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Meson Form Factors and the Veneziano Model
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The E~4, E~e, and E'~2 form factors, as well as the pion electromagnetic form factor, are derived from the
matrix element (sr )A„(7rK) by using partial conservation of axial-vector current, current algebra, and the
Geld-current identity, in addition to the Veneziano representation for the scattering amplitudes. This
model contains essentially only one free parameter, by which all the quantities are expressed. The results

agree with the present experimental data excellently.

I. INTRODUCTION

'HE Veneziano model' is the only one that succeeds
in expressing the idea of the duality of strong

interactions in a simple mathematical form. Character-
istic features of meson-meson scattering are particularly
well understood in the framework of this model. ' 4

Relevant amplitudes show the expected Regge behavior
at high energies and have poles corresponding to the
observed resonances. It is also found that the results
at low energies are compatible with those from current
algebra. Therefore this model provides us with a
conviction that a unified understanding of the low-

and high-energy phenomena in elementary-particle
physics will be attained along this line. A number of
attempts have been made to study meson form factors
within this model. ' ~ None of them, however, succeeds
in explaining several form factors simultaneously.

In this paper we investigate several pion and kaon
form factors in a systematic fashion. We adopt the
hypothesis of partially conserved axial-vector current
(PCAC) both for the pion and the kaon, current
algebra, ' and the field-current identity, "in addition to
the Veneziano representation for the scattering ampli-
tudes. Let us consider the matrix element of the strange-
ness-changing axial-vector current taken between a
one-pion state and a one-pion-plus-one-kaon state,

where A„ is related to the kaon and axial-vector meson
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fields through the field-current identity assumption,

A„=v2 f~r)„K+@2fsr„K~„. (1.2)

Then the matrix element is expressed in terms of the
scattering amplitudes for mK —.+xK and xK —+mK~
through the reduction formula. The K~4 axial-vector
form factors are defined in terms of the matrix element
(1.1). We next reduce one (both) of the pions in (1.1)
and use the PCAC and current algebra to obtain the
KIs (K~s) form factors. On the other hand, if we reduce
the kaon in (1.1), we have the pion electromagnetic
form factor by the same procedure. In this way, once
the scattering amplitudes for mK —+ zK and wK —& xK~
are given, we obtain various form factors mentioned
above.

It is well known that the scattering amplitude for
wK —+ mK involves only one parameter, ' while there are
four~ in the scattering amplitude for xK —+ +Kg,
provided in both cases that no satellite term exists.
We obtain relations between these parameters by
imposing Adler's PCAC consistency condition"' on
the scattering amplitudes and by assuming that the
relation due to the hard-meson method of Schnitzer
and Keinberg" "holds at a certain point. Kith these
conditions, all the form factors are expressed in terms
of only one parameter. In our model, Callan-Treiman
relations" hold naturally, and one of them is equivalent
to the modified Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin (KSRF) relation. ' " Further, the ratio
G,/Ge is also determined by this parameter, where G,
and Gd are constants describing s- and d-wave decays
of K~ ~ K*m. If we fix the parameter by the condition
f~(0)=1, we obtain all the numerical values of the
relevant quantities. Here we summarize the results of
our calculation. As for the K~4 form factors, we obtain

~ ft~ =5.0srsrc ',
~ fs~ =8.1msr ', and

) fs( =0.15srsrc ' as
the average values. The K~3 form factors are calculated:
f (0)/f+(0) = —0.18, )+——0.018, and X = —0.049. The
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weak coupling constant for E—+ pz decay is determined:
fir=0. 112 GeV. For the pion electromagnetic form
factor, we obtain g(r ')=0.85X10 " cm. The s- to
d-wave decay ratio is predicted: G,/Gp= —0.45 GeV'.

In Sec. II the scattering amplitudes for zK —+ xK and
zE —+wE~ are given. Several relations between the
parameters are found. In Sec. III the E~4, %~3, and E~~
form factors as well as the pion electromagnetic form
factor are derived from the matrix element (1.1) by
reducing appropriate mesons and using PCAC and
current algebra. The Anal section is devoted to the
numerical results and discussions.

isospin structure, i.e.,

A=A&+&fi p+A& &-,'$r, rp$. (2 7)

The expressions (2.5) and (2.6) show, of course, the
expected Regge behavior in all channels: A ~ s ('& ',
B~s "~ for s~ ~ and t fixed, for example.

I.et us impose Adler's PCAC consistency condition"
on the amplitude (2.4) in order to obtain the relation-
ship between the parameters.

(i) In the soft-pion limit pr —&0, the PCAC con-
sistency condition requires that

A —8=0, (2.8)
II. SCATTERING AMPLITUDES FOR

~Z —+ ~K AND mK —+ ~Kg

We give here the scattering amplitudes for xE —+ ~E
and mE —+ ~Ez which are necessary for the subsequent
discussions. The Ueneziano amplitude with no satellite
terms for the reaction s. (p&)+E(p,) ~ wp(p, )+E(p4)
is written as'

which leads to

A&+&=B&+& at s=mzs) f=m ' and u=m&r '. (2.9)

From Eq. (2.9) we obtain two relations. One is

g&'&(1+am„s) =g&»(1—/mes —$,m s) (2.10)

and the other is either

Trr &+& (s, f,u) = ——',f,'LF(n "&(s),n "&(f))
~F(a "&(u),a&s&(f))j

s= (p +P )'—, f = (P P.)'—, u=——( —P )', (2 1)

or

G(~"'(mx~') s)=0 (2.11a)

g&~&(1+am ')+g&b&(1 —bmrc '—b&m s) =0. (2.11b)

where F(X,Y) =P(1—X)P(1—Y)/F(1 —X—Y). The
functions &r "&(s) and &r&s&(s) are the Regge trajectories
for E* and p, respectively. They are assumed to be
real and linear with respect to s, namely,

&r
&' (s) =0.89s+0.28,

n &s& (s) =0.89s+0.48,

(2.2)

(2.3)

where e is the polarization vector of K~. According to
the Ueneziano formula, A and 8 are expressed in terms
of four parameters g&'), gt:~~, a, and b:

A &+&(s,t,u) =g& &(1+af)LG(n&'&(s),n&'&(f))

~G( "'(u), "&(f))j, (25)

B&+&(s,t,u) =g&s&L(1 bs b, t)G(—no&—(s),&r "&(t))
& (1—bu —bgt) G(u &'& (u),n &'& (t))j, (2.6)

where g&'&a=g&s&b& and G(X,Y)=P(1—X)F(1—Y)/
F(2—X—Y). The plus and minus signs in Eqs. (2.1),
(2.5), and (2.6) refer to the usual description of the

which are determined by requiring (1) Adler's PCAC
consistency condition: T&r&+& (mrs )m ' m&r ) =0, and (2)
the universal slope for the Regge trajectories: 0.'=0.89
(GeV/c) '. The normalization factor f,s is a constant
which is to be determined from experiment or from a
theoretical consistency condition. The scattering ampli-
tude for the process s (p&)+E(ps) -+ s p(ps)+E~(p4, e)
is written in the following form:

T(s)t)u)=A(s)f)u)(P&+Ps) e+B(s)f)u)(p& ps) e) (2.4)—

(ii) In the soft-pion limit Ps~ 0, the PCAC con-
sistency condition requires that

A+B=O. (2.12)

From Eq. (2.13) we obtain the relations

G(&r "&(m '),n"&(mrs„'))=0 (2.14a)

or

1+am'„'=0 1—bm ' bgm~ '=0—. (2.14b)

Simple manipulation shows that

G(n&'&(m '), n&'&(mrs„s))

=G(&r&»(m&r s) &r&»(m s)) (2.15)

so that Eq. (2.14) is equivalent to Eq. (2.11).
So far we are concerned with the restrictions obtained

"It is well known that the soft-kaon limit (PCAC for the kaon)
does not give good results as compared with the soft pion. We are
encouraged, however, by the fact that there are some examples in
which the soft-kaon method works well in the framework of the
Veneziano model. See V. Oyanagi and ¹ Tokuda, Progr. Theoret.
Phys. (Kyoto) 42, 430 (1969). See also Ref. 3.

The relations obtained from Eq. (2.12) are the same as
Eqs. (2.10), (2.11a), and (2.11b).

(iii) In the soft-kaon limit'r ps —+ 0, the PCAC
consistency condition requires that

g (+) g(+)

at s=m ', f= mar„s, and u=m„'. (2.13)
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BiA ),
+&'='& (x)=V2fKmKsE+(x), (2.16)

where A), ('=') is the strangeness-changing axial-vector
current, and fK is the kaon decay constant. We assume
the following field-current identity:

under the PCAC consistency condition. As for the limit
P4~0 (or p4' —+0), we adopt the hard-kaon method
of Schnitzer and Weinberg. ""

(iv) In the hard-meson limit P4s~ 0, we define the
kaon field operator E(x) a's

parameters. Combining the relations obtained in
(i)—(iv), we find that the choice of Eqs. (2.11b) and
(2.14b) must be rejected, and there remain only four
independent equations, Eqs. (2.10), (2.11a), (2.20),
and (2.22). Equation (2.11a) implies that the E~
meson rides on the E trajectory.

III. FORM FACTORS

The X&4 form factors are de6ned by

wh P
a constant. The matrix element of Aq ('=') between a
one-pion state and a one-pion-plus-one-kaon state is
given by

From Eqs. (2.18) and (3.1), we obtain the following
expressions for the y" s:

(K (Ps) IA. ' "(o) IK (Pi)&'(Ps))A"'=""=~"'~'*)+~f"~""'*'"'" =Lf( t )(p-p)+f( t )(p+p)
ere E~~ is the K~ meson field o erator and ~ is +f ( t )(P +P P).7—(8P oP oP o) ". (31)

&K (Ps) IAi '="(o) l~ (Pi)&'(Ps))

iv2
P4x(TK++TK )

-p4 +mK

t/2fKg P4xp4v+ 8y,+ — L(A++A —
)(pi+ p,)„

P4 +mKa mK~

+(&'+& )(Pi—Ps).5 (8P»P»P») '", (2 18)

fi(s, t,u) = $W&fK„/(p4'+mK„') 5(&++& ),
fs(s t u) —p&2fK„/(p4'+mK~')5(A++A ),

f (s,t,u)= (T ++T —
)

p4'+mK'

V2 K„ 1
+—,I:(A"+A )P4 (Pi+Ps)

p4 +mK~ mKg

+(J3'+& )p'(P p)7—

(3.2)

(K (Ps) I I'.-'="(0)
I &'(Ps)) = —Lf+(u)(ps+ p.),

TK++TK =ifK„fK 'mK, 'P4, $(A-++A -)(p,+p,)„-
+(~++& ) (Pi —Ps)~7 (2 19)

+f-(u)(ps —Ps).5(4psop») "', (3 3)

where the left-hand side is related to the original matrix
element through PCAC, current algebra, and the
reduction formula,

At a first glance we notice that both sides of Eq. (2.19)
vanish in the limit P4~ 0. Here we assume that Eq.
(2.19) holds at P4'=0"'s Then a simple calculation
leads to (.-(p,) IA„-& = i(0) I. (P,)z (p.))

(2.21)

g(b)b 2g( )g

g
~&'&

f 1+2a(m sy mKs) 5= g
i &&

» '2f.
~(K (Ps) I

l'. '="(0)
I &'(Ps))(2P») "' (3 4)

and

From Eqs. (2.18), (3.3), and (3.4) we obtain the
following expressions for f+.

Here we consider all the relations between the
+ u = 2f~zfK~ mKa —u 8 A

by using the reduction formula. This is a basic equation
for our subsequent discussions on the form factors. If ( 3)~ an ( 6)~ iesPect've y
we take the divergence of Eq. (2.18) and use Fq The Ets form factors are defined as follows:

(2.16), we obtain the equation

' If we make a stricter assumption that Eq. (2.19) should hold
irrespective of the values of p4, we have an additional relation
a=0. Then the results are changed, and the asymptotic behavior
of the pion electromagnetic form factor becomes essentially the
same as that obtained in the previous paper (Ref. 6) of one of the
present authors (Y. 0.). As pointed out by GeA'en, the previous
result is derived from the assumption that no 0 term exists in the
matrix element considered, which assumption, however, leads to
inconsistency. Therefore we do not adopt this strict assumption.
See D. A. Germen, Phys. Rev. Letters 23, 89It' (19N). See also
R. Jengo and Z. Remiddi, Nncl. Phys. 315, 1 (1970).

2if fK„ 1—
mgA' —S

u+ m~ mK——(8 A), ——

where s=mK', t=m ', and u= —(Ps—Ps)'.

(3.5)
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The K~2 form factor is defined by

(0 IAo t =ii(0) IE+(po)&=v2ftrjpoo(2pso) its (3.6)

The left-hand side of Eq. (3.6) is related to the original
matrix element through

(~'(Po) I U. '="(0)
I &'(Po) & » 02

tude for the mK —& mE process, which does not vanish
automatically. On the other hand, the right-hand side
of Eq. (3.14) becomes the matrix element of B„V„"
between the pions. Thus the vector current V„"defined

by Eq. (3.14) contains the nonconserved part. We take
the electromagnetic current U„o in Eq. (3.13) as the
conserved part of V„o' in Eq. (3.14). Then the form
factor is given by

&&(ol~. '="(o) I&+(po)&(2poo) "' (37)

and Eq. (3.4). Therefore f& is expressed as

.(t) = 4tfx—fx„~'g .(1+at)

I'(1—cr &"(nt, '))I'(1—n"'(t))
X

r(-',—t'&(t))
(3.15)

where s=nz~', )=0, and 1=m~'. The terms A+
and 8+ do not appear on the right-hand side of Eq.
(3.8), as they are multiplied by pi& ps (=0).Neglecting
the pion mass, we obtain from Eq. (3.8)

f 'f, '/m, '= 1/sr, (3.9)

which is the modified KERF relation. ' lt is easily seen
that our model satisfies the following Callan-Treiman
relations":

fi= f2, fs=0 when pi ~ 0

fi+f2+fs = (t'/~~f-) Lf+(s) f (s)7—-
fo = (—t/v2f-) [f+(s)+f-(s)7

fir/f =f+(I)+f (I) Whe" p—2~ 0.

(3.10)

when po —+0,

(3.11)

(3.12)

Here V„' is the electromagnetic current and is conserved.
The quantity corresponding to the left-hand side of
Eq. (3.13) is obtained from the original matrix element
by using PCAC for the kaon and current algebra:

( -(p.) lw.-'= '(o) I
-(p )x'(p )&

~&fir

&&(~ (p ) I U."(0)l~ (p )&(2p o)
"' (3 14)

The current U„"defined in Eq. (3.14) is not the same as
V„o in Eq. (3.13). The latter has a nonconserved part
which corresponds to the so-called 0- term. We explain
the relation between V„and V„' in the following way.
Let us take the divergence of both sides of Eq. (3.14);
then the left-hand side represents the scattering ampli-

We note that one of the Callan-Treiman relations,
(3.12) is equivalent to the modified KSRF relation if
we neglect the pion mass.

Next we consider the pion electromagnetic form
factor, defined as

(p ) I U'(0) I (p ))= —F-(t) (p +p ).
X (4propso) "'. (3.13)

IV. NUMERICAL RESULTS AND DISCUSSIONS

Here we summarize all the parameters introduced in
our model and the restrictions among them. There
are seven parameters: f, fIr, f„', gt i, gi'i, g, and b.
The parameter fir~ is excluded from the set of the
independent ones, since it always appears in the form
of f&„g&'i or fz„g&". Four equations have been found:
three equations for the parameters in the mE —+ ATE&

scattering amplitude, Eqs. (2.10), (2.20), and (2.22),
and the modified KSRF relation, Eq. (3.9). Here we
notice that F (0)=+1, since the pion charge is unity.
We introduce as the scaling factor of our model,

f =0.093 GeV, determined from sr —+ttt decay. Thus
only one free parameter remains. We fix it by the
assumption f~(0) = 1, which is expected from the
argument based on SU(3) syinmetry. The Ademollo-
Gatto theorem" indicates that f+(0)=1 up to the
second order in SU(3)-symmetry breaking.

Now we can determine the numerical values of the
form factors in Sec. III and predict the ratio G,/Ge.
The three X~4 axial-vector form factors averaged in
the physical region are calculated and compared with
the values obtained from experiments by assuming the
Cabibbo angle 8~ =0.21 (experimental values are listed
in square brackets):

Ifil =50~x ' [(5.7~04)~x '7 (Ref. 2O) (41)

I f, I

= 8.1sntc-' [(7.5W1.1)nttc-'7, (4.2)

I f, l

=o.15 (4.3)

The following values are obtained for the quantities
relevant to the K~3 form factors:

X+——0.018 [0.023&0.008 from E+ decay,
0.013&0.009 from Eo decay7 (Ref. 21), (4.4)

X = —0.049 [—0.147, (4.5)

'9M. Ademollo and R. Gatto, Phys. Rev. Letters I3, 264
(1964)."R. P. Ely et al. , Phys. Rev. 180, 1319 (1969);M. K. Gaillard,
Nuovo pimento 6SA, 135 (1970)."J.W. Cronin, in Proceedings of the Fostrteenth Internationat
Conference on Heigh Energy Physics, Vienna, 1968, edited by
J. Prentki and J, Sternberger (CERN, Geneva, 19|)8),
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and

f (0)/f+(0) = —0.18 $0.00&0.25 from the branching

ratios, —1.35&0.3 from the p polarization], (4.6)

where X~ are defined by

~,(~)=/, (0)(1+~,~/-. )

The E&& decay constant f& is found to be"

fry=0. 112 GeV $0.119 GeV].

The pion charge radius is calculated" to be

(4.7)

(4.8)

g(r„')=0.85X10 "cm P(0.80&0.10)X 10—"
or (0.86&0.14)X 10 "cm], (4.9)

where (r s) is related to the pion electromagnetic form
factor in a form

(r-') = —6F-'(0)/F-(0) . (4.10)

The asymptotic behavior of F (q') is seen from Eq.
(3.15) '4 to be

p (qs) ~ g
—s[1—ao& (mgr2)]

q
—1.4 q~~ (4 11)

where we define 6, and G~ by the effective Hamiltonian

G,K"„K*„m+GdE"„E*„B„B.7r (4 13)

'~The decay constant fz is determined from the E —+ pp
decay rate.

23 C. W. Akerlof, W. W. Ash, K. Berkelman, C. A. Lichtenstein,
A. Ramanauskas, and R. H. Siemann, Phys. Rev. 163, 1482
(1967); C. Mistretta, D. Imrie, J. A, Appel, R. Budnitz, L.
Carroll, M. Goitein, K. Hanson, and R. Wilson, Phys. Rev.
Letters 20, 1523 (1968).

'4 This asymptotic behavior is different from that obtained in
Ref. 6, as pointed out before. We do not claim, however, that this
expression should be valid in the large-momentum-transfer limit.

The ratio G,/Gd is predicted to be

G,/Gd = ——',L1/a+ (m, '+ mlr' —mrs*')]
= —0.45 GeV' (4.12)

Here we note the following point. We calculate these
numerical values by using one set of solution. The other
set exists, since one of the equations is quadratic for
the parameter a. When the pion mass is neglected,
however, all the equations become linear, and only one
set of solution exists. We discard the other set because
it disappears when the pion mass is set equal to zero.

The numerical values obtained above agree with the
present experimental data excellently. This fact is
surprising if we consider that the starting point of our
discussion does not rest on a Arm basis. The kaon PCAC
is not good approximation in the discussion of kaon
physics. Nor does the one-term description of the mK

scattering amplitude in the Veneziano model satisfy
the Adler-Weisberger relation. "Moreover, in the field-
current identity $Eq. (1.2)], we could have assumed
that A~„ is coupled to the infinite series of pseudo-
scalar and axial-vector mesons, whose existence is
specially characteristic of the Veneziano model. It can
be said, however, that the cooperation among PCAC,
current algebra, the field-current identity, and the
Veneziano representation overcomes these difficulties
and leads to good results. For instance, current
algebra alone gives no information on the mass shell,
while the Veneziano amplitude gives the unique on-shell
extrapolation of the results from the current algebra.
On the other hand, the Veneziano model itself deals
only with the scattering amplitudes and is not suited
for describing form factors. We conclude that PCAC,
current algebra, the field-current identity, and the
Veneziano representation play a cooperative role in
our model.
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