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Sreit-Wigner formula should not be added. But from
our numerical results, we can say that to add the two
kinds of anticlockwise loops produces no difhculty
since the partial-wave cross sections obtained from the
Regge-pole exchanges exhibit essentially the character-
istic of nonresonant behavior except in the unitarity-
violating threshold region as is shown in Figs. 7—10
and 14. In this connection we note that the variation
of the Argand locus with respect to energy obtained
from the Regge-pole exchanges is extremely weak

compared to that of a phenomenological phase-shift
analysis. This fact means that even when we add the
anticlockwise loop obtained from Regge-pole exchanges
to that of the Breit-Wigner amplitude, it produces only
a small modification in the latter loop.
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We numerically estimate the expectation value between baryons of the equal-time commutator PJ';, 1,'g
of U(3) SU(3) currents on the gluon model by using a symmetry-breaking theory based on Regge-pole
dominance. The result is in excellent agreement with the electroproduction data.

'HE scaling behavior predicted by Bjorken' for
deep-inelastic electron and neutrino scattering

from hadrons has received considerable experimental
support. ' 4 One of the most interesting consequences
of scaling is the Callan-Gross' relation between certain
integrals of the electroproduction structure functions
and the infinite-momentum limit of the commutator

I J;(x),J,(0))8 (xo) of electromagnetic currents. The
relation therefore enables one to determine which models
for this commutator are in agreement with experiment.
The recent experimental results' ' are in agreement
with models in which the constituents of J„have spin

& and seem to be in disagreement with other models.
We therefore propose in this paper to take a spin--,'
model seriously and try to evaluate numerically matrix
elements of current corrunutators by making some
reasonable assumptions about the way in which the
s+ baryon octet deviates from an exactly SU(3)-
symmetric multiplet. We find the resulting (generalized)
Callan-Gross relation to be in excellent agreement with
experiment.

The model we shall study is the so-called gluon model
with Hamiltonian density'

X

=lit�(

—itr V+pM+gpy&B„)ifr+KH,

where iver is a spin-sIquark field, 8„is a neutral vector
meson, 3C~ is the Hamiltonian of 8„,and'

M =cree'+crsks

is the quark mass term. Thus the chiral SU(3)SSU(3)
symmetry breaking is due entirely to the explicit quark
mass term. It is the very smooth nature of this symme-
try-breaking mechanism which will enable us to proceed.

It is perhaps appropriate to mention that this model
has already been shown to have very desirable features
in problems connected with radiative corrections to
weak interactions' and nonleptonic weak interactions. '

The U(3) vector currents are given in the gluon
model by J„=,'if'„XQ, II=0, .-. . , 8.

We can write, in general, that
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where
~ p) is a 22+ baryon physical single-particle state

and a spin average is understood. In the gluon model,
we find

dabc&p
~

pU.+.gap
~ p),—Eabp.p+Rabfi . . (5)

d"'(P
I 4 U.~ ~V

I P) =E"P.P. R"g—", (6)

and we learn that E and E are constants, independ-
ent of p' It further fo~llows from (5) that Ea' and R'b
have the forms

ga b —da bc+ c
)

Ifp ah dabcgc
) (7)

for some constants E' and R'. The constants E' and
R' may, of course, depend on the particular state

~ p)
in question.

We write the absorptive part of the forward spin-
averaged current-baryon scattering amplitude as

where U;=— i8;+—gJ3;. Since the left-hand side is a
secon. d-rank tensor, by I.orentz covariance we can
write

where Sa=-2'lt X'iP is a scalar algebraic nonet and M' is a
SU(3) scalar to second order in symmetry breaking. "
We now label the state ~P) with the SU(3) index e
which runs over the octet (A', ,Z,A.) and use a subscript
e to label the expectation value of the corresponding
operator in the state e. Thus (13) becomes

E a —d8abS b/$8 (~
—0) (16)

ned"S, +nad ' S, =E;(M,'+n8S ') —4R, . (15)

This is our master equation which we want to use to
evaluate E;for substitution in (10).Note that although
S,b, E,b, and R,b are all algebraic nonets in the sense
that they are matrix elements of operators which
commute like nonets with the charges J'dbms Je'(x),
because of synunetry breaking we cannot a priori
assume that their matrix elements behave like octets
when the labels b and e are varied,

For purposes of orientation, we first consider the
free field limit g=0. Then n8 is a free parameter so
that (15) gives

(P,/m) (22r) ' d4g e' "&P
~ LJ„(g),J„b(0)7 ~ P)

=P.P.~2"(q', v)+ (g)

where v=q P. In the scaling limit (v b ao, o~= —q'/v
fixed), we define

Furthermore, since the baryon octet states are simply
direct products of three free quark. states, the matrix
elements S,b at rest can be obtained by simple quark
counting. Thus, for the proton e=P we obtain Ep'=+28,
Evb=-'„and Eva=g-'„and substitution into (11) gives

P ab(~) —hmvtU ab(q2 v) d~ P2"(~) =
2 (g =0). (17)

The sum rule which follows from (4)—(9) is then

2

de Pab(~) —dabcEc

0

For electron scattering, a= b=Q= L(3)+ (-'8)'*(8)7 and
(10) becomes

2

d»o~(e~) =-'d ~i'E'=-'E~+(-')"'E8 (11)

and for neutrino or antineutrino scattering (with
cos28, = 1), it becomes

Our problem now is to estimate numerically the E'.
To this end, we put (7) into (6) and take the trace in
p, v and then use the field equations which follow from
(1) to obtain

l &P I A~, &')0
I P) =E ' —4R, (13)

where m'=P' is the mass of the state ~p). Now,
effectively,

(14)m'=
&p ~

u'yn, s8~ p),

IW= d~ P WW(~) —rdWWcEc

0 = (2/~3)E'+(V'8)E' (12)

We thus reproduce the well-known free field result that

2

de~ p2@@=-' Z Q'=-'
I

Experimentally, ' (17) is about 8 and this fact has led
some people" to abandon the simpte three-quark
structure for baryons. We shall see below, however,
that the reduction of (17) to -', can easily be accounted
for by solving (14) using our knowledge of symmetry
breaking in the assumed real world with g@0.

In order to use Eq. (15), we must determine how S, ,
E, , and R, deviate from exact U(3) nonets to order
n8'. We emphasize that, although we shall neglect
terms of order ns', we do not assume that coefficients
of 1 and of n8 can be equated in (15). We know empir-
ically, from the success of mass-splitting calculations, "
that n8S. is a good octet. These calculations give for S
a D-to-P ratio D/P = —0.31&0.02. To study E;
and E, , however, we require an explicit theory of

"By an adaptation of an argument by G. Preparata and
W. Weisberger (Ref. 8), 0„„('&,the energy-momentum tensor for
ns ——0, is seen to be nonrenormalized in first order in a8."R. P. Feynman (unpublished); S. D. Drell, D, Levy, and
'7. M. Van, Phys. Rev. Letters 22, 744 (1969); J. D. Bjorken
and E. A. Paschos, Phys. Rev. 185, 1975 (1969).

'2 See, for example, K. Kikkawa, Progr. Theoret. Phps. (Kpotol
35, No, g (1966).
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symmetry breaking. We propose to make use of the
relation

B(PIO(0) IP) = —~s ~'x(PIT(ss(x)O&, &(0)) IP), (18)

which follows from (1) and (2). Here BO—=nsO&r& is the
change of the local operator 0 from its value 0~0) in
the absence of symmetry breaking to its value to first
order in symmetry breaking, and T denotes the usual
T product but with the Born term removed. "Note
that, because we use physical states, we cannot con-
clude, e.g. , from 0=0 that 0(0) =0(&)——0 but only that
O&p&+nsOit&~0. Thus

is in agreement with what one would conclude from
asymptotic symmetry.

T&, on the other hand, requires a subtraction, and
so we shall use some known properties of the assumed
dominant Regge subtraction term to learn about
BRp. The trace of (18) now gives

4BR—'= —ios d x(pI T(S'(x)Oip&'„p)
I p), (23)

and since O(0) „&is a scalar, to order o.s, bE can only
involve an SU(3) singlet, symmetric octet, and 27-piet. '4

The same is true for 8S,"and so we can write

B(p IO(o) I p) = T(p,0), (19) rrpd —PBSP 4BR~—=rrsdsP T +apR&s7&P, (24)

is a spin-averaged forward scattering amplitude with
its Born terms removed.

The invariant amplitudes T,(q, v) comprising T(q,p)
will be assumed to satisfy fixed-q' dispersion relations
in v with a number of subtractions specified by the
Regge behavior of ImT;. The subtraction terms will

have the algebraic structure of the leading Regge terms.
We further assume that the dispersive integral itself,
at least for v=q'=0, has the same algebraic structure
as the Regge (subtraction) term, as is suggested by
finite energy sum rules. In particular, unsubtracted
dispersion integrals will be comparatively small. This
final assumption seems quite reasonable, in view of the
fact that in (20) the Born terms are explicitly removed
and the decuplet resonances are strongly suppressed

by phase space because S' is a Lorentz scalar.
We now apply our symmetry-breaking theory to

Eq. (6). We write (6) as

(21)&pIO;I p) =E p.p Rg"—
where 0 „„=&PV„y„X'&Pand application of (18) gives

B(plO.„„Ip) = —i s d'x(pl T(S'(x)O(,& „,) I p)

=BE p„p,p„BR.g„„.(22)—
Now the scattering amplitude Ts'(&) corresponding to
BE' satisfies ImTs (&) v~ ', and the one Ti (v) corre-

sponding to hR satisfies ImTi'(&) v ' for v~ po,

where n is the t =0 intercept of the leading contributing
Regge trajectory. By charge-conjugation invariance,
the relevant trajectories comprise the tensor nonet

(fA,K**,f') with n&-', . Thus Tp satisfies an unsub-

tracted dispersion relation, so that, in accordance with
our remarks above, we shall neglect 5E'. This conclusion

"The T product is involved in (15) because mass insertions are
not made in the external legs which are already the exact physical
states.

where

T(p,q) = i,—d'x e"*(p
I
T(S'(x)0&p& (0)) I p) (20)

where T is an octet and R isr& is the appropriate 27-piet
operator. The first term on the right in (24) corresponds
to the tensor nonet Regge exchange and so (pl T'I p)
has the ratio d/f ~ —(0.5 p.t~' )

Because of f f' in—ixing, however, and because nr
whereas or &0 (so that only the f-exchange contribu-
tion requires a subtraction), the f and d for a=8
exchange are reduced by —', = cos'8 compared with those
for a=3. Thus we have T =q,T, where T is a good
octet and ps ——3p3. We note finally that because of the
tensor meson nonet syirunetry, (24) should be valid
for a=0, . . ., 8.

The second term in (24) must correspond to con-
tinuum intermediate states (or Regge cuts) and so has
an effective o.(0. We therefore must consistently have
its contribution rather smaller than the first terms,
although possibly larger than the neglected bE with
G 2~ 3

2'
We incorporate these symmetry-breaking conclusions

into (15) and obtain

d' '(S,'-r)sT, ') E, S '+E. +R (sr&„(25)

where S, T, E, and E are all good nonets and E~27~'

is a good 27-piet to order ns'. We associate with each
octet an F and D as follows: S~ (F,D), T~ (f,d),
E~ (n,P), K ~ (y,B). The tensor Rip7& can be charac-
terized by a single parameter A.

Our next step is to vary e through the baryon octet.
For u= 3, we obtain three independent equations
which can be taken as

(26)

3nF PD = —(10/3)A, — (27)

and an uninteresting relation which simply fixes S —P'.
We see that E and S have the same D/F ratio. "For

' The suppression of a 10+10 contribution follows fi'om an
assumed scalar meson, dominance and Bose symmetry generalized
to SU(3)."A 10+20contribution is here rigorously absent.

'P V. Barger and M. Olsson, Phys. Rev. 146, 1080 (1966).
"The light-cone behavior assumed in R. Brandt, Phys. Rev.

Letters 23, 1260 (1969), is therefore consistent with this modeL
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&=8, we obtain four independent equations which,
using (26) and (27), can be taken as

2D—-', d =3nIi,

2F ', f=—4-uD,

(28)

(29)

and two uninteresting relations which simply 6x p and b.

Taking R=D/F= —
2 in (26) gives P= —su, and

taking r= d/f=——12in (28) and (29) then gives

We now consider the experimental implication of
these values. From (11) we obtain for e=F=proton

L~&=-', (6u+2p)+(22)2~'E' 0.31. (33)

This is in excellent agreement with the experimental'
value of 0.32. Of course, because of the uncertainties
in R and r and because we are working to only first
order in u2, our theoretical prediction (33) should be
uncertain by 15%. For e=E= neutron, we obtain

u = 1/7, P = —1/21. (3o) L~& = —4p/9+ (22)2~2E' 0.24. (34)

These give A/F= —9u/10 in (27) so that our con-
sistency condition that A be small is satished. We note
that small changes 8r in r give u= 1/7+br.

The a=0 equation gives L~,r =
2 (6u —2p)+2 (2) I'E'~0.98. (35)

Finally, from (12), for neutrino or antineutrino scatter-
ing from protons or neutrons, we predict

(Q2) (S,'—2T.') =E'S.' (31)

and X'=0. This equation is, however, extremely
sensitive to r, giving very di6erent values for E' for
r&R and for r =R, independently of the magnitude of
the symmetry breaking. Our procedure will therefore
be to choose the value of E' which minimizes the
differences in the left- and right-hand sides of (31) as e

varies. A more physical procedure, which gives essen-
tially the same result, is to evaluate E' in the limit
r=R. In this limit, (28) and (29) require that u, and
hence P and A, vanish. The smallness of these param-
eters thus suggests the reliability of this procedure.
We now learn from (28) and (29) that T'= 2S so that
we obtain from (31) the result

To compare (35) with experiment, we note that in
our model

Eo 1+2 (32)

The above minimization procedure gives this same
result to within 5%.

3X Q

d(o F2(cv), (36)

where o=2(o„p+o„z),E=neutrino energy —& m, and

F& is the appropriate structure function. The quoted
experimental value of o is (0.6&0.2)G2ME/2r, whereas

(35) and (36) give (0.33)G2ME/2r. We consider this
agreement to be satisfactory because the quoted
experimental error requires the use of small-E points
and because of the relatively small values of q' and p

for the observed neutrino events.
We conclude that the experimental values of the

integrals (10) are in agreement with the theoretical
values obtained from the gluon model and our Regge
theory of symmetry breaking. This gives further
support to this model and suggests its relevance to
understanding the structure of hadrons.


