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The s-channel approach to forward charged-pion photoproduction above the resonance region by means
of fixed-t dispersion relations is known to be quite successful. In this paper we investigate the kind of behavior
that can be expected for charged-pion electroproduction on the basis of such a model.

I. INTRODUCTION

CHARGED-PION photoproduction at very small
& momentum transfers is dominated by the isovector

photon amplitudes at energies above the resonance
region. ' The dominant contribution to the isovector
amplitudes comes from the Born term. In fact, up to
t= —p' (p, being the pion mass), the forward cross
section is qualitatively well described by the Born term
alone. For larger t values, one needs corrections to the
Born amplitude. As has been shown by Engels,
Schwiderski, and Schmidt, this can be achieved by the
inclusion of fixed-t dispersion-relation contributions.
The dispersion integrals are necessarily cut off at
relatively low energies, but nevertheless the agreement
between the model and experiment is good. The low-

energy photoproduction data then determine the high-
energy behavior at small t values, without the inter-
vention of a specific model for the high-energy behavior.
Recently this conclusion has also been obtained by
Jackson and Quigg' in the context of finite-energy sum
rules.

The success of the approach can be understood if for
some reason the imaginary parts of the photoproduction
amplitudes in the forward direction at higher energies
are negligible with respect to the real parts. This makes
it possible not only to neglect them in the evaluation of
the cross sections, but also to cut off the dispersion
integrals at relatively low energies, thus making a
practical evaluation feasible.

Another simplification occurs in that the electric and
magnetic multipoles of the second and third xE
resonances are such that they cancel in the forward
direction. 4 Therefore, the well-known magnetic dipole
transition to E* (1236) gives the most important con-
tribution to the dispersion integral.

The model is, however, limited to the region
~

t
~
(6p'

for two reasons. First, the rapid increase of the isoscalar

*Supported in part by the AEC under Contract-No. AT (30-1),
2076.

~B. Richter, in Proceedings of the Iiolrteenth International
Conference on High-Energy Physics, Vienna, 1068 (CERN,
Geneva, 1968), p. 3.

2 J. Engels, G. Schwiderski, and W. Schmidt, Phys. Rev. 166,
1343 (1968). See also W. Schmidt /ibid. 188, 2458 (1969)g for
an application for timelike E' J. D. Jackson and C. Quigg, Phys. Letters 29B, 236 (1969).

4 R. L. Walker, Phys. Rev. 182, 1729 (1969).
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amplitudes with t, as can be seen from the 7r-/m+ ratio
of photoproduction on deuterium, ' makes a calculation
in terms of the isovector amplitude 3 alone not
sensible. Second, the model starts to give a too large A
at higher I, values.

Because of this remarkably simple mechanism of
charged photoproduction in the forward direction, it
would be interesting to see whether this picture carries
over to electroproduction. It is the purpose of this paper
to investigate what type of behavior can be expected for
charged-pion electroproduction in the forward region on
the basis of this simple model.

In Sec. II we discuss the dispersion relations for
electroproduction and the assumptions made for their
evaluation. In Sec. III we present the results for the
differential cross sections. In Appendix A the removal
of kinematical singularities is discussed and in Appendix
B some kinematics is given.

II. FIXED-t DISPERSION RELATIONS

Throughout the paper we use the notation of Ref. 5,
where a rather explicit account of the electroproduction
formalism is given. We refer to this reference for more
details.

Introducing the Mandelstam variables

where E, Q, I'i, and I's are the four-momenta of the
virtual photon, pion, and in- and outgoing nucleon, the
dispersion relations for the invariant isovector ampli-
tudes A; of Dennery' read

ReA(s, t) =I(s—m') '+$&g(u —nz') 'Il'(1)+
p

+ — ds' I (s' —s)—'+t $1(s'—I) 'I ImA(s', t).

5 F. A. Berends, A. Donnachie, and D. L. Weaver, Nucl.
Phys. B4, 1 (1967).' Ph. Dennery, Phys. Rev. 124, 2000 (1961).
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The six amplitudes are written as one vector A; t Q is
a diagonal matrix, where the first, second, and fourth
diagonal elements are —1 and the others are 1. The
residues I'(t) are

I1 2gF1 )

1's —— gFt—"/(t ts')—,
I"3=F4= —qgF2',

I"5= ~I'2,

r6 ——0.

f't is zero, except for its 6fth element, which equals
(2g/E') LF —Ft"g. Ft" and F," are the isovector
form factors for the nucleon normalized to e and
(e/2m) (tt~' —tt„'), tt' being the anomalous magnetic
moment. F is the pion electromagnetic form factor
normalized to e.

The above pole terms and subtraction constant
I'&/(t —tt') are obtained from the generalized Born
approximation which is made gauge invariant (for a
discussion of this point, see Ref. 7).

In the calculation we express the nucleon form
factors in terms of the Sachs form factors, for which we
assume scaling and the dipole fit, i.e.,

Gteo =Gttro/t n= Gttr /t = (1+E'/o &1) ' (4)

Furthermore, we take G~„=O. For the charge and xE
coupling constant, the values e'/47r =1/137 and g'/4 =or

14.4 are used. For the pion form factor the result of
Ref. 9 is taken, i.e.,

F =(1+E'/0.31) ', (5)
which was obtained through (model-dependent) ftts to
low-energy electr oproduction data Lup to E' =0.4
( GeV/c) 'j

The absorptive part has to be taken from low-energy
electroproduction. The scarce data enforce necessarily
rough approximations. If one cuts oB the dispersion
integral at an s value equivalent to a photon lab energy
E~—1 GeV for photoproduction, then the most promi-
nent resonances are the hrst, second, and third mg
resonances. The latter two are, however, negligible in
the forward direction for E'=0 as mentioned before.
At present nothing is known on the ratio of electric,
magnetic, and scalar multipoles of the excitations
to these resonances for E'~0.' Therefore, we take the
optimistic viewpoint that in electroproduction again
one can neglect them in the forward direction,

This leaves us with the Ã* (1236). Recent experi-
mental results' indicate that the dispersion-theory

7 F. A. Berends and G. B. West, Phys. Rev. 188, 2538 (1969).
8 A. B. Clegg, in Proceedings of the Fourth International Sym-

posium on Electron and Photon Interactions at High Energies,
Liverpool, 1969, p. 123 (Daresbury Nuclear Physics Laboratory,
1969).

9 C. A. Mistretta, J. A. Appel, R. J. Budnitz, L. Carroll, J.
Chen, J. R. Dunning, Jr. , M. Goitlein, K. Hanson, D. C. Imrie,
and R. Wilson, Phys. Rev. 184, 1487 (1969).

calculations of Adler" and of Zagury" describe electro-
production reasonably well in this energy region,
although the more reined photoproduction calculations
achieve a better agreement with experiment. " We
approximated the absorptive part by the M&+', E&~3,
and St+' rnultipoles as given by these theories (the
integral now being cut oG at an equivalent photon lab
energy F~ of 800 MeV). It turns out that the Mt~s
contribution is the most important one, as expected
from photoproduction. The results for the effects of
E~+' and S&+' are ambiguous. The S~+' contribution is
the only one which can become important (up to 20o/o

of the Mt+s contribution) but only for Zagury's multi-
poles. The two theories give contributions which are
different in sign. This is due to the fact that Adler's
multipoles go through zero at the resonance, whereas
Zagury's do this between 400 and 600 MeV. Because
of these uncertainties and because the &~+3 contribution
is in any case the most important, only this multipole is
taken into account. Since at higher E' the theories seem
to underestimate the experiments, the calculations are
carried out with a magnetic dipole of the form

Mtp'(E') = (k/Ic) (1+E'/0. 71) 'Mt+'(0), (6)

where an experimentally determined form-factor de-
pendence" ' is attached to the photoproduction multi-
poles, which are taken from Ref. 14. k (ttt) is the photon
three-momentum in the m.S c.m. system in electro-
(photo-) production. For E')1 (Gev/c)' one should
use a more rapidly decreasing form factor, " e.g. , the
one suggested by Dufner and Tsai."

It may be noticed that a variation of F in the Born
term should be accompanied by an appropriate change
in the absorptive part, because pion exchange is one of
the forces for the multipoles. It is known, ""however,
that a variation of F affects mostly E'&+' and S&+' but
not 3fj+'. So when experimental data are available, one
may try to adjust F without changing the dispersion
integrals. A determination of the pion form factor in
this way, of course, is highly model dependent.

There is one other point, which should be mentioned
before presenting the results. Care has been taken to
avoid spurious kinematical singularities in the cross
section, which might be caused by the kinematical

"S.L. Adler, Ann. Phys. (N.Y.) SO, 189 (1968).
"N. Zagury, Phys. Rev. 145, 1112 (1966); 150, 1406(E)

(1966); 165, 1934(E) (1968); Nuovo Cimento S2, 506 (1967).
"H. Rollnik, in Proceedings of the Heidetberg International

Conference on Elementary Particles, edited by H. Filthuth (North-
Holland, Amsterdam, 1968), p. 400."W. W. Ash, K. Berkelman, C. A. Lichtenstein, A.
Ramanauskas, and R. H. Siemans, Phys. Letters 24B, 165
(1967).

'4F. A. Berends, A. Donnachie, and D. L. Weaver, Nucl.
Phys. 84, 54 (1967).

15 W. Bartel, B.Dudelzak, H. Krehbiel, J. McElroy, U. Meyer-
Berkhout, W. Schmidt, V. Walther, and G. Weber, Phys. Letters
28B, 148 (1968).

I'A. J. Dufner and Y. S. Tsai, Phys, Rev. 168, 1801 (1968).
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FIG. 1. Contributions of the four terms in Eq. (11) plotted for
W=3 GeV and X'=0.3 (GeV/c)'.

singularities at t=p, ' in A2 and A5. The procedure
adopted is discussed in Appendix A.

III. RESULTS

The di6erential cross section for electroproduction
can be written as"

dso/dkss~dQ, dQ, = I'r(der/dQ ),
where"

n kp 1c~ cot'(-'g, z)
Ip — 2

4~2 P L +2 1+(P L) 2/+2

a 42~A~——(1—e)-'
2~2/ L +2

where 0 and q are the polar and azimuthal angle of the
pion in the ~E c.m. system, where a coordinate system
is adopted with the xs plane the plane of k~ and k2,
with the s axis along k and the y axis along k~gk2.
The explicit s and ic dependence in (11) makes a
separation of the four terms possible.

The First and third terms arise in photoproduction
(with e=1). For p=o (s./2), one obtains the cross
section due to photons polarized parallel (perpendicular)
to the scattering plane. The second term is the term
due to the scalar photons, whereas the fourth term is
caused by the interference of scalar and transverse
photons.

In Appendix 8 these quantities are expressed in the
traditional amplitudes' F; (and through them in the
amplitudes A;) . The connection with the helicity
amplitudes fq,q,q„ is also given.

In the f range considered (I f l(6p'), At, As, and As
are most important. In the evaluation of A4 the Born
term and dispersion integral almost cancel, making A4
of the same size as As and As (a few percent of the
other amplitudes) . From Eqs. (2) and (3) it is evident
that A2 and A5 are strongly t dependent, whereas A~
is not. Moreover, the energy dependence of A& and A2
is approximately 1/s and As is constant. The form
factors of course determine the E' dependence.

In Eq. (11) all terms have a strong f dependence. A

400-

term

SLAG

with
I1+2t (k

300 DESY

& =3.0 GeV

and where 1 and 2 denote the incoming and outgoing
electron, 0,~ is the electron scattering angle in the lab
system, and 0, and 0 are the solid angles of the electron
in the lab system and of the pion in the xÃ c.m. system.
The quantity k~ is the equivalent photon lab energy,

k~= (Ws —ms) /2'. (1o)

The virtual-photon differential cross section in the
+$ c.m. system consists of the following quantities
(see, e.g. , Ref. 9), depending on W, f, and E'.
do dog dao

dQ dQ do
+e +e cos2y sm 0 T

200

(s-ms)s ~ ~d~~

s-ln )—2
gt -', e(e+1)7'f' cosy sin8 5, (11)

'~Pour-vectors are represented by a capital letter. The cor-
responding three-vector, its magnitude, and the time component
are denoted by the lowercase letter, e g., IC= (k, iko) and k=~ k~.
These quantities are taken in the xE c.m. system except when
labeled by a sufIIx L, when it denotes a lab quantity."L.

¹ Hand, Phys. Rev. 129, 1834 (1963).This is the con-
vention used in Ref. 9, but not in Ref. 13.

O. I 0.2
I

0.5 0.4

y-t, (Gev)

PIG. 2. Model (solid lines) and Born-term (dashed lines}
predictions for the diAerential cross sections for unpolarized
photons and for photons polarized perpendicular and parallel
to the scattering plane as function of (—t)'~'. The data are from
Refs. 19 and 20 as compiled in Ref. 21.
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typical example of their behavior is given in Fig. 1 for
W=3 GeV and E'=0.3 (GeV/c)'

The two photoproduction terms dor/dQ and sinso T
behave as in photoproduction; i.e., the sum of the two
(containing the pion pole) is decreasing sharply but the
difference is almost constant. This gives the typical
photoproduction behavior for photons polarized either
parallel or perpendicular to the scattering plane. For
completeness and for giving an idea of the quality of
the model for E'=0, the photoproduction result is
given in Fig. 2, where the data"" are taken from the
review by Lubelsmeyer. "From the plotted Born-term
cross section, it is seen how the dispersion-integral
correction improves the cross section, in particular
beyond $= —p'. It is likely that a Inore complete treat-
ment of the dispersion integral, including the smaller
'low-energy photoproduction multipoles, improves the
agreement with experiment as the results of Ref. 3
indicate.

The two new terms doc/dQ, and sine S in electro-
production now change the typical photoproduction
behavior (see Fig. 3) . For y= s./2 the cross section dips
in the forward direction, which is the effect of the pion
pole in doe/dQ„which vanishes when t~0 (owing to
the parity of the pion). For y=0 andy =s. the dramatic
effect of the pion pole in the scalar transverse inter-
ference term is seen.

The energy behavior of do/dQ for fixed f and E' is
approximately as 1/s, as in photoproduction. The
effect of increasing E' for fixed t and H/' is a decrease
in the cross section, although somewhat less han the
form factors would suggest. Since t;„is increasing with
E', the effect of the pion pole becomes less dramatic,

W= 2. OeV

Q =o.g
W=5 GeV

I

0.2
r

0.4
I

0.6
Fig. 4

r

0.8
K~ (G eV/c)~

1.0

+IG. 4. Variation of the forward cross section with E' for W =2
and 3 GeV and &=0.5 and 0.9.
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as is seen from the dashed curve in Fig. 3. In particular,
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creasing, in particular at higher 8' values. This is shown
for t/t/"= 2 and S'= 3 in Fig. 4, where the variation of e
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2- APPENDIX A: KINEMATICAL SINGULARITIES

O.l 0.2
I

0.5 0.4
V -t (GeV)

C. Geweniger, P. Heide, U. Kotz, R. A. Lewis, P. Schmuser,
H. J. Skronn, H. Wahl, and K. Wegener, Phys. Letters 29B,
41 (1969).

"H. Burfeindt, G. Buschhorn, C. Geweniger, P. Heide, R.
Kotthaus, M. Wahl, and K. Wegener, -as quoted-in Ref. 21."K. Lubelsmeyer, in Proceedings Fourth International Sym-
posilm on Electron and Photon Interactions at High Energies,
Liverpool, 1969 (Daresbury Nuclear Physics Laboratory, 1969),
p. 45.

FIG. 3. Model prediction for d0/dQ for @=0, m./2, and m for
8'=3 GeV and E'=0.3 (GeV/c)'. The dashed line represents the
@=0cross section for Es=0.8 (GeV/cl'.

The amplitudes A2 and A5 contain kinematical
singularities at t=p'. This can be seen from their
relation to the amplitudes 8, of Ball,"which are free of
kinematical singularities. They show up in the absorp-
tive parts of Eq. (2), as can be seen explicitly from the
expansion of ImA2, 5 in multipoles. This expansion is
usually done via the amplitudes 5, in which the T
matrix is expressed when one uses Pauli spinors:

&=I& 'jLcj6 (A1)

where a matrix notation is adopted, the vector 5' being

"R. E. Taylor, in Proceedings Fourth International Sym-
posium on Electron and Photon Interactions at High Energies,
Iiver pool, 1969 (Daresbury Nuclear Physics Laboratory, 1969),
p. 251.

ss J. S. Ball, Phys. Rev. 124, 2014 (1961).
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(Pt, $2, Fs, F4, fr, Ps), and where the matrices [ 8—'j
and tCj are, e.g. , given in Ref. 5. The 5,'s are easily
expanded in terms of multipoles. ' ' The matrix LB

—'j
has elements in its second and fifth rows which all have
a factor 1/(t —p2). Therefore, the dispersion integrals
for A& and A5 give rise to a kinematical singularity,
irrespective of how one saturates the dispersion integral.

In principle, this should not lead to any singularity in
the T matrix' where the combination A2M2+AsMs
occurs. Explicitly this reads

2iy, (p e) &&21(t—p2)As+its( —2P EA2 —E2As)Q e,

where /=2(Et+I'2) and e is the electron vertex. The
combination —8 EA &

—-', E'A 5 is exactly 8all's ampli-
tude 83, which has no kinematical singularity at
t= p'. In practice, difhculties are likely to occur when A2

and A5 are calculated separately, since the singularities
will only cancel approximately in the matrix element.
Therefore, it is safer to evaluate a dispersion integral
for A2 and 82 (i.e., I' EA2 ——,'E2As'), —which is done
here.

This procedure is equivalent to the evaluation of the
dispersion relation for A5 with an additional subtraction
constant of the form c/(t f22), wher—e c is given by

00

c(t) =—, ds' (t—p2) ImA2(s't). (A2)
E'vr (m+„)~

It should be noted that this procedure is rather
similar to the one adopted by Adler, "who takes instead
of c(t) the value c(t=tr2). However, the simple connec-
tion with a dispersion relation for 83 is then lost.

APPENDIX 3: AMPLITUDES AND
CROSS-SECTION FORMULAS

For dispersion-relation calculations the invariant
amplitudes are the most convenient, whereas for the
cross-section formulas or multipole expansions the
traditional amplitudes E, (or the helicity amplitudes
f1,„,1,r) are preferable. The former arise when the T
matrix is expanded in Dirac invariants, the latter when
Pauli invariants in the mS c.m. system are used:

2'/, ep(&+2[+g [+1)= ZA, ~(p2) ~ig(pl) X (2) +X(1))

(B1)

where the quantities M; are given by Dennery, and
where 5 is of the form

P=io"bPt+io' go ~ (kXb)F2

+io kj bF2+io. jj bF4 —io"gbpF7 itr'kbpfs, (B2)

where j=q/q, k=k/k, and b„ is obtained from the
electron vertex and photon propagator

e„=eu(k2) y„e(kt) /E' (B3)

&= -', c[ [ r, [2+
[
5:, [' (B5)

+2 Re(%1*$4+%2*F2+cos052*74)$,

S= 2c(E /—k ) rt Re@7*(gt+P4+cos0 Ps)

+Ps*(72+Fs+ cos0 F4) g,

where"

52

krak (4vrW)2

In terms of helicity amplitudes, we obtain

«r/d&. = cs (I f~, 1 ['+
I f-;—,1 '+

I f—. —,-1 I'+I f;--1 I'),

E'
«p/«. = c —,(I f-:—:o I'+

I
f-;—.*p I')k'

sin'0 2'= —c Re(f*,; t*f; 1+f*, ; t*f; .,1),

sin0 S=—&2c(E'/k')'t' Ret f~~p*( f~~ 1 f~~,)—
+f—: —:o*(f-*;—:-1—f-*.--:1)3

where the helicity amplitudes (for the virtual photon)
are

fthm
1= (2/v2) cos20 s1118 ($2+54),

f;=;1——(i/v2) sin-', 0 sin0 (52—$4),

f;; 1 (i/K2) 2 cos-,'0 (—P—.—F2) —f~;„
f*,;,= (—2/v2) 2 stn-', 0 (rt+rs) f;~r, —

fx~p= 2 cos20 (57+%2) &

f;;p=i sin-', 0 (P7—Fs).

'"- The factor V/tpr arises from the convention adopted for I'r.

by elimination of the longitudinal component, i.e.,

b„=e„(a—k/k) E„. (B4)

The four terms of Eq. (11) are expressed in F, Land
through the inverse of Eq. (A1) in A,] as follows:

«r/«-= c[ I
et I'+

I
r2 I

—2 cos0 Re(%1*%2)j+sin'8 T,
E'

«p/« = c —[ [Pr ['+[Ps ['+2cos0Re(5:7 Fs) g,


