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We discuss the interaction between a pseudoscalar and two vector mesons within the context of chiral
SU(3) SU(3) symmetry. Assuming that the interaction transforms like a combination of zeroth and
eighth components of a (3, 3*)(3*, 3) representation, we are able, in a phenomenological Lagranigan
treatment, to reproduce a previous SU(3) parametrization of the related meson decay rates. In addition we
obtain interaction terms for the decays of the Xo meson. We study also the mass spectrum of the vector,
axial-vector, and pseudoscalar mesons when these last belong to a nonlinear representation and when
they are part of a linear representation which includes scalar mesons. In the latter case we find that the
a-E* mixing is negligible.

I. INTRODUCTION

BOUT one year ago we discussed' the interaction
.g vertex involving two spin-1 mesons and one spin-

zero meson in the framework of broken chiral SU(2) S
SU(2) symmetry, using the effective Lagrangian ap-
proach. This vertex, which we shall here call "mp7t-"

interaction, plays an important role in the vector-
dominance picture' 4 of production and decay processes
of mesons. The generalization to broken chiral SU(3) 8
SU(3) is, however, not very simple to do, since it
involves the fixing of parameters in a so-called' "super-
Lagrangian, " which contains nonets of spin-zero and
spin-1 fields of both parities. While the choice of which
terms to retain in the Lagrangian is (as always) arbi-
trary, our criterion of simplicity leads us to keep all
chiral symmetric terms leading to bilinear and trilinear
terms in the fields, and similarly for the symmetry-
breaking part, which transforms as a (3, 3*)6 (3*,3)
representation' of chiral SU(3) t3SU(3). The problem
of determining the parameters in the chiral Lagrangian
and the breaking parameters, and consequent renormal-
ization of the fields, in terms of the mass spectrum and
partially conserved axial-vector current (PCAC) condi-
tions turns out to be the main part of this work.

The formulation of the "cop~" interaction in the
framework of chiral symmetry has been considered by
several authors" ' who use different approaches and
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reach somewhat different conclusions. All authors are
in agreement, however, that either the chiral field
algebra" or strict PCAC must be relinquished in for-
mulating cope. Accordingly, in Ref. 9 a phenorneno-
logical model of PCAC breakdown is proposed and
leads to the GMSW-type interaction. In Refs. 7 and 8,
however, it is claimed that a stronger momentum
dependence than is contained in GMSW follows from
the requirements of current algebra, even when field
algebra and strict PCAC are abandoned. This strong
momentum dependence is not consistent with the exper-
imental situation. Subsequently we examined the orpm

interaction in a convenient O(4) formulation of chiral
SU(2) I3SU(2) symmetry, and were led to precisely
the GMSW interaction, when the requirement of either
explicit field algebra or strict PCAC was relaxed.

Earlier we considered radiative and strong decays of
vector and pseudoscalar mesons, " as well as electro-
magnetic mass differences in the pseudoscalar octet, "
using the vector-dominance approximation. In those
works, as in the present one, the vector fields were
treated as massive Yang-Mills gauge fields, while the

symmetry assumed was octet-broken SU(3). In this
paper the generalized cop7i- interaction transforms as a
(3, 3*)0+ (3*, 3) representation of chiral SU(3) g
SU(3) and involves the ninth pseudoscalar meson X',
as well as axial vectors and scalars. For the interactions
of the pseudoscalar octet and the vector mesons the
results agree with those already given in Refs. 11 and 12.

II. EFFECTIVE LAGRANGIAN

From nine vector fields V„' and nine axial-vector
fields A„' (a= 0, 1, 2, . . . , 8), we form matrices

8

V„=&2 ' Q V„9.', (1a)
0

' T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967)."L.M. Brown, H. Munczek, and P. Singer, Phys. Rev. Letters
21, 707 (1968); see also F. A. Costanzi, Phys. Rev. 182, 1571
(1969).' L. M. Brown, H. Munczek, and P. Singer, Phys. Rev. 180,
1474 (1969).
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8

A„=v2-' Q A„9. ,
0

and similarly for f', while
(1b) I:x 'g P—= (tr'I) ' tr8 —2 tr'g tr ($8)

V.+= (1/&2) (V:+A:) (3)

and write for the spin-1 Lagrangian, with kinetic-
energy breaking and current mixing, "

with
8v=8v++&v, (4)

where

i p' +,a+ah@ kb+ mi, 2P' k, aP k, c (3)

V„„+=8„V„+ B„V„++—ig/V„+, V„+], (6)

and E" is an SU(3)-breaking numerical matrix.
Similarly, we consider nine scalar fields 0- and nine

pseudoscalar fields m (a=0, 1, . . . , 8) and introduce

P+=a ~im, (7)

where X' are the three-dimensional SU(3) matrices
(for a= 1, . . . , 8) and Xp is the unit matrix multiplied
by +02. The fields

I'.+'= (1/v2) (I'~~:) (2)

form representations (8, 1) and (1, 8), respectively,
of SU(3)+SU(3) for @=1, . . . , 8, and representa-
tions (1, 1) for a=0 (see Appendix A). Analogously,
we de6ne

Our super-Lagrangian, Eqs. (4) and (10), does not
contain invariant terms that, when expanded, have
lowest-order pieces that are quartic in the fields and
their derivatives, and divers in this respect from that
of Ref. 5. It differs also in containing the last term in
Eq. (10). When only the constants fp' and fp' are re-
tained, the divergence of the axial-vector current re-
ceives contributions linear and bilinear in the spin-zero
fields. Therefore we have a modi6cation to strict PCAC
which is added to the one produced by the coper inter-
action.

The cope interaction will be discussed in Sec. IV.
For the present we remark that it transforms like a
C- and P-invariant combination of zeroth and eighth
components of '(3~, 3) (3, 3*) representations. Thus,
our final Lagrangian will consist of

P=Pv+gi+P c„ (13)

—tr('g'2t) tr8+2 tr(F118). (12)

Equation (12) is a generalization of the determinant
term and in the notation of Appendix A we would
write it, for example,

where

8

a =v2-' g ~"l~,
0

8

0

(8a)

(8b)

with Qv given by (4) and Qp given by (10).

III. NONLINEAR THEORY

m'+o'= F' (14)

In this version of the theory, the 0- are considered
to be dependent on the pion held. We let'

The fields P+ belong, respectively, to representations
(3*,3) and (3, 3*) of SU(3)+@SU(3) . We introduce
also the covariant derivatives of the P+,

P„+=D„P+=B„P++ig (—V„+P+ P+V„), (9a)—
P„—=D„P-=B„P-+zg (V„-P-—P-V„+). (9b)

The gauge-invariant Lagrangian for the scalar and
pseudoscalar fields, which consists of chiral invariants
that are at most trilinear in the 6elds P+ and in their
derivatives, together with the simplest terms which
break chiral invariance, is

Bi = -,'n tr LP„+P„j—-', pp' tr LP+P j
+big(P„+ xP„+ P++P„—xP„—.P )
+-'bb'(det P++ det P-)
+tr $fo$+-,'(P+ xP+ f'+P xP f'). (10)

In expression (10),

f=&i-i PyJ. ,

'3 S. Coleman and H. J. Schnitzer, Phys. Rev. 134, 8863
(&w4) .

and consider o to be a function of m and the constant Ii'.
Accordingly, we drop the constant term

——,'Pp' tr(P+P ) = —-,'P00F' (13)

from Eq. (10) . Expanding (14) to bilinear terms in n,
we get

&c ~3Fgpc (1/2+2F) dcbc7rb7rc (16)

We now use (16) to write the terms in Eq. (10)
which are at most bilinear in the pseudoscalar fields.
The result is

B~,iccc= 2ABlc7r Blc7r +2'rF(7ly Kp 37llc alp )

ppF7r 7r ( fp/2&3—F)7r'm —( fg/2v2F) d —'7r w'

( fo~/~3) (~.~cc+3~'~ )+2~3js ~ ~

—( fp'/v2) d"Pm'm b. (17)

It is evident that there are more parameters in (17)
than are needed to fit the pseudoscalar masses and
satisfy PCAC. While the general case of diagonalizing
a Lagrangian of the form of Eq. (17) is treated in
Appendix 8, we shall here, for simplicity, put &=p, =0
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P4= 2Fp ——',Fs, Ps ——2Fp —Fs,

Po= 2Fp+2&3fo', P"=2V2Fs 4i/3f—z'.

and 0.= 1. Defining also

Fo= (&s)L(fo/2F)+fo'3

Fs= (v's) I:(fs/2F)+fs'3

we have, in the notation of Appendix B,
esp= ni= 1, Pi= 2Fo+Fs,

so»"V pPV„P(do7to+dss. s) (28)

(20)

that we shall not discuss further, since we assume there
is no SU(3) singlet electromagnetic current.

In Ref. 11 the cope interaction was written in the
general octet-broken SU(3) form:

We shall interpret Eq. (27) as being valid only for
a, b&0, since otherwise we would be postulating a
nonet form for V rather than the octet-plus-singlet

(19) form that we have assumed. For a=b=0, there is an
interaction

""V V F (21)

Next we consider the C- and E-invariant parts of
(3*,3) Q3 (3, 3*) representations, formed of two V's and
a P. These are three in number:

A= ——',s(P+—P ) tr(V+V++V V ), (22)
8= i (V P+V+ V+P——V ), — —

(23)
C= i(P+V+V—++V V P+ P-—V—V —V+V+-P-- )—.

(24)
Accordingly, we write

o ( tip~ 0+ Ibs~ s+ f pi-l0+ fs~s+ COCO+ CsCs) y

with

(25)

A, = (1/K2) tr(AX;), (26)
and similarly for F, and C;. Thus, P' transforms in the
same way as the terms leading to the PCAC condition,
and it modifies this condition by adding a multiparticle
contribution to the standard divergence of the axial
current. As discussed in the Introduction, this is essen-
tially the only way of obtaining the ~pm interaction
when one has a purely mesonic Lagrangian. If fermions
are included, Adler' has shown that one also obtains
a (model-dependent) modified PCAC condition. What
the origin of 8' is does not have relevance to our ensuing
discussion.

Selecting the interactions of two vector fields and
a pseudoscalar, we obtain

Q„c ——$3"(ao3"+as3') + (1/Q6) (bo+2co) d~'

+g ds kdkb+&(2c f, )d kdk j)(1 pa V

(27)
'4 S. L. Adler, Phys. Rev. 177, 2426 (1969).

Using now the mass relations in Appendix B and
the empirical values of the masses, we determine all
the remaining parameters in Eq. (17) as follows (in
GeV'): Fo——0.0845, Fs —0.150,——2v3fo' mxs+——m„'
2mrc'= 0.732, 4v3fs'= —0.635. The mixing angle is deter-
mined to be 0=9.6', from cos20=0.944. Finally, from
PCAC we get I' = f /v2—, as well as f =fx=fo=fx.

Iv. "mym" INTERACTION

Before considering the linear version of the spin-zero
Lagrangian, we shall study the form of the cope inter-
action. For simplicity we exhibit first the space-time
form of the interaction, suppressing internal indices:

with

1oapac(hDebcV aV b&c+QDabV a&bV 0) (29)

Dab —3ab+~3O daob (31)

md with a, 6, etc. = 1, . . . , 8. %hen one vector meson
is the SU(3) singlet we shall complete Eq. (27) with
a, term whose coupling matrix is given by (31), and it
is then evident that Eq. (29) has the same form as
Eq. (27), except that xo appears in Eq. (27) as part
of the pseudoscalar nonet, permitting the discussion
of p and X' decays.

To compare the parameters of Eqs. (27) and (29)
we eliminate the explicit appearance of the SU(3)
index zero by using the identity

i (gas)bc+ gbs3ac+ 3cs3ab) —dabmdmcs+ gacmgmbs+ dbcmdmas

(32)

the indices taking on values 1, . . . , 8. There results

7s= (Qo) (bo+2co), boih= cs+sbs,

V3osh=3bs, (os/v3) h= as+'s (cs bs) —(33).
Using these identifications and the form (31) for the
interaction when one of the vector mesons is an SU(3)
singlet, and neglecting the small g-X' mixing, the
results of Ref. 11 are unchanged.

The interactions with the ninth pseudoscalar can
now be written

P..'rb. ———',o&""V pa V '7r'p(Q's) h(1+os) 3

+v2hoid~s+v2Xob3 s3M) (34)

where, for convenience, we have let ap ——(Qss) hob. Again,
we shall not be interested in the case a= 6=0.

In a recent communication" Singer has considered
the radiative decays involving the I'(958) meson,
neglecting g-X' mixing, and using the formalism of
Ref. 11. This interaction (for u, b&0) is that of Eq.
(34), with the bra, cket replaced by

hp (3ab+&3pdabo) . (35)

The present formulation thus contains one less param-
"P. Singer (unpublished).

Dabc debc+~3& debkdkoc+ iV3& (deckdkob+ dbckdkoe)

+(os/V3)3"b s c(30)
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eter, for we identify

hp
——(Q-;) h(1+pb), Php ——(Q—;)hp}. (36)

(cr, A„I = 2FA„, (39)

Since it is shown in Ref. 11 that

(m 'h'/4m. ) (1+p})'=0.10, p} ——0.77 or p}
——1.3, (37)

the radiative decays involving the X meson will de-
pend on only one new parameter, namely, e5. In the
following sections of this paper, we shall show that the
field renormalizations and mixing parameters assumed
in calculating the decay amplitudes of Ref. 11 and
electromagnetic mass differences of Ref. 12 are essen-
tially unchanged by the requirements of broken chiral
symmetry.

V. SPIN-I LAGRANGIAN IN NONLINEAR THEORY

In this section we consider the mass relations of the
vector and axial-vector mesons. Spin-1 mass terms arise
not only from Eq. (5), but also from Eq. (10) as a
result of the use of the covariant derivative. Assuming
the nonlinear relationship, Eq. (14) or Eq. (16), and
assuming y=0 as in Sec. III, the contributing term of
the Lagrangian $Eq. (17)j is

Q~P ———',n tr (P„+P„-)

rr 8 +—(a;„A„} 8„+—(rr, A„})+

(38)

where only the relevant terms are exhibited. Using
Eq. (16), we have

If p=-', , we get (m~a)'=2(mr' )', where m~ and mr'
are the axial-vector and vector meson masses, respec-
tively; F= —(Q-', )f, and gf =&2m LKawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation].

In the case that no axial-vector singlet exists, the
pseudoscalar kinetic energy takes the form

2 p}(r'}I B(r7r + p CXB(r7r p}(r'}C r (45)

where u'= 1, . . . , 8. In this case the mass relations will

be

and
(m~')'=2m ' (mx~) '= 2 (mrs*) ' (46)

4 1
( m~')'=2

~

— = 1.816 GeV' (47)
&3mz*' 3m p'

That is, m&8 ——1350 MeV, lying between the observed
mesons D and E.

VI. LINEAR THEORY: K*-x MIXING

The linear theory, in which the scalar mesons are
treated as real particles, is more demanding in that it
requires us to fit (or predict) the scalar-meson mass
spectrum. It also includes the possibility of mixing
between the E* and the ~, related to a possible nonzero
vacuum expectation value of o-'.

The terms in Eq. (10) which can contribute to the
spin-zero kinetic energy are

f}JP= ', a( tr(P-„+P„—)

+b'y(P„+)&P„+ P++P„)&P„.P ). (48)

Using Eqs. (9) and retaining terms at most linear in
the spin-1 helds, we get

and performing the indicated trace we get

,'a(8„7r 8„7r'+—2v2gFBpr A„+2g'F'A„'A„+ ~ ~ ~ ) . with
P„+= (1/v2) (R„wiS„)V,

8„=8„o-'—gIi '"U„',

5 ' 8~'jg=Z"A '

(49)

(50)

(51)
The familiar mixing of the spin-1 and spin-zero fields

can be eliminated by the substitution

A„= I„—(P/m) p}„pr; (41)
in general P is a matrix.

We assume that there is an axial-vector SU(3)
singlet. Requiring the mixed terms to vanish, and the
coefficient of 8„m B„x to be —'„results in

P =v2gF/m= P—
where

Pce —&
4'8ca

8g

gce & dabc

(Q2) & gac+& dac}(

(52)

(53)

Here a.p= (a.P) and o(}= (o'), the other (o. ) being zero.
After some calculation it becomes apparent that Eq.

(48) ha. s the form

~= (1—P&)-~. (43)
The free Lagrangian of the spin-1 mesons takes the

form

Ago
——X bR F. '+X '5 5'

ab 1&gab~Qab

(54a)

(54b)

fb(n= —-'V 'V bE"+-'m'V V —-'PI 8 bJ""

+pLm'/(1 —0') 34 ~:, (44)

Qab 1V3+La (gapgbp 1gab)

(ga}(gbp+gapgb8 (Qp ) dab(()] (55)
with

V„, =B„U„—8,U„,
Since Eq. (54) contains terms which mix o and V

and also x and A, our first task is to diagonalize the
Lagrangian. Because of the space-time antisymmetry
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of the V„„+ LEq. (6) ], the kinetic-energy part of the
spin-1 Lagrangian will not be relevant to the diagonal-
ization. We therefore consider only the spin-1 "mass
terms" and define

We note that Eqs. (69)—(71) showed that

ab 2gXpab

D ab —3 «2a 23ab+1m23ab= 4g f78

(73)

(74)

8 V'=X abE aE„b+ 2m2V„-«Vaa, (56)

Q.~0——X ab5 a5 '+ ',m'A-'A ' (57)

We diagonalize these expressions by the substitutions
m" = -'g'o. ' (75)

with consequent simplification of Eq. (62). Referring
to Eq. (5) and letting

V a —cU a+A acg ac

A„=8„+A+ '8„2l'.

we write the (free) vector Lagrangian now as

(59) 8v 2+ + s +a + '2™93s+s +2m"&„&„, (76)

If we write Eq. (56) in the form
with

U~„=Bp, U„B„Up, ) (77)
fl.V0 X'——B„a'B„ab+C ~B„a'V„'+D 'V„'V„', (60) and the current-mixing matrix E b having the form

we see that diagonalization requires

ab+ 2D bc+ ca 0

and, using this condition, Eq. (60) becomes

(61)
It ab —3ab+~30dabs+ 0 3«sobs+03 (3«03.bs+ 3«sobs) (78)

In terms of the empirical masses nz, and m* of the p
and the E*mesons, we obtain

P 0 (X sb+ &C acAcb) g aag ab+D abcU acU b (62)

From Eqs. (52) and (46), we see that

E"=1+s=m2/m '

10= (m2+ m&2) / (m8) 2

(79)

(8o)

ab gX lm (Pbl3ms+ Phyla)

D ab g2X lmPalPbm+1m23ab

(63)

(64)

which determine m' and e as functions of m".

Also, letting
Ua = —sin|) Os+ coso cI's,

Us = COS0 Q)a+S1110 C'a,

tan28 = —2 (&&0+03)/(00+0),

eo—e= 3f~—2,

cos20= (00+0)3I,
M =m2/m 2&m2/mp2.

(81a)

(81b)
Considering Eq. (59), we get the analogous results

ab+2D bc' ca —0 we obtain
(82)

(83)

(84)

0 (X ab+1C acA cb)() ~a() 2rb+D abg ag b (66)

(67)sb —gX lm(gblgms+ gbm3la)

D sb —«2X imp lgbma+ 2 m23 ba+ g + 2 (68) where

At this point it will be advantageous to continue the
development of Eqs. (56) and (57) separately because
of the different properties of P ' and Z b. We note
that P b is nonzero only if u, b =4, 5, 6, 7, so that
I e.g. , in Eq. (63))

X lmPbl X lmPbl

(69)—XPbm
)

In the case that o-8 ——0, we solve these equations to
get &=0.21, &0=0.10, m=847 MeV, and 8=27.5' as in
Ref. 11. In general, requiring that

~
cos8 ~&1 leads to

the restriction that m"/m'&0. 38. However, the equality
corresponds to the case of no cv-q mixing, and in the
realistic case we expect m"&(m', small E*-ic mixing and
gas&&m LEq. (75)).

X= -', (2—(y/2+6) (V2as+as) .

Using also the relation

(70)

PamPbm 3& 2)ab= go'8 (71)

where we have used the notation t to mean an index
which takes only the values 4, 5, 6, and 7. From Eq.
(55) the quantity X is

VII. LINEAR THEORY: PSEUDOSCALAR-
AXIAL-VECTOR MIXING

Although Eqs. (65) through (68) are rather compli-
cated in general, inspection will show that the matrices
X+, C+, D+, and (therefore) A+ are all diagonal in the
isospin-1 and —', sectors. Accordingly we let C+"——C('),
etc. '(dropping the subscript plus), and similarly for
the other diagonal matrices. Thus, Eq. (65) now reads

Eq. (57) yields C(a)+ 2D(a) g(a) —0 (86)
ab

2gXPab (m—2+. 3g2a 2X)—1 (72)

which means that only the strange components of o
and V are mixed. 2X(1)+( (&)A(&) = 1 (87)

Referring first to the isospin-1 sector, we require the
coefficient of B„m'()„2r' to be 2 tEq. (66)].Thus,
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Next, we note that the (free) Lagrangian for the axial-
vector mesons now reads

where A, 8= 1, . . . , 8, and, in addition LEq. (91)],
-',n+ya/2+6= 1. (101)

so that

0 lltabgf age b+D abPJ ag b (88) In consequence, Eqs. (65) through (69) give for the
pseudoscalar-meson kinetic energy

mA 2 —2D 11/Qll 2D(li/Qll

= 2 (ma2/m2) D~n, (89)

where we have used Eq. (79). Setting mA, 2=2m, 2, we
obtain

2ojapr Ba2l + 2sBa2i hapl

s X 00(1+X 00)-l

A 3 A

(102)

(103)
D('~ = nz'. (90) Since, in Eq. (66),

Xo) =1, C"'= (2m')"'. (91)

(For y=0, this corresponds to n=2. ) Also, letting
a=42ap, X= (3m'/2g')"' we have

3(Z&")'= (0+op)'=x'. (92)

By a similar argument, using Eq. (80), and letting
PL~g SS

Since Ci') =2gX&"2&'i and D'" =g2X"it&'i2+-'m2 we
conclude from Eqs. (86), (87), and (90) that

D "='m'(1+X-y"), (104)

X+" is determined by the masses of the isoscalar
axial-vector mesons, but in view of the experimental
uncertainties we leave s undetermined, at least for the
present.

Similarly, for the scalar-meson kinetic energy we And

(n —1)B„aAB„aA+(2——',n) B„aors„ao. (105)

Requiring positivity for each kinetic-energy term in
Eqs. (102) and (105), we find

2Di4i = r'(m'+ m") . (93) (106)
For mrrA ——1240 MeV (1330 MeV), r'= 1.94 (2.24), so
that for our present purpose it will be sufhcient to
assume r'= 2. We then get Lfrom Eq. (75)]
Di'i = g'Xi & (Z(4') '+-'m'= 'r'm'I:1+ (9/-4) (a '/x') ]

Turning now to the remaining terms in the spin-zero
Lagrangian LEq. (10)], we find first that linear terms
in the scalar field ("tadpoles" ) are eliminated by
choosing

For p=0, using (92), we get

(1+2ap/x) '= + 2 (ap/x) ', (95) where we have set

V2fp= (pp —2gp) a&

= gs&)

(107)

(108)

so that (op/x) = 0, W~. The nonzero values are excluded

by the requirement of a real mixing angle for the vector
mesons. For mrrA

——1240 MeV (1330 MeV), we obtain

gp
——410'/K3,

gp ——4v2fp'/K3.

(109)

(110)

op/x= 0.02 (—0.08), (96)

and, accordingly, we shall assume (ap/x) 0. With this

assumption, Eq. (94) gives

X(') = r' —1, (97)
and since

VII. LINEAR THEORY: SPIN ZERO

In the previous sections we found 0.8 0, in which
case Eqs. (54b) and (55) simplify to diagonal matrices:

AB (Ln~~a/2+6) gAB (99)
Xgoo ——2n&ya/Q6, (100)

X&4i = -', n+pa/2+6 =X'"= 1, (98)

we are required to have r'=2. We see also that (m') 2

is negligible, and reach the important conclusion that
E*-g mixing is very small.

In view of the experimental uncertainties with regard
to the isospin-zero axial-vector mesons, we shall not
consider further the problem of mixing them, but pass
instead to the spin-zero mass spectrum.

+-', gp (&3d"'a'a' — 3v'2a) a(112)
it now being understood that in Eq. (112), (o') =0,
a=0, . . . , 8. From Eq. (111) we see immediately tha, t

I40 gp+ gpi

~Z' =go —
go

—
ggs

(113)

(114)

With ap=0, the term 2b12(detE++detP ) gives the
same type of mass contribution as the last term in
Eq. (10), so we set it to zero.

We thus obtain, as the free pseudoscalar Lagrangian,

lg &Ag ~A+ ized ~pg ~0 2+ 2~a&a

—-'gp (32102ip—pr'ir )

', gp(V3d —bopr—'rrb 3&22roirP)— (111)

while the free scalar Lagrangian is

9.= (n —1)B„aAB„aA+(2—21n) aBa08 oo

,'1402a'a'+ 2
—
g0 (-3aoao a'a')—
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and, from Eq. (108), VIII. SUMMARY

One of our motivations in this work was to relate
the generalized cope interaction to an eRective Lagran-
gian with broken chiral symmetry. Although we con-
sidered more general eRective Lagrangians, including
both linear and nonlinear treatments of the scalar
mesons and the possibility of mixing between g and
E* mesons, nevertheless, the broken-SU(3) meson
decay amplitudes given in Ref. 11 are unchanged. For
in each case considered, the pseudoscalar ocrek mesons
do not require field renormalization and the nine vector
mesons are renormalized in the same way as in Ref. 11.

We have shown also that in the context of our
Lagrangian, the simplest one that retains all trilinear
chiral-symmetric and -breaking terms, the mixing be-
tween ~ and E* mesons is negligible. We have also
obtained the mass spectrum of scalar mesons in the
linear version of the theory and find, as already noted'
by Gasiorowicz and Ge6en, that it is dificult to avoid
the scalar mesons having masses which appear to be
smaller than the existing experimental candidates.

(115)m- '= s (po'+ g.—gs) /(~ —1)

~Ec' o (po +go+ ogs) /(~ 1) (116)
Thus,

m '—m«' ——-'(mx' —m ') /(a —1) (117)

and we necessarily have m )m~. Considering only
the restriction on n in Eq. (106), they can be nearly
degenerate or di6er in squared mass by as much as
0.34 BeV'. In the latter extreme case, mr~ 800 MeV
if m 980 MeV; however, we shall see that we cannot
take n as small as ~.

Using the mixing theory of Appendix 8, we define
the particle fields g and I through

(Qs) ~o= —g sinp+X cosy, (118)

(119)ms=ad cosy+X sin&p,

tan2p= (Po /v z) (P,/z P,)-,
and obtain

(120)

mx'+m, '= p /so+ p, ,

mx' —m, '= (Pos/Qs) (sin2(p)
—i,

Po =vo'+ 2go,

ps=IJo go go,
— —

d = gs/&—

(121)

with
We consider commuting groups SU(3)+ and SU(3)—

which are assumed to transform into each other by a
parity transformation. Representations of SU(3)+g)
SU(3) are denoted by tensors Ai, i "+"-, where I+
stands for a set of upper SU(3) indices, each index
taking on values 1, 2, 3 in the SU(3)+ space, I is
an analogous set of upper indices in the SU(3) space,
and l~ designate similar sets of lower indices. Ke are
particularly interested in the eight-component repre-
sentations (8,1) and (1,8) and the nine-component
representations (3*,3) and (3, 3*).

Denoting (8, 1) and {1,8), respectively, by R+—=

with trR+= 0, we form combinations like
tr(R+S++R S ), which are invariant under parity
and SU(3) g SU(3) transformations. The representa-
tions (3*,3) and. (3, 3*), denoted, respectively, by
by Q+=—Q;~&'+, give typical invariants of the forin
tr(Q+gg-+Q~). Under rotations characterized by
the infinitesimal parameters n+= u;, &+in SU—(3)+'and
n =—n, &- in SU(3), we have, e.g. , for Q,

(123)

Using Eqs. (113) and (114) gives (in GeV') po' —go=
0.169, gs

———0.150, determining Ps, and so=10.4'. All
remaining parameters are also determined: go=0.0143,
goo=0.183, and s=0.236. (This last is equivalent to
n= 1.54.)

These parameters, and in particular the large value
of 0., result in disastrously low values for the scalar
meson masses m and m«, Eqs. (115) and (116),
namely, m '=0.321, m~'=0. 113. The masses of the
isoscalar-scalar mesons are still lower, which is an
unacceptable situation.

Remaining within the limitations set in this work,
there appears to be no way out of this dBFiculty.
However, if we allow the chiral-invariant mass term
isPos tr(P+P++P P ) to be further broken by allow-
ing, for example, an additional SU(3)-invariant term
~~p, "0. g the situation can be much improved. Since the
scalar-meson masses are not really known, we give the
following two examples of what results.

$Q,. i+=j(~. &—
P~ i+ Q. &+o~ j+)

and similarly for 9+; alternatively, we write

(A1)

&9+=i (n+9" 9+n+) . —

~R+= iLn+) R~7.

(A2)
Also,

(A3)
mx ——755 MeV, m, =710 MeV,

q s= 15'40'.

m =885 MeV,

m~ =515 MeV,
The vector and axial-vector gauge fields treated in

the text belong to the representations (8, 1) (1, 8)
and (1, 1), while the scalar and pseudoscalar fields
belong to (3*,3) 6 (3, 3").The physical SU(3) trans-
formations are those with n+=n =n Defining P+=.
0'Rior and using (A2), we have

«=i', ~7, ~~=iin, ~7 (A.4)

H &'~=0.6 GeV2,

m =935 MeV, m~ =815 MeU, m, =775 MeV,

ps= 6'20m~ =550 McV,

{122) APPENDIX A: CHIRAL TRANSPQR]gATIONS
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Under the chiral transformations, for which n+= —0! =
P, we have

4= —Iy, ~},

Results given in the text for the vector fields are ob-
tained in a similar way.

tions (18) and (19), we have

Np= 0! 2+P) ni ——u+ yF,

Po 3/4——F+ (2/K3) ( fo/2F+4f p'),

P"= 4v—3fs'+ 242F8,

pi 21 8+F8 p4 2Fo sFs

Ps ——2Fo—Fs,

(813)

We wish to diagonalize the Lagrangian [compare
Eq. (17) of the text]

g = -'n"or pr'8 orb —-,'P"Ir'prb

where n ' is a diagonal matrix with

CL~~ = CLp) j=0

and
p// p. —

~ ~ ~ ) 8

0) ~ ~ ~ ) 8

(82)

APPEmDIX S Mrzrmo OZ ~P Amo ~8 AND ICAC

Similarly,

Also,

r/„Jb„i = W2Fp—i7r'

= —(2ai) '"Fm 'vr„i,

F— f (2u )-I/8

(3 Jb 4= —(2ni) '/8Fm/r'E '

oj J '= %2F(p 7—r'+ —'p"8')

oI„Jb„'= &&F(Pp7r' +—,'P"7rs) . -—

(815)

(816)

(817)

(818)

Calculating the divergence of the axial-vector current
and retaining only linear terms,

with Pos the only nonzero nondiagonal term.
Working only in the nondiagonal 0—8 sector, we let

If we form
B„Jb„o ah'B„Jo„o+——bB„Jo„s,

Opsis = Q,B'„Jb„' ar/„Jb„s,—
(819)

(820)
7ro =X'(ay+ bX), (84) we get

where a= —sine, b=cos0. To keep the kinetic energy
diagonal, we require lI.'= (ni/uo) '/', and get

&pJbp"= —(2ui) '"F(a9 "pp+ b'ps+ aQ, 'p") r/ (821)
and

QEE ——,'a, (B„r/B„-i/+ r/„XB„X),

while diagonalizing the mass terms gives

(85) B„Jb„x —(2ni)
'' 'F——(b9, 'P +a'Ps abX'P"—)X„(822).

As the quantities in parentheses in the last two equa-
tions are, respectively, m, 2 and mx', we have

tai120 = (upui) p (nips uops) (86)
X g E (823)

mx'+m„'= (uipo+uops) /uoui,

mx2 mps P08[(upui) '/8(sin20) ] (88)
clpJpp = INQ/BP (824)

Similarly, in the linear case, applying Eq. (A5) to
Eq. (10), we calculate 58 and then

We note also that

m~ pi/ui) mIc p4/ul

and that the renormalized (physical) fields are

(89)
In this way we get, e.g. (with ps ——0),

B„Jb„II&= —(p/W3) m.spri,

B„Jb„'4I= —(~/%3) m/r'~4,
so that

(825)

(826)

and
E,4= (Qni) pr4, etC. , (810)

g„=a(&no) Iro+b(&ni) 7r',

X„=b (Qap) 7ro a(+ni) 7rs. —(812)

For the nonlinear Lagrangian, Eq. (17), with defini-

f.-f/r a/K3. ———(827)
From Eq. (92) of the text we get (KSRF relation)

a —~g ~ (3ms/2gs) I/2 (828)
which gives (for a p-meson width of 130 MeV) f =
95 MeV.


