope values of the trajectories are not very crucial. On the basis of our findings, we discuss the implications of the duality principle, isospin complications, and the practical problem of how to describe the  $A_1$ .

## I. INTRODUCTION

IN a recent high-energy backward scattering experi-ment  $\pi^- p \rightarrow p X^-$ ,  $X^-$  mass enhancements in the "A" region have been observed. With the present statistics, the data for " $A_1$ " already indicate very interesting features similar to those of its production in the forward direction.<sup>2</sup>

Previous studies have suggested that the forward production of  $A_1$  can be explained by the Drell-Hiida-Deck (DHD) mechanism.<sup>3</sup> A more sophisticated model with double-Regge-pole (DR) exchanges also fitted the experimental data well.<sup>4</sup> These models, as applied to the (forward) reaction  $\pi p \rightarrow \pi \rho p$ , containing diffraction-dissociation scattering, produce peripherally an enhancement of the  $\pi \rho$  system in the  $A_1$  region. As to whether  $A_1$  is a genuine resonance or merely a kinematical enhancement has therefore been a puzzle for some time.<sup>5</sup> By extending the duality principle to multiparticle reactions, a resolution has been advanced.<sup>6</sup> Accordingly, the peripheral approximation to

an amplitude represents on the average the resonances, although it does not contain energy poles in a given subchannel of the final state. The Deck effect can, therefore, be interpreted so as to predict the existence of  $A_1$ .

However, these DHD and DR models involve a virtual diffraction vertex; they do not lead us directly to an understanding of similar processes without vacuum-quantum number exchanges. On the other hand, as mentioned, the  $A_1$  has indeed been observed in the backward direction<sup>1</sup> and many other places.<sup>7</sup> In the backward case, it not only has a narrow width (~100 MeV), but also is more peripheral than  $\pi^-$ ,  $\rho^-$ ,  $A_2^-$ , etc. observed in the same process. The latter feature is usually associated with the DHD effect.<sup>3,4,8</sup>

This immediately suggests to us the question of whether these properties can also be understood in terms of a similar type of calculation using baryon exchanges.<sup>9</sup> In this article, we shall apply the DR model to the backward reaction  $\pi^- p \rightarrow p(\pi \rho)^-$  and compare it with the experimental data. This enables us to examine possible distinctions between the present case and that of the general forward  $A_1$  productions. We may also gain in our model some insight of how duality comes into play in the backward production processes.10

<sup>\*</sup> Work performed under the auspices of the U.S. Atomic Energy Commission.

<sup>†</sup> Present address: Department of Physics, Carnegie-Mellon

I Present address: Department of Physics, Carnegie-Melion
 University, Pittsburgh, Pa. 15213.
 <sup>1</sup> E. W. Anderson, E. J. Bleser, H. R. Blieden, G. B. Collins,
 D. Garelick, J. Menes, F. Turkot, D. Birnbaum, R. M. Edelstein,
 N. C. Hien, T. J. McMahon, J. Mucci, and J. Russ, Phys. Rev.
 Letters 22, 1390 (1969).

Letters 22, 1390 (1969). <sup>2</sup> See, for example, the review by I. Butterworth, in *Proceedings* of the International Conference on Elementary Particles, Heidel-berg, 1967, edited by H. Filthuth (North-Holland, Amsterdam, 1968), p. 12. See also M. L. Ioffredo, G. W. Brandenburg, A. E. Brenner, B. Eisenstein, L. Eisenstein, W. H. Johnson, Jr., J. K. Kim, M. E. Law, B. M. Salzberg, J. H. Scharenguivel, L. K. Sisterson, and J. Szymanski, Phys. Rev. Letters 21, 1212 (1968). <sup>3</sup> S. D. Drell and K. Hiida, Phys. Rev. Letters 7, 199 (1961); R. T. Deck, *ibid.* 13, 169 (1964); U. Maor and T. A. O'Halloran, Phys. Letters 15, 281 (1965); U. Maor, Ann. Phys. (N.Y.) 41, 456 (1967); L. Stodolsky, Phys. Rev. Letters 18, 973 (1967); M. Ross and Y. Yam, *ibid.* 19, 546 (1967). <sup>4</sup> E. L. Berger, Phys. Rev. 166, 1525 (1968); 179, 1567 (1969). <sup>5</sup> For recent discussions, see R. T. Poe, B. R. Desai, A. Kernan, and H. K. Shepard, Phys. Rev. Letters 22, 551 (1969); A. S. Goldhaber, C. Joachain, H. J. Lubatti, and J. J. Veillet, *ibid.* 22, 802 (1969).

<sup>22, 802 (1969).</sup> <sup>6</sup>G. F. Chew and A. Pignotti, Phys. Rev. Letters 20, 1078

<sup>(1968).</sup> 

<sup>&</sup>lt;sup>7</sup> A. M. Cnops, P. V. C. Hough, F. R. Huson, I. R. Kenyon, J. M. Scarr, I. O. Skillicorn, H. O. Cohn, R. D. McCulloch, W. H. Bugg, G. T. Condo, and M. M. Nussbaum, Phys. Rev. Letters **21**, 1609 (1968); I. R. Kenyon, J. B. Kinson, J. M. Scarr, I. O. Skillicorn, H. O. Cohn, R. D. McCulloch, W. M. Bugg, G. T. Condo, and M. M. Nussbaum, *ibid.* **23**, 146 (1969); D. J. Crennel, U. Kaishon, K. W. Lai, J. S. O'Neall, and J. M. Scarr, *ibid.* **22**, 1327 (1969); J. V. Allaby, F. Binon, A. N. Diddens, P. Duttell, A. Klovning, R. Mennier, J. P. Peigneux, E. J. Sachharrdis, K. Schlüpmann, M. Spighel, J. P. Stroot, A. M. Thorndike, and A. M. Wetherell, Phys. Letters **29B**, 198 (1969). A<sub>1</sub> has also been observed in many reactions involving four or  $A_1$  has also been observed in many reactions involving four or more final particles

<sup>&</sup>lt;sup>8</sup> B. Y. Oh and W. D. Walker, Phys. Letters **28B**, 564 (1969). <sup>9</sup> A similar type of charge-exchange Deck model for the doubly charged final state  $(K^{*+}\pi^{+})$  has been studied by F. Bomse and E. J. Moses, Phys. Rev. **176**, 2163 (1968).

<sup>&</sup>lt;sup>10</sup> Two-body reactions which are dominated by baryon Regge-pole exchanges have been reviewed extensively by V. Barger, University of Wisconson Report No. COO-881-216 (unpublished). 2631



FIG. 1. Kinematic assignment and Regge behavior for reaction (1).

In Sec. II, we review very briefly the kinematics, and write down the production amplitudes in the model of double Regge poles. In Sec. III, we present the Chew-Low plots against an appropriate set of variables and comment on the experimental situation. Isospin complications and "partial-wave" projections are also examined. A comparison of the forward (with or without diffraction vertices) and backward  $A_1$ production composes Sec. IV. In Sec. V we make several remarks and summarize our results.

## II. FIVE-BODY KINEMATICS AND DOUBLE-**REGGE-POLE AMPLITUDES**

To establish the notation, let us denote the process to be considered by

$$q_1 + q_2 \rightarrow q_3 + q_4 + q_5, \tag{1}$$

where  $q_i$  denotes the *i*th particle as well as its fourmomentum. A double-baryon Regge-pole amplitude for (1) can then be represented as in Fig. 1. Following the usual convention, we can express the amplitude of (1) in terms of the five independent invariants

$$s \equiv (q_{1}+q_{2})^{2},$$

$$s_{1} \equiv (q_{4}+q_{5})^{2} \equiv w^{2},$$

$$s_{2} \equiv (q_{3}+q_{4})^{2},$$

$$u_{1} \equiv (q_{2}-q_{5})^{2},$$

$$u_{2} \equiv (q_{1}-q_{3})^{2}.$$
(2)

The differential cross section for (1) is given by

$$d\sigma_3 = \frac{1}{\prod(2s_i+1)} \frac{(2\pi)^{-5}}{2\lambda^{1/2}(s, m_1^2, m_2^2)} \sum_{s_i, s_f} |\mathfrak{F}_3|^2 d\Phi_3, \quad (3)$$

where  $d\Phi_3$  is the three-body phase space,<sup>11</sup>  $s_i$  ( $s_f$ ) are the spins of the initial (final) particles which are averaged (summed) over, and  $2\overline{\lambda}^{1/2}$  is the incoming flux. In terms of the invariant variables, we have

$$d\sigma_{3} = \lambda^{-1/2}(s, m_{1}^{2}, m_{2}^{2}) \int \cdots \int |M_{3}|^{2} \\ \times [ds_{2}ds_{1}du_{2}du_{1}/(-\Delta_{4})^{1/2}], \quad (4)$$

<sup>11</sup> See, for example, H.-M. Chan, K. Kajantie, and G. Ranft, Nuovo Cimento 49, 157 (1967); K. Kajantie and P. Lindblom, Phys. Rev. 175, 2203 (1968).

where  $\Delta_4 = \Delta_4(q_1, q_2, q_4, q_5)$  is a well-known phase-space factor. The explicit form of  $\Delta_4$  and its general properties can be found in the literature.<sup>11</sup>  $M_3$  denotes the effective amplitude obtained from  $\mathcal{F}_3$  after carrying out the spin averaging and summation. To simplify the calculation we shall approximate  $M_3$ , as usual, by

$$\begin{split} M_{3} &= \sum_{i} f_{2i}(u_{2})\xi_{i}(u_{2})(s_{2}/s_{20})^{\alpha_{2i}(u_{2})} \\ &\times g_{ij}(u_{2}, u_{1}, \omega)(s_{1}/s_{10})^{\alpha_{1j}(u_{1})}\xi_{j}(u_{1})f_{1j}(u_{1}), \end{split}$$

$$\xi_i = \frac{1 \pm \exp\left[i\pi(\alpha_i - \frac{1}{2})\right]}{\sin\pi(\alpha_i - \frac{1}{2})},\tag{5}$$

where  $\omega$  is the Toller angle, and  $f_{2i}$ ,  $f_{1j}$ , and  $g_{ij}$  are residue functions associated with Regge trajectories iand j.<sup>12</sup> Since we have anticipated the situation that there is only one leading Regge pole, i, to be exchanged in  $u_2$ , we do not sum over *i*. In the spirit of the multiperipheral model,<sup>13</sup> we shall assume that the  $g_{ij}$ 's depend weakly<sup>14</sup> on  $\omega$  and are separable in  $u_1$  and  $u_2$ , i.e.,

$$g_{ij}(u_1, u_2, \omega) \simeq \operatorname{const} f_{2i}'(u_2) f_{1j}'(u_1).$$
 (6)

Let us consider a quantity  $R(s, s_1, u_2)$ , which is defined as the ratio of (3) to the differential cross section of an associated two-body reaction of the same total energy s and the momentum transfer  $u_2$ . This two-body reaction is obtained from (2) by deleting  $q_2$  and  $q_5$  and putting  $\alpha_1$  on the mass shell, i.e.,

$$\alpha_1(\text{on shell}) + q_1 \rightarrow q_3 + q_4, \tag{7}$$

as illustrated in Fig. 2. Again by ignoring the spin complications, a similar expression of the differential cross section for (7) can be written as

$$d\sigma_2 = \lambda^{-1/2}(s, m_1^2, m_{\alpha_1}^2) \mid M_2 \mid^2 du_2,$$

where  $m_{\alpha 1}^2$  is the proper physical mass of  $\alpha_1$ , and

$$M_{2} = \sum_{i} g_{2i}(u_{2}) (s/s_{20})^{\alpha_{2i}(u_{2})} \xi_{i} g_{2i}'(u_{2}).$$
(8)



FIG. 2. Diagram for the reactions (a)  $\pi^{-}$  $+p \rightarrow p + \rho$  $+\pi^0$  and (b)  $\pi^- + p \rightarrow p + \rho^0 + \pi^-$ .

<sup>12</sup> I. T. Drummond, Phys. Rev. 176, 2003 (1968). We consider only the leading trajectories allowed in each channel. <sup>18</sup> G. F. Chew and A. Pignotti, Phys. Rev. **176**, 2112 (1968). <sup>14</sup> R. A. Morrow, Phys. Rev. **176**, 2147 (1968).

In the present case, we shall consider a particular reaction of (7), i.e.,

$$\pi^{-} + p \longrightarrow p + \rho^{-}. \tag{9}$$

Since the above reaction is dominated by a  $\Delta$  trajectory, we have

$$d\sigma_3(s, s_1, u_2)/ds_1 du_2 \equiv [d\sigma_2(s, u_2)/du_2] R(s, s_1, u_2), \quad (10)$$

where

$$R(s, s_1, u_2) = \iint \left\lfloor ds_2 du_1 / (-\Delta_4)^{1/2} \mid M \mid^2, \\ M = \sum_j (s_2 / s)^{\alpha_{2i}(u_2)} (s_1 / s_{10})^{\alpha_{1j}(u_1)}$$
(11)

$$\times \xi_{1j}(u_1)\beta_j(u_1)\beta_2(u_2)N_j,$$

$$\beta_{j}(u_{1}) = f_{1j}(u_{1})f_{1j}'(u_{1}),$$
  

$$\beta_{2}(u_{2}) = f_{2i}(u_{2})f_{2i}'(u_{2})(g_{\Delta}(u_{2})g_{\Delta}'(u_{2}))^{-1}.$$
(12)

The quantity  $N_j$  serves as a normalization constant such that we can define  $\beta_i(0) = \beta_2(0) = 1$ . In the following, we shall work with  $R(s, s_1, u_2)$ , which provides us with a measure of (1) relative to the associated two-body reaction (9). We shall see later that  $R(s, s_1, u_2)$ is almost independent of s.15 Let us emphasize that in defining R, Eq. (10), we have departed from the conventional treatment in which the energy variable of the associated two-body reaction (7), and therefore (8), is  $s_2$ . (See, for example, Ref. 16.) Our purpose is not to isolate an off-shell two-body reaction from the three-body reaction as is usually done, e.g., in the one-particle-exchange model. Here, R is a device which enables us to compare directly the three-body and the associated two-body reactions at the same energy. As we shall discuss later, this is to compare the  $A_1$  production with that of  $\rho$ . Since for fixed s and  $u_2$ ,  $d\sigma_2/du_2$  is constant, R therefore gives all the information of  $d\sigma_3/ds_1du_2$  for given values of these fixed variables.

Before evaluating (11), let us remark that in writing down (5), there is always an ambiguity concerning the detailed form of the energy variables to be adopted in the low-energy region (down to the threshold value of  $s_1$ ). In the formulation of the multiperipheral model, the  $s_1$  dependence comes from<sup>4</sup>

$$s_1 \cdots = s_1 - u_2 - m_2^2 + u_1^{-1} (m_5^2 - m_2^2 - u_1) (m_4^2 - u_1 - u_2).$$
(13)

It has a pole at  $u_1=0$ , which is in the physical region [see Fig. 3(a)]. Although the singular part is to be canceled by daughter trajectories, the finite part remains ambiguous. We shall here restrict ourselves to the simplest expression for  $s_1$ , and similarly for  $s_2$  [as is used in (5) and (8)]. We shall comment on some other choices later on.



FIG. 3. (a) Phase-space boundaries in  $(s_2, u_1)$  (in units of GeV<sup>2</sup>) for different values of  $(s_1, u_2)$  for the backward reaction  $\pi + p \rightarrow p + \rho + \pi$ . (b) Phase-space boundaries in  $(s_2, t_1)$  for different values of  $(s_1, t_2)$  for the forward reaction  $\pi + p \rightarrow \rho + \pi + p$ . (Here the momentum transfers are denoted by  $t_1$  and  $t_2$ , respectively.) The values of  $u_1$  ( $t_1$ ) where the trajectory functions [given by (17) and  $\alpha_{\pi}(t) = t - m_{\pi}^2$ ] take integer or half-integer values are indicated on the  $u_1$  ( $t_1$ ) axis. The solid and dashed curves are for  $u_2$  ( $t_2$ ) = -0.11 and -0.31, respectively.  $w = s_1^{1/2}$  is in units of GeV.

To illustrate the variation of the integration region of (11) under the changes of  $s_1$  and  $u_2$ , we plot in Fig. 3 the phase-space boundaries of  $(s_2, u_1)$  at s=31GeV<sup>2</sup> for several values of  $s_1$  and  $u_2$ . For comparison we also plot the analogous region for the forward scattering case.

<sup>&</sup>lt;sup>15</sup> G. F. Chew, C. Detar, and A. Pignotti, Phys. Rev. 180, 1577 (1969).

<sup>&</sup>lt;sup>16</sup> E. Ferrari and F. Selleri, Nuovo Cimento Suppl. 24, 453 (1962).



FIG. 4. The  $R_N$  distribution with parameters listed in (17). (a)  $u_2 = -0.11 \text{ GeV}^2$ ; (b)  $u_2 = -0.31 \text{ GeV}^2$ .

## III. GENERAL FEATURES OF MASS ENHANCEMENT IN FINAL $\pi_0$ SYSTEM

Let us consider specific cases of (1),

$$\pi^{-} + p \rightarrow p + \begin{cases} \rho^{-} + \pi^{0} \\ \rho^{0} + \pi^{-} \end{cases}$$
, (14)

which are illustrated in Figs. 2(a) and 2(b), respectively. The symbols are self-explanatory. For the diagram in Fig. 2(a), the trajectory on the left must be  $\alpha_{\Delta}^{++}(u_2)$ ; on the right-hand side, two interfering trajectories  $\alpha_{\Delta}^{++}(u_1)$  and  $\alpha_N^{++}(u_1)$  are allowed. Because of our lack of knowledge concerning the center vertex and the spin complications, it is difficult to treat the interference effect rigorously; a more detailed understanding of their structure is needed. Nevertheless, in order to exhibit the essential features, we shall examine this effect in terms of their (individually) spinaveraged amplitudes. For the diagram of Fig. 2(b), only  $\alpha_{\Delta}^{++}(u_2)$  and  $\alpha_{\Delta}^{+}(u_1)$  dominate the amplitude.

Diagrams obtained from Fig. 2 by interchanging  $\rho$  and  $\pi$  are omitted. They are expected to be small.<sup>17</sup> Furthermore, their main contributions come from a phase-space region different from that of Fig. 2, and therefore do not produce a strong interference effect.<sup>18</sup>

In the numerical calculations, we parametrize the trajectories as

$$\alpha_N(u) = \alpha_N^{(0)} + \alpha_N^{(2)} u,$$
  

$$\alpha_\Delta(u) = \alpha_\Delta^{(0)} + \alpha_\Delta^{(2)} u.$$
(15)

Our results are not very sensitive to the exact values of these parameters. As for the center vertex, the parametrization depends upon the choices of the ghost-eliminating mechanisms for the individual trajectories. For example, with the choice of nonsense wrong-signature zeros at  $\alpha_N = -\frac{1}{2}$  and  $\alpha_{\Delta} = -\frac{3}{2}$ , we put

$$\beta_N(u_1) = \left[\alpha_N(u_1) + \frac{1}{2}\right] \left[\alpha_N(u_1) + \frac{3}{2}\right] \exp(\gamma_N u_1),$$
  
$$\beta_\Delta(u_1) = \left[\alpha_\Delta(u_1) + \frac{1}{2}\right] \left[\alpha_\Delta(u_1) + \frac{3}{2}\right] \exp(\gamma_\Delta u_1).$$
(16)

If the residue functions choose finite values at specific nonsense wrong-signature points, the corresponding zero factors should be removed from (16). Notice that the factors  $e^{\gamma u_1}$  have been introduced in (16) so as to include possible  $u_1$  dependence other than the factor  $\xi(u_1)(s_1/s_{10})^{\alpha(u_1)}$ . This extra dependence is suggested by two-body Regge-pole phenomenology (for the end vertex) as well as by possible dependence arising from the center vertex. The choices of  $\gamma_N$ ,  $\gamma_\Delta$ ,  $s_n (\equiv s_{n0})$ ,  $s_\Delta (\equiv s_{\Delta 0})$ , and the nonsense wrong-signature zeros will be discussed separately in more detail as we proceed.

Finally, the values of  $N_i$  remain to be specified. If the functional dependences of  $\beta_2(u_2)$  and  $\beta_j(u_1)$  are given,  $N_j$  can be determined by matching the corresponding elementary pole calculations at  $\alpha_N = \frac{1}{2}$   $(u_1 = m_N^2)$  and  $\alpha_\Delta = \frac{3}{2}$   $(u_1, u_2 = m_\Delta^2)$ . Or we can determine them by fitting the theoretical results to the experimental data at given values of s,  $s_1$ , and  $u_2$ .

Here we are interested in the Chew-Low plot of  $R(s, s_1, u_2)$  obtained by integrating over  $s_2$  and  $u_1$ . A typical integration region is shown in Fig. 3. For small  $s_1$  and  $|u_2|$ , small  $s_2$  and large negative  $u_1$  are



FIG. 5. The  $R_{\Delta}$  distribution with parameters listed in (17)-(a)  $u_2 = -0.11 \text{ GeV}^2$ ; (b)  $u_2 = -0.31 \text{ GeV}^2$ .

<sup>&</sup>lt;sup>17</sup> For diagrams obtained from 2(a) and 2(b) with  $\rho$  and  $\pi$  interchanged, the phase space in  $u_1$  is farther away from the elementary pole positions of  $\alpha_1(u_1)$  as compared with those of the diagrams of Figs. 2(a) and 2(b). With comparable coupling strengths for both cases, the contributions of the omitted diagrams will be smaller than those of Figs. 2(a) and 2(b). Detailed calculations (not presented in the text) showed that their distribution function  $R(s, s_1, u_2)$  has also very different characteristics for the observed  $A_1$ .

for the observed  $A_1$ . <sup>18</sup> The diagram with the final proton going out from the central vertex is not enhanced at small values of  $s_i$  and  $|u_2|$ . See L. Caneschi and A. Pignotti, Phys. Rev. Letters **22**, 1219 (1969).

not in the integration region, so no cut in  $u_1$  or  $s_2$  is needed in our parametrization.<sup>19</sup>

In the following, we discuss separately  $R_N$ ,  $R_\Delta$ , and  $R_{N\Delta}$ , which denote the respective contributions to R from the set of exchanges  $(\alpha_\Delta, \alpha_N)$ ,  $(\alpha_\Delta, \alpha_\Delta)$ , and their appropriate sum. Within our model, Eqs. (11)-(16), the parameters are varied in many ways. We also discuss the (total) s dependence of  $R(s, s_1, u_2)$ , the isospin complications, and the "partial-wave" projections. Details of the calculations are not given here. Only some typical results are presented.

## A. Enhancement in $\pi_0$ System

#### 1. $s_1$ Spectrum (Peak and Width)

We begin with the following parameters<sup>10</sup>:

$$\alpha_N = -0.38 + 1.0u, \quad s_N = 1, \quad \gamma_N = 0,$$
  
 $\alpha_\Delta = 0.15 + 0.9u, \quad s_\Delta = 1, \quad \gamma_\Delta = 0, \quad (17)$ 

and we assume that the residue functions have zeros at  $\alpha_{\Delta} = -\frac{3}{2}$  and  $\alpha_N = -\frac{1}{2}$ . The results for  $R(s, s_1, u_2)$  are plotted in Figs. 4 and 5. For fixed s [e.g., s=31 $(\text{GeV}/c)^2$ ], and small  $|u_2|$  [e.g.,  $u_2 = -0.11$  ( $\text{GeV}/c)^2$ ],  $R_N$  alone produces an enhancement at  $w_R$  (the peak position) $\approx 960$  MeV with  $\Gamma_R \approx 80$  MeV;  $R_{\Delta}$  alone produces an enhancement at  $w_R \approx 1100$  MeV with  $\Gamma_R \approx 500$  MeV. In general, we find that an increase of  $s_N$  ( $s_{\Delta}$ ) or decrease of  $\gamma_N$  ( $\gamma_{\Delta}$ ) pushes  $w_R$  to a larger value and at the same time increases  $\Gamma_R$ .

If we replace  $\alpha_{\Delta}(u_1) + \frac{3}{2}$  or  $\alpha_N(u_1) + \frac{1}{2}$  in (16) by a constant, the essential features remain unchanged. This is because only minor contributions come from the large-negative- $u_1$  region.<sup>19</sup> Even if we replace the whole factor  $\beta_j(u_1)\xi(u_1)$  by  $1/(u_1-m_j^2)$  or by a constant, a broad peak still occurs (e.g.,  $\Gamma_R \gtrsim 550$  MeV) in  $R_{\Delta}$ . As far as  $w_R$  and  $\Gamma_R$  are concerned, the occurrence of a broad peak is somewhat independent of our choice of  $\beta_j(u_1)\xi(u_1)$ .

Complications do arise from the behavior of the  $\beta_{\Delta}$ at  $\alpha_{\Delta} = \frac{1}{2}$ . A factor  $(\alpha_{\Delta} - \frac{1}{2})$  multiplying  $\beta_{\Delta}$  gives a valley near 1070 MeV. An enhancement in this region is possible only if  $\beta_{\Delta} \neq 0$  at  $\alpha_{\Delta} = \frac{1}{2}$ .<sup>20</sup>

With reasonable values for  $s_N$ ,  $s_\Delta$ ,  $\gamma_N$ , and  $\gamma_\Delta$ , we have varied  $\alpha^{(0)}$  and  $\alpha^{(2)}$  over a wide range. Again no drastic changes occur. We may conclude that enhancement ( $\Gamma_R < 120$  MeV) at  $w_R \sim 1070$  MeV is difficult to produce in our model.



FIG. 6. The  $R_{N\Delta}$  distribution for (a)  $u_2 = -0.11$  GeV<sup>2</sup> and (b)  $u_2 = -0.31$  GeV<sup>2</sup>. The choice of parameters is given by (17). The relations between the amplitudes are  $A(I=2) \propto A_{\Delta} + \eta e^{i\phi} A_N$ ,  $A(I=1) \propto (5/\sqrt{3})$   $(A_{\Delta} - \frac{1}{3}\eta e^{i\phi} A_N)$ , where  $\eta = 2$  and  $\phi = -3\pi/4$ . The full, short-dashed, and long-dashed curves are for the  $(\pi\rho)I=1$  system. The dot-dashed curves are for the  $(\pi\rho)I=2$ system.

## 2. $u_2$ Dependence

For convenience, let us define

$$b(w) = d/du_2 [\ln R(s, s_1, u_2)]_{u_2 \ge 0}, \qquad w = (s_1)^{1/2}.$$
(18)

Then for small  $|u_2|$ ,  $d\sigma_3/ds_1du_2$  can be described by its associated two-body reaction multiplied by the factor  $\exp[b(w)u_2]$ . For  $R_N$  or  $R_{\Delta}$  in the region  $w < w_R$ , b(w) is positive but small (e.g.,  $\leq 0.5$  GeV<sup>-2</sup>). For  $w > w_R$ , b(w) becomes negative. It is too small according to the experimental data. Notice that an extra  $u_2$  dependence, arising from the center vertex, cannot be excluded. If this dependence is weak, however, it is unlikely that any variations of the parameters can produce a factor  $b(w_R) > 4$  GeV<sup>-2</sup> as needed to fit the experimental data.

Other choices of  $s_1 \cdots$  for (5) and (9) have also been investigated. Although the  $s_1$  spectra are more or less the same, b(w) is then even smaller than the previous results.

#### B. "Absence" of $I=2 \pi_0$ State and Interference between $R_N$ and $R_A$

Since there are no compelling reasons for either  $R_N$  or  $R_{\Delta}$  to be dominant, we have to consider them simultaneously in the diagram of Fig. 2(a). By isospin crossing relations,<sup>21</sup>  $R_{\Delta}$  contributes mainly to  $(\pi \rho)_{I=1}$ .

<sup>&</sup>lt;sup>19</sup> Here very little contribution comes from the large-negative- $u_1$  region. Even neglecting the region  $|u_1| < 0.15$  in the integration does not change our results (for small  $s_1$ ) appreciably.

<sup>&</sup>lt;sup>20</sup> A factor  $\alpha_{\Delta}(u_1) - \frac{1}{2}$  in  $\beta_{\Delta}(u_1)$  will suppress most of the phasespace contribution near  $u_1 \simeq 0.3$ , and therefore for w near 1070 MeV [see Fig. 3(a)].

<sup>&</sup>lt;sup>21</sup> As far as isospin is concerned, we treat  $\alpha_2^{++}(u_2)$  as an external particle with isospin  $\frac{3}{2}$ . Then we can relate the isospin states of the final  $\pi\rho$  system to the isospin of  $\alpha_1(u_1)$  through isospin crossing relations. They are  $|(\pi\rho)I=1>=\frac{1}{3}|I_u=\frac{1}{2}>+\frac{1}{3}(10)^{1/2}|I_u=\frac{3}{2}>, |(\pi\rho)I=2>=(\frac{1}{3})^{1/2}|I_u=\frac{1}{2}>-(2/15)^{1/2}|I_u=\frac{3}{2}>$ , which can be found in, for example, P. Carruthers and J. P. Krisch, Ann. Phys. (N.Y.) **33**, 1 (1965).

For  $R_N$ , the situation is reversed. The absence of the exotic  $(\pi \rho)_{I=2}$  state in Fig. 2(a) requires a destructive interference between  $R_{\Delta}$  and  $R_N$ . This enables us to determine approximately their relative weight, and therefore only an over-all normalization is undetermined. In Fig. 6, we plot a typical example of  $R(s, s_1, u_2)$  for both I=1 and I=2 states. Our optional choice of parameters (see the caption of Fig. 6) results in a suppressed I=2 state (<10%) for the case of Fig. 2(a). With respect to the case of Fig. 2(b),  $R_{\Delta}$  being alone, we have a 12% contribution for  $I = 2.^{21}$ Since we only consider the leading contributions, a small I=2 component is acceptable.

Moreover, our predicted cross sections for  $\rho^-\pi^0$ [Fig. 2(a)] and  $\rho^0 \pi^-$  [Fig. 2(b)] are not necessarily equal.<sup>21</sup> The above choice leads to  $\sigma(\rho^-\pi^0)/\sigma(\rho^0\pi^-)\approx 0.6$ , which is to be compared with  $\sigma(\rho^-\pi^0)/\sigma(\rho^0\pi^-)=1$ when  $\pi \rho$  comes from the decay of an I=1 resonance. The absence of  $(\pi \rho)_{I=2}$ , and the branching ratio of  $\rho^-\pi^0$  and  $\rho^0\pi^-$ , will lead to stringent constraints on more detailed future calculations.

## C. S Dependence

The function  $R(s, s_1, u_2)$  is extremely insensitive to the value of the total energy s.<sup>14</sup> For instance, a change of s from 16 to  $10^4$  GeV<sup>2</sup> produces a less than 1%variation in  $R(s, s_1, u_2)$ , for, say,  $s_1 \leq 3$  GeV<sup>2</sup> and  $|u_2| \leq 0.5$  GeV<sup>2</sup>. Hence our simple production differential cross section (1) has an energy dependence quite similar to that for the associated two-body reactions at the same total energy. We conclude that if the present model is able to account for the backward  $A_1$  production, then the reaction (14) will possess the same energy dependence as that of reaction (9). We cannot expect  $A_1^-$  to be either suppressed or enhanced relative to  $\rho^-$  at very high energies.

Experimentally,  $A_1$  seems to have been observed more prominently at 16 GeV/c than at 8 GeV/c. A possible explanation is that the background contribution is more important at 8 GeV/c than at 16 GeV/c. Detailed identification of the missing mass spectrum  $X^-$  in terms of final states is also needed.

## D. "Partial-Wave" Analysis of "πo" System

A rigorous treatment of the various partial waves of the  $\pi\rho$  system is by no means trivial.<sup>22</sup> Difficulties and complications arise from the facts that the external particles have spins and that, in the present model, one of the incoming particles from which the  $\pi\rho$  system emerges is an off-spin-shell Reggeon, i.e.,

the  $\Delta$  trajectory. In the spirit of our approximation and in view of the impossibility of decomposing the present experimental data into the various helicity amplitudes, we hope to explore roughly the angular momentum structure of the  $\pi p$  system by making a partial-wave analysis of the spin-averaged amplitude. In other words, to do the partial-wave analysis, we ignore the spin of  $\rho$  and treat the  $\pi \rho$  system as if it were resulting from a collision of spinless particles. With this understanding, we project the "partial waves" of the  $\pi \rho$  system for all the three cases  $R_N$ ,  $R_{\Delta}$ , and  $R_{N\Delta}$ .

We found that for  $w \leq w_R$  and  $|u_2| \leq 0.3$  GeV<sup>2</sup>,  $R(s, s_1, u_2)$  and hence  $d\sigma_3/ds_1du_2$  are predominantly "S wave" (about 90%). When w increases beyond 1.25 GeV, the "P wave" becomes more important and eventually dominates, yet the enhancement is much smaller than that for the S wave occurring at lower w. In general, the peak of the S wave (P wave) occurs at lower (higher) w, and the width is smaller (bigger) than that of the total amplitude. These features can be understood from the centrifugal-barrier effects. The contributions of the "S and P partial waves" of  $R_N$ ,  $R_{\Delta}$ , and  $R_{N\Delta}$  are plotted in Figs. 4, 5, and 6, respectively. Under variations of the parameters, the shapes of the S-wave and P-wave projections are mostly stable, but their relative abundance and  $u_2$  dependence vary moderately.

## IV. COMPARISON WITH FORWARD $A_1$ **PRODUCTION**

In this section we discuss briefly two forward  $A_1$ production processes for comparison with the backward case. The first one contains a diffraction vertex, the second does not.

 $p\pi \rightarrow \rho(\pi\rho)$ .<sup>4</sup> Here the set  $(\alpha_P, \alpha_\pi)$  is the leading contribution, where  $\alpha_P$  and  $\alpha_{\pi}$  are the Pomeranchukon and pion trajectories.<sup>23</sup> We have varied the intercepts and slopes of  $\alpha_P$  and  $\alpha_{\pi}$ . It is interesting to note that with a wide range of the parameter values,<sup>24</sup> e.g.,  $0.5 \leq \alpha_P^{(0)} \leq 1$ ,  $0 \leq \alpha_P^{(2)} \leq 0.5$ ,  $-0.5 \leq \alpha_{\pi}^{(0)} \leq 0$ , and  $0.5 \leq \alpha_{\pi}^{(2)} \leq 1$ , features similar to the backward cases are observed:  $(w_R, \Gamma_R) \approx (1040 \text{ MeV}, 450 \text{ MeV})$ . They are mainly "S wave" (see Sec. III D). The analogous quantity R of the present case, where the associated two-body reaction is the elastic  $\pi p$  scattering, is also extremely insensitive to the total energy s. Let us emphasize that even though a considerable slope for the pion trajectory is necessary,<sup>4</sup> i.e., the pion has to be Reggeized in order to produce such a narrow enhancement (full width  $\sim 450$  MeV), the exact values of the slopes of  $\alpha_P$  and  $\alpha_{\pi}$  and the difference of their

<sup>&</sup>lt;sup>22</sup> We refer the reader to the following articles on the subject of partial-wave analysis of a two-particle subchannel of the final state in 2-body  $\rightarrow$ 3-body reactions: L. Resnick, Phys. Rev. 150, 1292 (1966); 175, 2185 (1968); J. G. Rushbrooke, *ibid.* 177, 2357 (1969); C. D. Froggatt and G. Ranft, Phys. Rev. Letters 23, 943 (1969).

<sup>&</sup>lt;sup>23</sup> Here  $(\alpha_P, \alpha_{\rho})$  is also allowed. For simplicity we have omitted such contributions in our calculation.

<sup>&</sup>lt;sup>4</sup> We vary the value of  $\alpha_P^{(0)}$  for the purpose of indicating that the shape of R is not very sensitive to it. For constant asymptotic total cross sections of two-body scatterings, we need, of course,  $\alpha_P^{(0)} = 1.$ 

1

intercepts are not very crucial. This has already been demonstrated in the case of backward scattering discussed in Sec. III.

 $nK^{-} \rightarrow \Lambda(\pi\rho)^{-}$ . As an example,  $(\alpha_{K^*}, \alpha_K)$  is used. With a reasonable choice of parameters [viz.,  $\alpha_{K^*} = 1 + (t - m_{K^*})$  and  $\alpha_K = t - m_K^2$ , where t is the forward momentum transfer squared], an enhancement occurs near w = 1040 MeV with  $\Gamma_R \approx 400$  MeV and  $b(w_R) \simeq 2$ . These are similar to the results of the previous case where  $\alpha_P$  is allowed. Strictly speaking, isospin complications have to be considered but no change in the main feature is expected. In this case the dynamic behavior of the amplitude is analogous to that of the backward scattering, but kinematics may introduce differences.

In forward scattering for small  $s_1$ , an increase in  $|t_2|$  (the variable analogous to  $|u_2|$ ) in the region  $t_2 < 0$  pushes the phase space quickly away from the nearby pole [see Fig. 3(b)]. This feature coupled with the peripheral nature of the Regge amplitude makes  $b(w_R)$  large. However, in the backward case, when  $|u_2|$  increases, the upper boundary of the  $(s_2, u_1)$  phase space moves very little [see Fig. 3(a)]. Therefore  $b(w_R)$  is smaller than that of the forward case, in the absence of strong center-vertex  $u_2$  dependence.

## **V. CONCLUSION**

As we have discussed in the previous sections, the double-Regge-pole model can generate a mass enhancement in the final  $\pi\rho$  system of reaction (14). The peak is at about 1040 MeV and the width is 450 MeV. This result is analogous to the forward cases. For both backward and forward reactions, the enhancements arise from the interplay between the peripheral nature of the DR amplitudes and the threshold behavior of the phase-space kinematics. The essential features of the Chew-Low plots for the  $R(s, s_1, u_2)$  spectra are insensitive to variations of the trajectory and other parameters. Concerning the  $u_2$  dependence, we found that it is impossible to reproduce the sharp (backward) peripheral behavior of

 $A_1$  production. To accommodate this behavior, a form factor which may come from the center vertex is required. Information about other variables (e.g., the Treiman-Yang angle, etc.) is necessary in order to further pin down this dependence.

In backward scattering, unlike the forward case involving a diffraction vertex, both isospins 1 and 2 can be present in the  $\pi\rho$  system. We have demonstrated that the exotic I=2 channel can be suppressed relative to the I=1 channel.

With the over-all normalization constants  $N_j$  yet to be fixed, one cannot rule out the possibility that the DHD or DR model accounts only for the background on which the true  $A_1$  resonance is superimposed. This, of course, contradicts the duality principle and raises the problem of double counting. Under such circumstances, the structure of the background would be more complicated than what is usually expected for reactions not involving (virtual) diffractive vertices.

Even with the assumption of duality for the backward reactions, the DR model can only dictate an averaged behavior of  $A_1$ . Its detailed features (i.e., the resonance height, width, and u dependence) are hard to reproduce. Therefore, if  $A_1$  is consistently observed in various reactions as a narrow-mass enhancement, it would be more convenient to describe it as a genuine resonance.

In order to further establish the role of the duality principle in backward production processes like (14), more efficacious models like the five-point Veneziano functions should be pursued.<sup>25</sup> The complications of isospin and spin have to be incorporated properly into the model.

#### ACKNOWLEDGMENTS

We wish to thank Dr. R. F. Peierls, Dr. K. W. Lai, Dr. H. R. Blieden, and Dr. D. Garelick for helpful discussions, and Dr. R. W. Brown for reading the manuscript.

<sup>&</sup>lt;sup>25</sup> K. Bardakci and H. Ruegg, Phys. Letters 28B, 342 (1968).