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The quasiparticle concept introduced by Weinberg for two-particle scattering has recently been applied
to the three-body problem. It leads to an exact representation of the scattering matrix in terms of a modified
Born series, the lowest order of which yields just the widely used separable-potential approximation. To
test this method, the binding energies of three identical spinless particles interacting via Yukawa potentials,
and the elastic scattering of one particle off a bound state of the other two, are calculated in zeroth- and
first-order quasi-Born approximation. Our calculation shows that the inclusion of the first quasi-Born
correction greatly improves the zeroth-order, i.e., the separable-potential, results. Comparison is also made
with other calculations recently performed in this model.

1. INTRODUCTION

URING the last few years, the quantum-mechan-

ical three-body problem has been studied with
increasing interest. This interest originated in the
numerical success of three-body calculations with
separable potentials'® on the one hand, and in Fad-
deev’s mathematical studies® on the other hand. Both
approaches have been combined in the work of Love-
lace,” who emphasized that the results of the separable-
potential model can be rather naturally derived in the
framework of Faddeev’s theory. Incorporating, in
addition, a suitable version of Weinberg’s quasiparticle
idea, it was shown that these results represent the
zeroth order of a general iteration scheme.® From this
point of view, Faddeev’s equations represent a rather
suggestive, but neither a necessary nor even always a
convenient starting point.?

Let us recall some aspects of this method. In the
two-particle problem, Weinberg!® has shown that, by
extracting separable terms! from the potential, the
“‘quasi-Born” series (i.e., the series containing only the
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small nonseparable rest potentials) can always be made
convergent. The application of this concept to the
three-body problem® provides us with effective two-
particle Lippmann-Schwinger equations, where the
occurring “potentials’ and ‘“‘propagators” are given in
the form of convergent quasi-Born series. In particular,
the zeroth-order quasi-Born approximation (QBA)
reproduces the separable-potential model.

It is the purpose of the present paper to test this
method by numerically calculating the first QBA in a
model problem of three identical spinless particles,
interacting via Yukawa potentials. The resulting three-
body binding energies and the phase shifts for elastic
scattering (below the three-particle threshold) off an
s-wave two-particle bound state are compared with the
separable-potential approach (zeroth-order QBA) as
well as with “exact” values published recently for this
model.

The latter have been calculated by two different
methods of evaluating the Faddeev equations. One is
based on expanding the two-particle transition opera-
tors occurring in them into sums of separable expres-
sions built up from the eigenfunctions of the Lippmann-
Schwinger kernel (i.e., by Sturmian functions).’® The
other one consists in solving directly the two-dimen-
sional integral equations which are obtained after
angular-momentum decomposition of the Faddeev
equations.!415

A further independent comparison is possible for the
three-particle binding energy. Here, recent (Rayleigh-
Ritz) variational results are available.15:16

In the following we consider three different splittings
of the original two-particle interactions into separable
and nonseparable parts. In all three cases we find that
the first-order QBA yields an essential improvement
over the separable approximation (zeroth-order QBA).
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The agreement with the “exact’ results of Refs. 13-16
is nearly perfect for the binding energies, and is reason-
able in the scattering region.

Two further remarks should be added:

(i) It can be shown!? that the first QBA provides us
with rigorous upper bounds for the three-particle bind-
ing energy and with lower bounds for the elastic scat-
tering phase shifts (below the three-particle breakup
threshold).

(ii) None of the calculations of Refs. 13 and 14 is
truly exact since in both cases only the s-wave part of
the two-body interaction is taken into account,’® in
contrast to the present work. In fact, it is one of the
main advantages of the quasi-Born approach that it
automatically takes into account the effect of higher
partial-wave interactions, without substantially in-
creasing the computational effort. This point should be
of considerable importance if more complicated prob-
lems are studied.

In Sec. 2, the general formulas are summarized. Our
results are presented in Sec. 3, while details of the calcu-
lation are discussed in Appendices A and B. Finally,
in Appendix C we show that the formulas of Ref. 9
which are used in the present calculation can also be
derived from the approach of Ref. 8 based on Faddeev-
type equations.

2. FORMALISM
A Yukawa potential of unit range,

V(r)=ge/r, 2.1)

is taken in the following as the original two-particle
interaction. Starting from such a local potential, we
apply the formalism of Ref. 9, which is best suited for
this case (compare also Appendix C). Accordingly, we
have to decompose the original potential into a sepa-
rable part and a rest term:

V(p'—p)=X(p'; 2\ (2)X*(p;z*)+V'(p",p;2), (2.2)
where the form factor X is chosen as
X(p;2)=1/[p*+B(2)*], (2.3)

with p the relative momentum' and z the off-shell

Az =AY - @D - @D +TID

F1c. 1. Quasiparticle propagator, to first order in V’ (semicircles
indicate form factors, a wavy line the Yukawa potential).

17 E. O. Alt, P. Grassberger, and W. Sandhas (unpublished).
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estimated to be small in the model under consideration (Ref. 13).

19 The relative momenta are introduced as in Ref. 7 but with
conventional normalization.
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energy in the two-particle c.m. system. The functions
A (2) and B(z) will be specified later.
In operator form, Eq. (2.2) reads

V=VtV'=|X@MN\E)X(@E) | +V'. (2.4)

The decomposition (2.2) or (2.4) leads to the well-
known representation of the two-particle Green’s
function!?:?

G(2)=G'(2)+G' () | X(2)AE)X(E*) |G (2), (2.5)
with
G'(2)=Go(2) —Go(2) V' (2)G' (2) (2.6)
and?20
A(z)=—[A(2)+X () |G () [x (). (2.7)
Let us define (s is the mass of the particles)
I(2) =(X(z*) | Go(z) | X(2)) )
Tm
(2.8)

" BEBE) - (—ma)

Then the expression (2.7) becomes, to first order in
V'=V—V* (see Fig. 1),

A(z)=—{\"1z)+(X (%) |Go(2)
—Go(2)[V—=V2(2)]Go(2) [ X(2))}*
=—[N(2)+1(z)+N(2)2(2)
—X(z*)|Go(2) VGo(2) | X(2)) T (2.9)

The last term on the right-hand side of Eq. (2.9) can be
easily integrated for a Yukawa potential and a form
factor as given by Eq. (2.3), if one goes over to con-
figuration space.? Thereby we find

X(Z) | Go(z) VGo(2) | X(2))
B [1-+B(5)+ (—ms) 2]
[8@)+mal  [1426()I[142(—mz)]

It was shown in Ref. 9 (cf. also Ref. 8) that similar
techniques, as have been used for the derivation of
Eq. (2.5), can also be applied to the three-body problem.
Starting again from a decomposition (2.2) or (2.4) of
the three two-particle potentials occurring in the

T e
S TS
T ]

F16. 2. Particle-quasiparticle “‘potential,” up to first order in
V', with symmetrization due to the identity of the three particles
taken into account.

2 A misprint in Eq. (2.16) of Ref. 9 should be noted. There,
Ao has to be replaced by —A, 7L
2t J. Wright and M. Scadron, Nuovo Cimento 34, 1571 (1964).

2mimg

10)




1 QUASIPARTICLE CALCULATION FOR A THREE-BODY MODEL:

2583

HOR e >

Fic. 3. Same as Fig. 2, but
with V' reexpressed by the
Yukawa and the separable po-

—Vs.

@{mg

tential: V'=

original equations, a system of integral equations has
been derived which has the structure of coupled two-
particle Lippmann-Schwinger equations. In the present
case, the Pauli principle (incorporated by the method
of Ref. 7, Sec. 3 ¢) and the fact that only one separable
term is assumed in the decomposition (2.2) reduce this
system to a single Lippmann-Schwinger-type equation

T=V-VG,T (2.11)

for the transition operator T. All the operators in Eq.
(2.11) still act on the relative momenta q and q’ (before
and after the collision) between the elementary particle
and the bound state. According to Eq. (3.10) of Ref. 9,
we have

Go(a',9;2) =6 (q' —q)A(z—3q*/4m) .

If there exists an s-wave two-particle bound state at
the energy Bs, then A(z), defined by Eq. (2.7), has a
pole at z=B, and the operator T(z) is an off-shell
extension of the scattering amplitude describing the
elastic collision of an elementary particle with this
bound state. For calculational convenience we do not
require the normalization condition (2.11) or (2.12) of
Ref. 9 for the form factors |X(z)). Therefore, the residue
Ra of A(z) will be different from unity. Consequently,
our on-shell transition matrix T (g,cos®), with cos®
=q-q'/qq, is related to the conventionally normalized
amplitude of Ref. 9 by

T(q',9;2=3q%/4m~+By=3q'*/4m~+Bs)
=RaT(g, cos®). (2.13)

The potential V is defined in Eq. (3.11) of Ref. 9. Its
first QBA 2 used in the following calculations is depicted
in Fig. 2. By inserting the definition V'=V—V* we
arrive at a form shown in Fig. 3. The contributions of
the various graphs can be easily read off from this
figure. Let us only recall that in |X(z)), A\(2), and I(z)
the variable z has to be replaced” by the two-particle

(2.12)

22 As already mentioned, the lowest-order term of V (zeroth-
order QBA) equals the expressmn derived in the separable-
potential model.

energy z—3q2/4m. With this in mind, the contribution
of graph (a) of Fig. 3 is [see Fig. 4(a)]

(q+q')?

2m

3q’2
V.(q',q;2) = X(q+2q z— —-)(——+

2m
q2 —1 3q2
+— —z) X(q'-!—%q; z— ——~) (2.14)
2m 4m

and, for instance, the one of graph (e) of Fig. 3 [see
Fig. 4(b)]is

3q'2
e(q a; Z) d*k X<k+2q 2= —*)
4m

q° K tg)t \
X(—-—— +— —z)
2m  2m 2m
G R
XV barta)(— -+ ~:)
m 2m  2m

3q?
xx(k-l—%q; z— 4—) . (2.15)

.

Similar expressions are obtained for the other graphs of
Fig. 3, which are, in fact, less complicated than graph
(e). Fortunately, for a Yukawa, potential and for the
simple analytic form, Eq. (2.3), of the form factor,

-§ g
-§-
- g
(a)
F16. 4. Two of the terms on
the right-hand side of Fig. 3. sk .
-4 -§- g
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the integrals in Eq. (2.15) and in the expressions for
V3, V., and V4 can be done analytically. The details are
given in Appendix A.
Up to now we have not yet specified the functions
B(2) and A(z). Actually, we take three different choices.
(1) The form most widely used in practical calcu-
lations is the Yamaguchi® ansatz

X(p)=1/(p*+6, (2.16)

with 8 and N [the coupling strength, see Eq. (2.4)]
taken as constants independent of z. These two param-
eters are then determined from two characteristic
quantities of the two-body system [with the potential
(2.1)]. We choose the binding energy B, and the
scattering length a@,. They are connected with A and
B8 by

A =B(a+B)/x?,

a;=2 (a+‘8)2/048 (a+2ﬁ) )

2.17)
(2.18)
with

a=(m|By|)12.

(i1) We furthermore study Weinberg’s ideal choice®
which consists in taking for |X(z)) the eigenvector of
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the two-particle Lippmann-Schwinger kernel VG,(z)
with the largest eigenvalue. The function A(z) would
then be obtained by requiring

V' (2)Go(2) [ X(2))
= {V =X E@)X(E*) | }Go(2) | X(2)) =0.

As a matter of fact, the exact Lippmann-Schwinger
eigenfunctions have no simple analytic representation.
But it can be shown?! that the ansatz (2.3), with g8
depending on the energy, is a very good approximation
for the s-wave function. The optimal choices for the
functions 3(z) and A(z) may then be determined from
variational principles. Details of this are given in
Appendix B. The results are

B(z) =3+ (—mayis
+3[9/4+5 (—ma) i —ma ],

Mz)=(g/2n*)[28(x) —1 .

(iii) As a last choice, we consider again a Yamaguchi
ansatz (2.3) but now with the two parameters fixed by
enforcing the (nearly) correct binding energy B, and
the residue at the bound-state pole as obtained by

(2.19)

(2.20)
(2.21)

25 3

\ .
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i

Fi6. 5. Binding energies versus Yukawa coupling constant g. Separable parts according to choices (i) and (iii). Two-particle binding
energy: double-dot-dashed line. Three-particle binding energy in zeroth-order QBA [choice (i): dashed line; choice (iii): 5. Three-
particle binding energy in first-order QBA [choice (i) : solid line; choice (iii) : 0. Lower bound on the three-particle binding energy:
dot-dashed line. Three-particle binding energies obtained in Ref. 16 by a Rayleigh-Ritz variational calculation: A.

%Y., Yamaguchi, Phys. Rev. 95, 1628 (1954).
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Fi1G. 6. Same as Fig. 5, but with separable choice (ii) instead of (i).

choice (ii):
B=3+%a+3(9/4+5a+a2)2,
A= (g/27%) (28—1)%.

(2.22)
(2.23)

3. SOLUTION AND RESULTS

To solve the integral equation, we had to project out
the partial waves. For V, (and, of course, for V; and
V,) this was worked out analytically, whereas for
Vi, V., Vg, and V, it was done on the computer. The
loop in V;, was integrated on the computer too, but only
after (analytical) partial-wave projection, which re-
duced it to a one-dimensional integral.

For the bound state as well as for scattering energies
our final Lippmann-Schwinger equations are one-
dimensional integral equations. The bound-state equa-
tion for total angular momentum J =0,

®(q) =—Go(g; 2) / dq'qN="(q,¢'; 2)®(¢"), (3.1)

was solved directly by replacing the integral by a
finite sum. For elastic scattering, the Lippmann-
Schwinger equation was first transformed to a non-
singular integral equation by use of the method of
Kowalski and Noyes* and then replaced by a matrix

# K. L. Kowalski, Phys. Rev. Letters 15, 798 (1965); H. P.
Noyes, 2bid. 15, 538 (1965)

equation. Gaussian integration techniques were used
throughout.

Three-body binding energies®® obtained with the
choices (i)-(iii), as discussed in Sec. 2, are shown in
Figs. 5 and 6. There, we also exhibit the zeroth-order
QBA, the variational values of Ref. 16, and a rigorous
lower bound?® on the true three-particle binding
energy Bs.

Here we have to make the following remarks:

(a) For case (i), the rigorous lower bound is violated
in zeroth-order QBA for |g|>2.88. Indeed, both the
zeroth- and the first-order binding energies become
singular for |g|~3.5. This can easily be understood:
From Eq. (2.18) it follows that for a separable potential
of the Yamaguchi type a;2 1/a always. This condition
is, however, violated by a Yukawa potential for
|g| Z3.5. Thus for these coupling strengths, a separable
fit to the scattering lengths becomes impossible. This
does not concern the choices (ii) and (iii).

(b) As will be shown elsewhere,” the first QBA
represents a rigorous upper bound on the exact value of
B;. From this follows by inspection of Figs. 5 and 6 that
for 1.683< |g| $2.8, the choices (i) and (iii) seem to be
superior to (ii). For |g|> 2.8, choice (iii) still seems to
be better than (ii).

% In the calculations, we set the mass m=1.

( 25172) L. Hall and H. R. Post, Proc. Phys. Soc. (London) 90, 381
196
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¢ (arbitrary units)

01 2 3 5 10 15 20 q

F16. 7. “Wave function” ¢ (g), defined by Eq. (3.1), in the various approximations (for g=—2.5): T, choice (i) in zeroth-order QBA;
I’, choice (i) in first-order QBA; I1, choice (ii) in zeroth-order QBA ; IT’, choice (ii) in first-order QBA. Choice (iii) yields a wave function
similar to the one of choice (i).

qcotd
g=2.373
*
Q51 +//
* -
-~
0 « -~
+
ﬂ//
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- .
03 2 g
~
/ //
~
»
—~
Ww 008 009— -G on o

Fi1c. 8. Plot of g coté for s waves versus ¢* for a Yukawa coupling constant g= —2.373. The curves are the zeroth-order QBA [+,
choice (i); dashed line, choice (ii); 4, choice (iii)] and the first-order QBA [0, choice (i); solid line, choice (ii); A, choice (iii)].
“Exact” results of Ref. 13 (obtained with four separable terms) are also shown: double-dot-dashed line.
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Fic. 9. Differential cross section in the c.m. system for elastic scattering (¢2=0.06) for Yukawa coupling constant g=—2.373 in
zeroth-order QBA [, choice (i) ; dashed line, choice (ii)] and in first-order QBA [0, choice (i) ; solid line, choice (ii)].

(c) All integrations were performed with a 10-point eigenvalue of G¢V was estimated to be smaller than
mesh. Their accuracy was tested both by varying the 19;. Whereas this situation remained the same for the
mapping of the momentum interval (0,0) onto the zeroth-order QBA, and for the first QBA in the case of
range of integration and by varying the number of mesh = choices (i) and (iii) even for |g| >4, the results for the
points. In this way for |g| <3, the error in the largest first QBA in the case of choice (ii) became rather
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inexact. The reason for this behavior is that for choice
(ii), V7=9(¢,q; 2) is not a positive definite function for
2<0, in contrast to its zeroth-order part V, and to
choices (i) and (iii). Indeed, the ‘‘wave function”
¢(q) [Eq. (3.1)] has a zero for choice (ii) which is not
present for the choices (i) and (iii), and the zeroth-order
QBA.

These various ‘“wave functions” are shown in Fig. 7,
for g=—2.5. We finally mention that the main correc-
tion to the zeroth-order QBA, V,, comes from the fourth
term of the right-hand side of Fig. 2. All other terms of
that figure are much less important.

For scattering energies, calculations were performed
only in the energy region below the three-particle
threshold. In Fig. 8, ¢ cotd of the s-wave phase shifts is
depicted in zeroth- and first-order QBA for all three
separable choices. The Yukawa coupling constant is
fixed at a value g=—2.373. This allows comparison
with the corresponding result of Ball and Wong® (we
show their curve #,=4). Differential cross sections for
the same value of g and relative momentum ¢2=0.06
are plotted in Fig. 9.

The numerical errors of the 10-point Gaussian inte-
gration are estimated from variation of the integration
mesh to be at most about 0.003 [for choice (ii) the
accuracy is again worse than for (i) and (iii)]. By
comparison with Ball and Wong, we find that our
results are not as good as in the bound-state region,
although the improvement over the separable approxi-
mation (zeroth-order QBA) is still remarkable. The
differences between all three choices nearly vanish in
first-order QBA.

We conclude that the quasi-Born approximation
scheme represents a practical tool for three-body
calculations for local potentials.
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APPENDIX A

The integral in Eq. (2.15) and the similar expressions
for Figs. 3(b)-3(d) are special cases of an integral given
in the literature,?”

Il(é; P1,m1; p27772)
_/‘ d3k
Lk —po)?+ 01 (k —ps) >+ ] [k2+£2]
L p+(p*—0)!?
= 1 [ . (Al
(p*—a)'/? " p—(pz—tf)”z] (A1)

7 R. R. Lewis, Phys. Rev. 102, 537 (1956).
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where
p=EL(P1—D2) 2+ (m+n2)2]+n2[ 24+ pr>+m2]
+mlE+p+n?] (A2)

and
o=[(p1—p2)*+(m+n2)2][p:*+ (m+£)%]
X[p22+(E+n2)7].

In detail, the contributions of Figs. 3(b), 3(c), and 3(e)
to the potential V are

(A3)

V(.95 2)
LA ), (A4)
= 1 M;p2762;p27x2 )
(p1*+%:%) (p1>+B12)
Vc(q,1q3 Z) =Vb(q7q,; Z) ’ (AS)
and
V(d',q;2) o’ [Z1(k; P1,1; Payk)
Ad,q;2)= LL1(u5 P1,%1; P2, %2
(B12—21%) (B22—x22)
—I1(i; Pr,%1; Po,B2) —I1(1; P1,B1; Pa,¥2)
F11(i; P1,B1; P2,B2) 1. (AG)
Here
pi=q+3q’, p2=q'+3q,
=@ =), 2= (g —ma)i,
and

B1=B(z—3q"%/4m), B2=PB(z—3q%/4m).
APPENDIX B

The variational principle is the one described in
Refs. 28 and 21. In Ref. 28 we have shown that

(=) | Gol=) | X(2))
KE) | V1X()

becomes stationary if [X(z)) is an eigenfunction of the
Lippmann-Schwinger kernel VG,(z). The largest eigen-
value and the corresponding eigenfunctions are then
found by extremizing [7(z)].

If we insert our ansatz (2.3) for X(p; z), the numerator
of Eq. (B1) becomes

(=) |Go(a) [X(2)) =

[n(z)]= (B1)

wm

B)(B()+(—mz)1zy2’

while the denominator is most easily calculated in
configuration space, yielding

KE) V1 x(2) =

(B2)

22

g{28(z) —1}*
mg{28(z) —1}*

2B(){B()+(—mz) 1

® E. O. Alt, P. Grassherger, and W. Sandhas, Phys. Rev. C 1,

and, therefore,

[n(z)]=

(B3)

85 (1969).
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The latter becomes an extremum if B(z) is given by
Eq. (2.20). The “coupling strength” \(2) is obtained
from Eq. (2.19):

{V—=IX@M ()X [}Go(2) [X(2))=0.  (B4)

Using VGo(2) | X(2))=~[5(2)]|X(2)), which is fulfilled
with sufficient accuracy, we thus obtain

N (@) =(X(z%) [ V[X(2)),
leading directly to Eq. (2.21).

(BS)

APPENDIX C

In Ref. 9 it is shown that by splitting the two-particle
interactions into separable terms and a nonseparable
rest, the three-body resolvent equation can be reduced
to exact effective two-particle equations. Previously,
an analogous technique, making use of a splitting of the
two-particle transition operators 7', into separable
parts and a nonseparable remainder, has been applied
to Faddeev-type equations.® With respect to this
approach, the one of Ref. 9 has the advantage that it
provides us directly with a particularly simple form of
the occurring potentials. To clarify the relation between
both formalisms, we show that by a special splitting of
T, the simple expression for the “potentials’ obtained
in Ref. 9 can also be derived from the results of the
Faddeev approach.®

In Eq. (2.11) of Ref. 8, we defined transition opera-
tors U, connected with the full Green’s function by

G=08Ga—GpUgaGa- (&)
The Ug, fulfill the Faddeev-type equations
Uga=—(1—08)Gs 1= 2, TyGoUya. (C2)
v=B
Splitting 7', according to [Eq. (4.5) of Ref. 8]
T,= —TZ; 17,7) Ay rsCrss [+ T (C3)

we found the multichannel Lippmann-Schwinger equa-
tions of Ref. 8,

Tﬂn,am zvﬂn,vzm_ Z Vﬂn,'yrA'y,rsT'ys,am

v.T,S8

(C4)
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for the transition amplitudes

Tﬁn.am=<ﬁn]G0UﬁaGUI‘xm> . (Cs)
The “potentials” are given by
Vﬁn,am= <ﬂ7’l lGoUﬁa,Golam> 5 (C6)

where Usg,’ fulfills Eq. (C2) with T, replaced by T,/ .
If we now start from a decomposition of the two-
particle interaction as in Eq. (2.4) of Ref. 9,

Vy =Z I X7r>)\vr<xvr l + Vvl ’ (C7)

we find, via the quasiparticle method,!® the explicit
expression

T7= —Z (1_T7’G0> ]X7r>

XAv,rs<x78| (1 _G0T7,)+T7, ) (C8)
which is of the form (C3). Here we have
(Av—l)rs = 5rs)\7_1’— <Xw \ GO_GoTv,GO { X7s> ’ (C9)

that is, the quasiparticle propagator, Eq. (2.9) of Ref. 9
T, is defined as T, but with V., replaced by V,/ .
Consequently, we have, in analogy to Eq. (C1),

G =0pGe’ —Gg'Upd G’ (C10)
with

GE)=Ht2 Vy =2

and
G (&) =Ho+V—2).

Inserting in Eq. (C6) the |X,,) following from com-
parison of Eq. (C3) with Eq. (C8), we have (with
G7I=G0"G0T7IGo)
VBn,am= (Xﬁn ! GBIUﬁaIGaI I szm)
=—(Xga| G’ — 36aGa’ | Xam) - (C11)

This is, indeed, the form of the potentials derived in
Ref. 9.



