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Argand Diagrams, Cross-Section Behavior, and Regge Poles
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Department of Physics, Louisiana State Unioersity, Baton Rouge, Louisiana 70Z03
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Schmid's problem on the interpretation of the anticlockwise Argand diagram obtained from Regge-pole
exchanges as the direct-channel resonance is studied. It is shown in the idealized models that the anti-
clockwise Argand diagram alone cannot guarantee the existence of a resonance, and that it is absolutely
necessary to compute the cross section in order to establish the existence of a resonance. The partial-wave
projection of the Regge-pole exchanges in pion-nucleon scattering is performed. The Argand diagram,
real part of phase shift, absorption factor, partial-wave total cross section O.t'", elastic cross section 0-",
k'a. ', and k'0-' are computed. It is found that all ot and o' have no cross-section peak at all, despite the
existence of the anticlockwise Argand loops in certain partial waves. They show only the monotonically
decreasing behavior characteristic of the Regge-pole model as energy increases, except in the unitarity-
violating low-energy region. The above facts indicate that the variation of the anticlockwise Argand loop
with respect to energy is too weak to produce a cross-section peak by overcoming the variation of the
barrier factor 1/h' in o"' and o".It is concluded that Schmid's interpretation is incorrect. Several physical
implications of this result are discussed.

I. INTRODUCTION

A RESONANCE, as described by a Breit-Wigner
one-level formula, draws an anticlockwise Argand

loop as a function of energy. From the resemblance of
the shapes of the Argand diagrams, Schmid' proposed
that the anticlockwise Argand loop obtained by the
partial-wave projection of Regge-pole exchanges should
be interpreted as a direct-channel resonance. From this,
Schmid claimed that the so-called duality principle'
actually holds between Regge-pole exchanges in crossed
channels and direct-channel resonances.

Since then a number of papers' " on this problem
have appeared. Although all papers confirm the
existence of such anticlockwise Argand loops as claimed
by Schmid, it seems that no one has been able to give
a definite answer on whether the anticlockwise Argand
loops obtained from the partial-wave projection of
Regge-pole exchanges really indicate the existence of
resonances or not. Thus, one of the bases of the duality
concept is still questionable.

On the other hand, Lichtenb erg, Newton, and
Predazzi" have recently shown that the Veneziano

' C. Schmid, Phys. Rev. Letters 20, 689 (1968).
'R. Dolen, D. Horn, and C. Schrnid, Phys. Rev. 166, 1779

(1968).
'H. R. Rubinstein, A. Schwimmer, G. Veneziano, and M. A.

Virasoro, Phys. Rev. Letters 21, 491 (1968).
4 M. Kugler, Phys. Rev. 180, 1538 (1969};Phys. Rev. L'etters

21, 570 (1968).' Y. Kohsaka, O. Miyamura, F. Takagi, and K. Itabashi,
Nuovo Cimento Letters 1, 404 (1969).

'P. D. B. Collins, R. C. Johnson, and E. J. Squires, Phys.
Letters 2/B, 23 (1968}.

7 V. A. Alessandrini and E. J. Squires, Phys. Letters 27B, 300
(1968).

8V. A. Alessandrini, P. G. O. Freund, R. Oehme, and E. J.
Squires, Phys. Letters 278, 456 (1968).

9 V. A. Alessandrini, D. Amati, and E. J. Squires, Phys. Letters
27B, 463 (1968).

"N. R. Lipshutz, Phys. Rev. 181, 1972 (1969)."C. B. Chiu and A. Kotanski, Nucl. Phys. B7, 615 (1968)."D. B. Lichtenberg, R. G. Newton, and E. Predazzi, Phys.
Rev. Letters 22, 1215 (1969). See also R. Jengo, Phys. Letters
28B, 606 (1969); R. W. Childers, Phys. Rev. Letters 23, 357
(1969).

formula, which had been supposed to satisfy the
duality principle, is actually equivalent to the inter-
ference model; and they cast serious doubt on the
existence of a scattering amplitude which satisfies the
duality principle along with the other fundamental
requirements, such as crossing symmetry and Regge
behavior.

In view of these circumstances, it is important to
clarify whether Schmid's interpretation is correct or not.

In this paper, from the general behavior of the
scattering amplitude such as that of the real part of
the phase shift, the absorption factor, and the cross
section, we will show that any type of cross-section
behavior, such as dip, Qat, resonance, and others, can
produce the anticlockwise Argand loops depending on
the details of the behavior of the real part of the phase
shift and the absorption factor. That is, the anticlock-
wise Argand loop alone cannot guarantee the existence
of a resonance. Therefore, it is absolutely necessary to
compute the partial-wave cross section and to detect
the cross-section peak in order to justify Schmid's
interpretation. All papers' ' " so far published on this
problem produced the anticlockwise Argand loops but
failed to test the cross-section behavior. Therefore, it is
naturally understood why no definite answer on this
problem has yet been obtained.

Bearing in mind the above remarks, we perform the
partial-wave projection of Regge-pole exchanges in
pion-nucleon scattering and show that several partial-
wave amplitudes produce anticlockwise Argand loops
similar to that of a Breit-Wigner one-level formula,
but that the cross sections of all partial-wave amplitudes
give neither a resonancelike peak nor dip but only the
smooth behavior characteristic of the Regge-pole
model. From this fact, it is concluded that Schmid's
interpretation of the anticlockwise Argand loops, ob-
tained from partial-wave projection of the Regge-pole
exchanges as resonances, is wrong, and also that the
statement of Collins et al. ' that the resonance partial-
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In Sec. III, we perform the partial-wave projection of
Regge-pole exchanges for pion-nucleon scattering.
Several partial-wave amplitudes which draw anti-
clockwise Argand loops are found. We show the Argand
diagrams, the real parts of the phase shifts, the absorp-
tion factors, o'" 0" k'0-'", and k'a-" for these partial-
wave amplitudes and explain why these partial-wave
amplitudes should not be interpreted as direct-channel
resonances.

In Sec. IV, we discuss several physical implications of
our conclusion.
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II. ARGAND DIAGRAMS, PHASE SHIFTS,

AND CROSS SECTIONS

In this section, we discuss in the idealized models
the general relationship among the real part of the
phase shift, the absorption factor, and the cross section.
The t'th partial-wave amplitude with total spin J for a
definite isotopic eigenstate is defined as

g8
f~&(W) =

2ik

0.0

FrG. 1. Example of typical behavior of the b„($'), g(W), and
k'Og~(W) associated with the anticlockwise Argand loop (a) in
which 8„(W&)=-,s and Pds„(W)/dW7s =w, )0. (i), (ii), and (iii)
in (b), (c), and (d) correspond to a peak, a Oat behavior, and a
dip of k'oq&t '(W) Pk'oqp'(W)7 according to Eqs. (22a), (22b),
and (22c) P(24a), (24b), and (24c)7, respectively.

wave amplitudes obtained as above should be canceled
by the other partial-wave amplitudes, so as to give a
smooth behavior to the total Regge-pole exchange
amplitudes, is also incorrect. In order to demonstrate
this fact more clearly, we show several Argand diagrams
which do not have anticlockwise loops, and their
corresponding cross-section behavior. All partial-wave
cross sections obtained from Regge-pole exchanges
produce qualitatively the same behavior.

In Sec. II we discuss in the idealized models the
general behavior of the real part of the phase shift, the
absorption factor, and the cross section of a partial-wave
amplitude which produces the anticlockwise Argand
loop. In this paper we define the Argand locus which
passes from the right-hand half-circle to the left-hand
half-circle with increasing energy as the anticlockwise
Argand loop, independent of its exact shape. This
general assumption is necessary because the anticlock-
wise loops in the partial-wave amplitudes with high
inelasticities are often distorted ones, and the energy
dependence of Argand loops obtained from Regge-pole
exchanges is extremely weak, as will be shown in
Sec. III.

We find the relationship between the behavior of the
real part of the phase shift and the absorption factor of
an amplitude with an anticlockwise Argand loop to have
a peak, Qat behavior, and dip in k'0-'" and k'a".

where the absorption factor p is given by

~
—g

—25s (2)

In order to discuss the general properties of the
scattering amplitudes, including the resonance ampli-
tude as a special case, we first assume a Breit-Wigner
one-level formula for fbi(W):

where 8'&, F, and I',
& are the resonance energy, total de-

In Eqs. (1) and (2), W and k are the c.rn. energy and
three-momentum, respectively, and 8„and 8, are the
real and imaginary parts of the phase shift, respectively.
We omit the isotopic suffix in Eq. (1). Also omitted
are the total-spin suffix J and the partial-wave suffix l
in the 8„, 8;, and g.

For convenience in drawing the Argand diagram in a
unit circle, we define Reaps(W) and Imari from Eq.
(1) as

Rea~i(W) = Re(kfJ i(W) )= -', rl sin28,
and

Imari(W) =1m[kf~i(W)]= s (1—r) cos25„) . (4)

The partial-wave total and elastic cross sections are
given in terms of 5„and q as

2s (J+-', )
o.J P"(W) = (1—r) cos26,)

and
J+1

o Ji"(W) = (1+ri'—2rl cos28„).
k2
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cay width, and elastic decay width, respectively. From
Eq. (7), we obtain the partial-wave total and elastic
cross sections for a Briet-Wigner-type resonance as

l.0
(a)

and

opt'"(W) =
2s (J+-,') I'I'e

k' (Wi —W)'+-', I'
s.(J+-', )

osie'(W) =
k' (W —W)'+-', I's

(9)

-0.5 0.0 0.5
i) (ii),(iii) (b)

It is evident from Eqs. (8) and (9) that if a Breit-
Wigner-type resonance exists in a certain partial-wave
amplitude, both oJtt"(W) and oste'(W) should have
peaks between the elastic threshold and 8'~, unless 8 ~

is very close to the elastic threshold. This fact should
be emphasized in connection with the discussion of the
partial-wave projection of Regge-pole exchanges in
Sec. III. k'os/"(W) and k'nate'(W) should, of course,
have peaks at 8'=8'~.

From Eq. (7), we obtain

t.o

0.5-

0.0'
Wl

(c)

and

—;r.,(w, —w)

React�(W)

=
(Wi —W)'+-', I" (10)

l

w

Imast(W) =
(Wi —W)'+-', I'

As W increases, Eqs. (10) and (11)draw anticlockwise
loops as is shown in Fig. 1(a) when I',t/I') 0.5 and as in
Fig. 2(a) when I',i/I'(0. 5. As is stated in Sec. I, we

asslme that the Argand loop which passes through the

Reasy(W)=0 axis from the right hand half c-ircle to the-

left hand half circ-le with increasin -g energy is the anticlock
wise Argand loop. This broad definition of the anti-
clockwise Argand loop is necessary because an ampli-
tude with a very weak energy dependence as in Sec.
III can draw only a small segment of the anticlockwise
loop in the energy intervals of about the total decay
widths of the experimentally observed pion-nucleon
resonances (0.1—0.5 GeV). Also we assume that the
value W=Wi at which React(W)=0 occurs is the
resonance energy if the cross section has a Breit-
Wigner-type peak. Of course, one may identify the
maximum point of Imas&(W) as the resonance energy
even when the Argand locus does not pass through the
React(W) = 0 axis (see, for example, the Argand
diagram of the S3~ state in pion-nucleon scattering,
Fig. 9 of the paper by Bareyre et at."). However, in
this case, if we want to express this peak with a Breit-
Wigner formula, we must add the background effect
(attractive or repulsive) to the Breit-Wigner ampli-
tude. Thus, only the interference model" "can describe

"P. Bareyre, C. Bricman, and G. Villet, Phys. Rev. 165,
1730 (1968).

"V.Barger and D. Cline, Phys. Rev. 155, 1792 (1967)."It is known that Barger and Cline's original interference model
(Ref. 14) violates the unitarity limit. In order to avoid this trouble,
we have to construct the resonating partial-wave amplitude in

FIG. 2. Example of typical behavior of the b„(W), q(W), and
k'0J~(W) associated with the anticlockwise Argand loop (a) in
which 8„(Wq) =0 and Ldb„(W)/dW]s =rr~(0. (i), (ii), and (iii) in

(b), (c), and (d) correspond to a peak, a Rat behavior, and a dip
of k'0&~"'(W) Lk'aqua'(W)j according to Eqs. (26a), (26b), and
(26c) f(27a), (27b), and (27c)], respectively.

this amplitude. When we discuss Schmid s interpreta-
tion of the Argand loop obtained from Regge poles
and its implications for the duality principle, the
distorted anticlockwise loop in which the resonance
energy has no close relation to the Reaz&(W) = 0 is not
a suitable one. Therefore, we concentrate on the Argand
diagram whose locus passes through the Reasy(w) =0
axis.

In order to relate W= W'i in Figs. 1(a) and 2(a) with
the real part of the phase shift, we use another expres-
sion for the partial-wave amplitude:

apt(w)=kit(w) =
cot(5,+i8,) t'—(12)

2 sinb„cos6„
React-'(W) = =0.

cosh26; —cos25,
(13)

the presence of background effects as the summation of the back-
ground amplitude and the Breit-Wigner resonance amplitude
with complex phase factor due to background effects. The above
interference formula has been well known in nonrelativistic
scattering theory See N. Ma.suda /report, 1969 (unpublished)g
for the application of this model to pion-nucleon scattering.

Comparing Eq. (12) with Eq. (7), we obtain the value
of the real part of the phase shift and its erst derivative
at the resonance energy from the following equation:
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B„(Wi)=-2,2r and
db„(W) )0 (14)

and
case (2):

B„(Wi)=0 and
db, (W)

(15)

From Eqs. (3) and (4), we identify Eq. (14) with
the anticlockwise Argand loop in Fig. 1(a), and Eq.
(15) with the anticlockwise Argand loop in Fig. 2(a).
That is, if a partial-wave amplitude has a resonance
at 8'=8'~, we can summarize several properties in
the following way:

(1) Fig. 1(a):

Rnd
r.g/r) 0.5, b„(W,) =-', 2r,

db, (W)
&0

(16)

and
(2) Fig. 2(a):

r.,/r&o. 5, b„(w,)=o,
Rnd

db, (W)
&0.

So far, we have discussed only the partial-wave
amplitude in which a resonance exists. But our problem
is to show that anticlockwise Argand loops such as in
Figs. 1(a) and 2(a) do not necessarily mean the existence
of a resonance. From Eqs. (3) and (4), it is easily
understood that only Eq. (14) or (15) for the behavior
of the real part of the phase shift is necessary to draw
an anticlockwise Argand loop.

We assume the following linear forms of b„(P") as a
function of energy near B„(W)= 222r or b„(PV) =0:

case (1):
b, (W) = a(W —Wi)+-2'2r, where a)0

Rnd

case (2):

(18)

b„(W)= a(W —W,), where a &0. (19)

Using Eqs. (18) and (19), and restricting the cross-
section behavior to cases symmetrical about 8'=8'&
(which include the Breit-Wigner resonance), we can
show that the absorption factor g(W) should also be
symmetrical about 8"=TV&. For the simplest case, we
assume the following form for q(W):

g(W) =b(W —Wi)'+c,

where 0.0& q(W) & 1.0 and 0.0&c& 1.0.

(20)

From Eq. (13) we find two kinds of resonances
corresponding to the following two diferent kinds of
phase-shift behavior:

case (1):

Equations (18) and (20) are the parametrizations for
B,(W) and g(W) with which the partial-wave amplitude
draws an anticlockwise Argand loop similar to Fig. 1(a).
The corresponding cross section may take any shape
depending on a, b, and c.

Equations (19) and (20) are the parametrization for
b„(W) and g(W) with which the partial-wave amplitude
draws an anticlockwise Argand loop similar to Fig. 2 (a).
Similarly, the corresponding cross section may take any
shape depending on a, b, and c.

Next we obtain relations an1ong the parameters a,
b, and c in Eqs. (18)—(20) in order for the partial wave
k20J p" (W) or k'a J 2"(W) to have a peak, a flat behavior,
Rnd R dip.

Case (I) k'a.~2'"(W) w2/h b„(W2)=-'22r and Idb, (W)/
dW]g =s,)0.

By inserting Eqs. (18) and (20) into Eq. (5), we
obtain

k'0 g22'"(W) = 22r (J+-', )(1—Lb (W—Wi)'+ c]
Xcosf2a(W —Wi)+2r]) . (21)

From Eq. (21), we obtain the conditions for which
k20J22"(W) has a peak, a flat behavior, and a dip at
lV= 5'g as

(i) peak: b &2a'c,

(ii) Oat behavior: b = 2a'c,

(iii) dip: b) 2a'c

(22a)

(22b)

(22c)

Case (1): k20.~2"(W) with b„(Wi)=-'22r and fdb, (W)/
dW]w=ir, )0

By inserting Eqs. (18) and (20) into Eq. (6), we
obtain

k20 Jle~(W) 2r(~+ 2)(1+@(II Wl)2+c]2
—2[b(W —Wi)'+ c]cosL2a(W —W&)+2r]) . (23)

From Eq. (23), we obtain the conditions for which
k20q2e'(W) has a peak, flat behavior, and a dip at
t/t/"= 5"g as

(i) peak: b&2a'c/(1+c), (24a)

(ii) flat behavior: b =2a'c/(1+ c), (24b)

(iii) dip: b)2a'c/(1+c). (24c)

Comparing Eqs. (22a) and (24a) for the peaks of
k'aqua" (W) and k'oz&" (W), respectively, it is instructive
to note that the existence of a maximum of Irna J$(W)
in an anticlockwise Argand loop does not necessarily
mean the existence of a Breit-signer-type resonance.
Although the maximum of Imaq2(W) produces the
peak in k'aq '(W2) t

= 22r(J+ 2)Imaq~(W)], it does not
necessarily produce the peak in k20.~p'(W) (= (J+-', )
)(([Rea~~(W)]2+LIma~~(W)]2)), because the condi-
tion (24a) for k20.J2"(W) is stronger than the condition
(22a) for k'0.j/"'(W). In this context, we stress that the
automatic identification of a maximum in Imas~(W)
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Pro. 3. Anticlockwise Argand
loops. Straight lines are from the
partial-wave projection of the
Regge-pole exchanges in pion-
nucleon scattering. The crossing
points of loci through the Reog (W)
=0 axis are indicated by A, 8, C,
and D in the respective figures.
At these points, B„($') passes zero
downward. Dashed lines are from
Bareyre et al. 's phenomenological
phase-shift analysis, Ref. 13.
Crossing points of loci through the
Reoz&(W) =0 axis are indicated by
2', 8', C', and D' in the respective
Ggures. At these points B„(W)
passes 90' upward. Momentum
regions of loops are the same as
those of S„(W) and g(W) in Figs. 4
and 5.

-0.5

1- 0.5

C

.5

0.5 -0.5

05

-.0.5

-0,5 0.0
s

0.5 -0,5 0.0

(i) peak: b) 2a'c,

(ii) flat behavior: b =2g'c,

(111) dip: b(2gsc.

(26a)

(26b)

(26c)

«se (Z): k'osP'(W) with 8„(Wg)=0 agd Ldb, (W)/
dW)w=w, &0.

"Y. Fujii and M. Uehara, Progr. Theoret. phys. (Kyoto)
Suppl. 21, 138 (1962}.

in an anticlockwise Argand diagram with a resonance
in Refs. 1, 4—6, and 10 should be reexamined.

When a Breit-signer-type resonance exists, we can
obtain the elastic decay width from Eqs. (7) and (12)
as"

d5,
I',q =2 cosh'5. (25)

dS" g g,
Illustrative examples are shown in Fig, 1.

Using Eqs. (5), (6), (19), and (20), we can obtain the
conditions for which k'o~P"(W) or k'o.gp'(W) has a
peak, a flat behavior, and a dip at W'= W~ in case (2),
in the same manner as in case {1).

Case (Z): k'os/'"(W) with B„(Wt)=0 artsd Pdb, (W)/
dW 1w=w, (0.

The conditions are

The conditions are

(i) peak: b) 2a'c/(1 —c), (27a)

(ii) flat behavior: b = 2a'c/(1 —c), (27b)

(iii) dip: b &2a'c/(1 —c) . (27c)

Again, we note that from the conditions (26a) and
(27a), the existence of the maximum of Imast(W) in
an anticlockwise Argand loop does not necessarily
imply the existence of a Breit-Vhgner-type resonance,
because although the maximum of Imas~(W) indicates
a peak in k'o-z&'", it does not necessarily indicate a
peak in k'oqp'(W). However, from Eqs. (8) and (9),
if a Breit-Wigner-type resonance exists, both k'o.J &"'(W)
and k'o.sp'(W) should have peaks.

If a Breit-Wigner-type resonance in case (2) exists,
its elastic decay width can be obtained from Eqs. (7)
and (12) as

f" ~t

I',t
———2 sinh'8; — . ~" (2g)

dW w=w tf tfl' PW'
PSI

From the conditions (26a) and (27a) for the cross-
section peaks in case (2), it is evident that only when
the absorption factor sharply decreases about S'=S ~
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Fro. 4. Behavior of 8„(lV)
and q(lV) in the /II and
D13 states. Straight lines
are from the Regge-pole
exchanges. Dashed lines are
from Bareyre et al. , Ref. 13.
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does the partial-wave amplitude have a resonance.
Illustrative examples of case (2) are shown in
I'"ig. 2.

Before concluding this section, we would lik.e to
emphasize again that the anticlockwise Argand loop
alone cannot guarantee the existence of a resonance. It
is necessary to compute the partial-wave total and
elastic cross sections in order to establish the existence
of a resonance. In this context we point out that all

papers, including Schmid s original one, so far published
on this problem failed to realize this fact. They produced
only Argand diagrams. Therefore, both conclusions
supporting and opposing Schmid's interpretation of
partial-wave projection of Regge-pole exchanges should
be reexamined in light of our conclusion. Since we
derived Eqs. (25) and (28) from Eqs. (7) and (12), we
can always identify the second-sheet pole near the
unitarity cut with the existence of the Breit-Wigner-

type cross-section peak.

Schmid" states that the relation of a second-sheet
pole to the anticlockwise Argand loop obtained from
the partial-wave projection of Regge-pole exchanges is
not clear. However, if the partial-wave cross section
shows a Breit-Wigner-type peak, then whatever its
origin, it can be effectively expressed in terms of a
second-sheet pole of the amplitude near the unitarity
cut.

III. PARTIAL-WAVE PROJECTION OF
REGGE-POLE EXCHANGE

In Sec. II we explained why the anticlockwise Argand
loop alone cannot guarantee the existence of a resonance.
We showed that when the Argand locus moves from the
right-hand half-circle to the lef t-hand half-circle
through the ReaJ ~(W) =0 axis, the corresponding cross
sections k'os('"(W) and k'ozp'(W) may exhibit a

"C.Schmid, Nuovo Cimento 61A, 289 (1969).
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FxG. 6. Typical behavior
of the absorption factors
g (W) obtained from the
Regge-pole exchanges.
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In Figs. 4 and 5 we show the corresponding 8„(W) and
If(W). Also shown are the results of the phenomenolog-
ical phase-shift analysis for 8„(W) and q(W) due to

areyre ef al." We can see that the phase shift ii„(W)
from the Regge-pole exchanges behaves very smoothl

/~ of Bareyre et al. sharply increases
yr

near the resonance energy. The absorption factor
tf(W) from the Regge-pole exchanges behaves smoothly
also.

In Fig. 6 we explained the behavior of the absorption
factors rf(W) in more detail. We see that the tf(W)'s for
the l&2 partial-wave amplitudes violate the unitarity
limit in the low-energy region, and that each decreases
only as far as the asymptotic value. Therefore, this
common behavior of If(W) has no dynamical meaning
related to the resonance.

In order to test whether these four anticlockwise
Argand loops really correspond to cross-section peaks

18.0 , ~18.0

15.
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E
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FIG. 7. Behaviors of 0'z&~'(W), 0'zp'(W), k'0'zp'(W) and )I'0 "Wz&, 0zI, an 'a pie'(W) obtained from the Regge-pole exchanges in the Pqq staterjsae.
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2.0 2.5

or not, we computed the partial-wave total and elastic
cross sections. We also computed

k'aqua"

(W) and
k'o&&"(W), which should at least exhibit the typical
behavior corresponding to the anticlockwise Argand
loops. These are shown in Figs. 7—10.

We discuss two cases. One is the P~~ state, in which
the absorption factor q(W) satisfies the unitarity-limit
requirement in all energy regions. Although the Argand
diagram for the P~~ state shows an anticlockwise loop
very similar to that of Baryere et al. 's phenomenological
one, both 0&&' '(W) and 0 J p'(W) decrease monotonically
and approach the asymptotic behavior as energy
increases. Only O'O. z+'(W) and k'0-J&" (W) show the
very broad peaks. The above two facts indicate that
these broad peaks in k'O.JP"(W) and k'O.g~"(W) cannot
be expressed by a Breit-Wigner-type resonance formula
because the energy dependence of k'azP" (W) and

k'0.&p'(W) in Fig. 6 is much weaker than that of the
Breit-Wigner formula. Of course, the experimentally
observed resonances in this energy region have pro-
nounced peaks in aqua"(W) and O.q~" (W) as well as in
k'oqP" (W. ) and k'0.~p'(W)."

We can generally expect that if the absorption factor
g (W) in any partial-wave amplitude obtained from the
Regge-pole exchange satis6es the unitarity limit in all
energy regions, then the corresponding cross sections
will show monotonic behavior similar to the P~~ case.
The broad peaks in k'0 J P"(W) and k'0 J p'(W) in the
momentum retion 0.5—1.0 GeV/t; are simply turning
points between the vanishing value of k'oq("(W) and
O'O. z&"(W) at the threshold and the asymptotic behavior
at large k'.

In the a~3, F~5, and Ii37 states, each absorption factor
becomes larger than 1 in the low-energy region and thus

9.0 I ~ I I
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I I ~ I
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I I I I j I ~ I ~ ] & ~ p z
— 9 0el

k2 el

FIG. 9. Same as in Fig. 7 in J'» state.
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FzG. 11. Argand diagrams in the S» and Geg states obtained
from the Regge-pole exchanges.

violates unitarity. In this low-energy region, the total
cross section becomes negative, as can be understood
from Eq. (5). Considering the monotonically decreasing
cross sections in the Eii state in which zi(W) satisfies the
unitarity limit, it is evident that when zi(W) violates
the unitarity limit in the low-energy region, o.J&"'(W)
and o.~p'(W) produce broad peaks in the processes to
reach the monotonically decreasing behavior in the
high-energy region from the negative cross section in
the low-energy region. This behavior of cross sections
may be expected for all partial-wave amplitudes in
which the absorption factors violate the unitarity limit.
These broad peaks certainly have no connection with a
Breit-Wigner-type resonance peak.

The important fact is that in the a~3, F~5, and F37
states both k'o gP" (W) and k'o J t"(W) are almost
constant over the momentum interval of width 0.7
GeV/c about the maximum points of Imaqt(W) [see
Fig. 14 for the maximum points of Imari(W)$. This
fact indicates that the anticlockwise Argand loops
obtained from the partial-wave projection of the
Regge-pole exchanges essentially corresponds to the
flat behavior of k'orat"'(W) and k'o.qt"(W) discussed
in Sec. II. We thus conclude that there is no Breit-
Wigner-type resonance peak in the partial-wave
cross sections obtained from the Regge-pole exchanges.

If the anticlockwise Argand loop obtained from
Regge-pole exchanges has no relation to the existence
of the Breit-Wigner-type resonance peak, one may guess
that the typical cross-section behavior so far discussed
may also apply to partial-wave amplitudes which have
no anticlockwise Argand loop.

In order to justify this observation, we show the
Argand diagram, o~got(W), ooze'(W), k'apt'0"(W), and
k'oq~" (W) for the Sti and Gst states obtained from the
Regge-pole exchanges. As is shown in Fig. 11, these two
partial-wave amplitudes have no anticlockwise Argand
loop. However, the plotted cross-section behavior in
S» (see Fig. 12) is quite similar to that of the P» state.
Also the cross-section behavior of the 639 state is similar
to that of the Fit and F,z states (see Fig. 13).

Although the Argand loci in our Figs. 3 and 11 are
plotted up to 2.5 GeV/c, several partial-wave ampli-
tudes, for example, E~~, draw a second anticlockwise
loop as the rnomentuin increases from 2.5 GeV/c. "
The variation of k'agtt" (W) and k'orat"(W) due to the
existence of the secondary anticlockwise loop above
2.5 GeV/c is extremely small and almost negligible.
The variation of a.qt'"(W) and orat"(W) due to the
above secondary anticlockwise loop is overcome by the
kinematical factor 1/k', and o~t""(W) and o.qt" (W)
monotonically decrease with increasing energy. This
situation is the same as in the erst anticlockwise loop
in the E'» state. We have already explained the reason
why we cannot interpret the above anticlockwise
Argand loop as an indication of a Breit-Wigner-type
resonance, when o qzt" (W) and o.qz" (W) decrease
mon otonically.

We show in Fig. 14 the partial-wave total-cross-
section behavior over the momentum region 0—4.0
GeV/c for the six partial-wave amplitudes above. We
can see that all a~tt"(W) above 1.5 GeV/c show no

"The existence of such secondary loops is noted in several
papers. See, for example, Ref. 11.
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I'ro. 12.' Behavior of ogP'
X (W), ozP'(W) k'ozP'(W)
and k'Irgp'(W) obtained from
the Regge-pole exchanges in
the S31 state.
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structure, even though some states such as the I'~~,

Fr~, and F37 have a maximum of ImuJ [(W).
We have explained that, in the P~~ state, the variation

of the cross section due to the anticlockwise Argand
loop is extremely small. Therefore, although the e6ect
of the existence of an anticlockwise Argand loop may
appear in k'o.qP"(W) as a broad peak, it does not
appear in os("(W), because the kinematical factor
1/k' in oq~"'(W) overcomes the variation due to the
anticlockwise Argand loop. As was explained in Sec. II,
if we assume a Breit-Wigner-type resonance for a

cross-section peak, ~q~"'(W) should also have a peak
unless the corresponding energy is very close to the
elastic threshold. However, we see in Fig. 14 that
ozP'"(W) in the E» state monotonically decreases and
that o.JP"(W) in other states also monotonically
decrease after they reach a maximum starting from
negative cross sections due to the violation of unitarity.

In this section we have shown that Schmid's inter-
pretation of the partial-wave projection of the Regge-
pole exchanges as the direct-channel resonance is
wrong. We also dispute the statement of Collins et al.

FIG. 13. Same as in Fig. 12
in the 639 state.

l5.0
l
«l I

1
I & & &

1
& I I

—IOO E
Of

O

OP

(9
b

50 0J

I'5.0
~el
k~~el

total

k~ total

0
e «»

~~Or~r~r~ yO
~~ ~ye~

I
f w ~ g ~ —~ —~ l I .0

0.5 I.O 1.5 2.0

PI b(GeV/c)

2.5



2576 NAOH I KO MASUDA

l 5.0 I
l

I ( ( (
]

( (

IO.O-

0.0 I ( a ( ( I (

0,0 0,5 I.O l.5 2.0
P &{GeV/c)

2,5 3.0 4,0

Fro. 14. Typical behavior of (re+~(W) obtained from the Regge-pole exchanges in the momentum region 0—4.0 Gev/c. The points
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that the resonating partial-wave amplitudes obtained
from Regge-pole exchanges are canceled by other
nonresonating partial-wave amplitudes so as to give
smooth behavior for the total amplitudes. Since all
partial-wave amplitudes have essentially the same
behavior, independent of the existence of the anti-
clockwise Argand loops in certain partial waves, no
such cancellation occurs.

In conclusion, we stress that the anticlockwise loops
obtained from Regge-pole exchanges have no relation
to the direct-channel resonances, contrary to Schmid's
statement. %le interpret these anticlockwise loops as
the ones which are characteristic of the Regge-pole
model, as suggested in Ref. 11, because the cross
sections obtained from Regge-pole exchanges simply
show the characteristics of the background amplitude
(i.e., smooth behavior). The broad peak at low energy
when g(W') violates unitarity is simply caused by (1(W)
and the kinematical factor 1/k' in Eq. (5).

IV. CONCLUDING REMARKS

In Sec. III we showed that the partial-wave cross
sections obtained from Regge-pole exchanges do not
show any resonancelike behavior even though certain
partial-wave amplitudes have anticlockwise Arg and
loops. We showed that all partial-wave cross sections
thus obtained from the Regge-pole exchanges have
essentially the same behavior independent of the
shape of the Argand loops.

Schmid's interpretation of the anticlockwise Argand
loops obtained from the Regge-pole exchanges as the
direct-channel resonance is not correct.

Under these circumstances, it is important to clarify
the meaning of the duality principle. As has been
pointed out, the concept of strong duality is very
ambigg. og.g,"

In our present paper, we further showed that as far
as Schmid's interpretation is concerned, strong duality"
is not correct, because the partial-wave projection of
Regge-pole exchanges does not give rise to any res-
onancelike cross section.

Although Schmid' insists that Regge-pole exchange is
the force which produces a resonance pole in the
1V/D-type equation from the point of view of the
duality principle, we have already shown that Regge-
pole exchange is not the force which produces the
resonance pole in an 1V/D-type equation. ss The attrac-
tive force obtained from Regge-pole exchanges is always
too weak to produce a resonance in the dynamical cal=
culation. This fact is amply shown in our Figs. 4 and 5.

As for the description of the intermediate-energy
pion-nucleon scattering, we" have recently shown that
the interference model, in which the Regge-pole
exchanges and the Sreit-Wigner resonance formula
with complex phase factors from Regge-pole exchanges
are added, can fit the experimental data more satisfac-
torily than any other models. "

The failure of the fit of the s.+p backward scattering
has been cited by many critics' of the interference
model because the interference model shows severe
double counting. However, it has recently been pointed
out that the baryon Regge-pole parameters used in
the above calculation are probably not the correct
ones, " because these baryon Regge-pole parameters
cannot reproduce the new s.+p polarization data at
2.75 GeV/c s4

Schmid'~ also says that the anticlockwise loops
obtained from Regge-pole exchanges and those of the

' N. Masuda, Phys. Rev. I'VS, 2087 (1968).
~3 R. Odorico, Nuovo Cimento Letters 2, 1 (1969).
24 R. J. Esterling et al. , in I'roceeChngs of the Fourteenth Inter-

na&onal Conference on IA'gh-Energy I'hysics, edited by J. Prentki
and J. Steinberger (CERN, Geneva, 1968), jl'. ig. 38, p. 348.
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Sreit-Wigner formula should not be added. But from
our numerical results, we can say that to add the two
kinds of anticlockwise loops produces no difhculty
since the partial-wave cross sections obtained from the
Regge-pole exchanges exhibit essentially the character-
istic of nonresonant behavior except in the unitarity-
violating threshold region as is shown in Figs. 7—10
and 14. In this connection we note that the variation
of the Argand locus with respect to energy obtained
from the Regge-pole exchanges is extremely weak

compared to that of a phenomenological phase-shift
analysis. This fact means that even when we add the
anticlockwise loop obtained from Regge-pole exchanges
to that of the Breit-Wigner amplitude, it produces only
a small modification in the latter loop.
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We numerically estimate the expectation value between baryons of the equal-time commutator PJ';, 1,'g
of U(3) SU(3) currents on the gluon model by using a symmetry-breaking theory based on Regge-pole
dominance. The result is in excellent agreement with the electroproduction data.

'HE scaling behavior predicted by Bjorken' for
deep-inelastic electron and neutrino scattering

from hadrons has received considerable experimental
support. ' 4 One of the most interesting consequences
of scaling is the Callan-Gross' relation between certain
integrals of the electroproduction structure functions
and the infinite-momentum limit of the commutator

I J;(x),J,(0))8 (xo) of electromagnetic currents. The
relation therefore enables one to determine which models
for this commutator are in agreement with experiment.
The recent experimental results' ' are in agreement
with models in which the constituents of J„have spin

& and seem to be in disagreement with other models.
We therefore propose in this paper to take a spin--,'
model seriously and try to evaluate numerically matrix
elements of current corrunutators by making some
reasonable assumptions about the way in which the
s+ baryon octet deviates from an exactly SU(3)-
symmetric multiplet. We find the resulting (generalized)
Callan-Gross relation to be in excellent agreement with
experiment.

The model we shall study is the so-called gluon model
with Hamiltonian density'

X

=lit�(

—itr V+pM+gpy&B„)ifr+KH,

where iver is a spin-sIquark field, 8„ is a neutral vector
meson, 3C~ is the Hamiltonian of 8„, and'

M =cree'+crsks

is the quark mass term. Thus the chiral SU(3)SSU(3)
symmetry breaking is due entirely to the explicit quark
mass term. It is the very smooth nature of this symme-
try-breaking mechanism which will enable us to proceed.

It is perhaps appropriate to mention that this model
has already been shown to have very desirable features
in problems connected with radiative corrections to
weak interactions' and nonleptonic weak interactions. '

The U(3) vector currents are given in the gluon
model by J„=,'if'„XQ, II=0, .-. . , 8.

We can write, in general, that
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d'»(») &pl LJ' (*) Jt'(0)3
I p)

=iE"P;P;+R"b;,+G"e,;,P, (4)
6 In the following we use (1) in a formal way along with canon-

ical commutation relations, ignoring all perturbation-theoretic
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