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Analysis of Low-Energy K+p Scattering Data by a New Method
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A new method, recently devised by us, is used for the analysis of E+p scattering data below 1.5 GeV/c.
This analysis uses, instead of the ordinary partial-wave expansion, a method of expansion with optimally
accelerated convergence properties; the method has been devised by the use of analytic approximation
theory. Although no experimental information is used which was not available to Lea, Martin, and Oades,
somewhat more definite results are obtained by the present method. The results are sensitive to the values
assumed for the coupling constants g~~A' and g~~y.', the results appear to be most consistent if values close
to the SU3 prediction are used for these coupling constants. With the use of the SU3 prediction, rather
strong P-wave scattering is found in the low-energy region.

I. INTRODUCTION

t~ATA on low-energy E+P elastic scattering have
been analyzed by Lea, Martin, and Oades

(LMO). ' We present here a reanalysis of many of
the same data, using a new method recently devised
by us. ' Our approach divers from that of LMO in
several respects. We have not attempted to make an
energy-dependent analysis at momenta higher than
650 MeV/c, but we just try to link up the phase-
shift solutions found at each energy through separate
analyses. However, the principal difference is that we
represent the scattering amplitude in a diGerent way;
in fact, the main purpose of this work is to illustrate
the application of this new method in a practical
situation. We parametrize the scattering amplitude
according to an optimally convergent method, which
accommodates the correlations among the partial-wave
amplitudes which are required by the momentum-
transfer analyticity properties. The parametrization of
the inelastic part of the amplitude is especially dif-
ferent from that of LMO, because we do not need
to make any special assumptions about which partial
waves are responsible for the production processes.
The correlations among the partial-wave amplitudes
which we have exploited arise, ultimately, from the
fact that the forces between the particles depend
smoothly on the distance (because these forces are
produced by exchange of other particles) and have
a definite range (because the exchanged particles have
known masses). Our approach, however, is otherwise
model independent; we do not need to assume that
the forces have any special features, apart from the
forces which are associated with the so-called pole
terms, which are relatively unambiguous.
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Our results are, in general, similar to those of LMO;
at most energies, however, we found only two distinct
sets of phase shifts which were consistent with the
angular distribution, which is many fewer than they
found. Moreover, with use of the limited polarization
data available at the time we began this work. , or
with use of data on E+e charge-exchange scattering, '
a unique set of phase shifts was found at low mo-
menta. For this set, the I' waves are more important
than in the LMO fits. Unfortunately, the statistical
accuracy of the data is, in general, rather low, and, ,
as a result, the phase shifts have large uncertainties.
The phase shifts, as a function of energy, are really
only determined to lie within very broad bands. As
LMO had. already emphasized, polarization data in
the 1000—1500 MeV/c region are essential for deter-
mination of the trend of the phase shifts in this
region, and, in particular, for ascertaining whether the
I'~~~2 partial wave resonates. The data of Andersson
et al.4 ruled out the resonant possibility; these data
became available as we completed our analysis.

We have defined the polarization according to the
same convention as LMO.

'tI. PARAMETRIZATION OF SCATTERING
AMPLITUDE

Electromagnetic corrections were taken into account
by us in the same approximation used by LMO.
With neglect of the electromagnetic interactions, the
two invariant amplitudes conventionally denoted. by
A (s, t) and B(s, t) are free of kinematical singularities
and (for fixed s) are supposed to be analytic for t in
a cut plane. (Here s, t, and I are the Mandelstam
variables. ) There are poles at +=as and u=Mq',
and branch cuts for I& (Ms.+M )s and t&4M s. We
have shown' that the most rapidly convergent poly-
nomial expansion is obtained by mapping the cut
plane of x=coso onto the interior of a unifocal ellipse,

g A. K. Ray, R. W. Burris, H. K. Fisk, R. W. Kraemer, D. G.
Hill, and M. Sakitt, Phys. Rev. 183, 1183 (1969).

S. Andersson, C. Daum, F. C. Erne, J. P. Lagnaux, J. C.
Sens, and F. Udo, Phys. Letters 28B, 611 (1969).
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in which the physical region —1&x&1 is mapped
onto the line segment —1&a&1, and the branch cuts
are mapped onto the ellipse. A similar method has
been suggested by Ciulli. ' Some additional refinements
have been subsequently developed by one of us' but
are not used in this work. .

The pole terms in A or 8 are introduced explicitly,
and the remainders are then represented by poly-
nomial expansions in s. Actually, as pointed out in
Ref. 2, it is of great advantage, especially at low
momenta, to exploit the fact that the imaginary parts
of A and 8 are analytic in a large region of the x plane,
and to use separate transformations and expansions
for the real and imaginary parts. The branch points
of the imaginary parts are obtained from the Landau
curves for certain well-k. nown "box" diagrams.

Note that, at energies somewhat above threshold,
the leading singularities of the imaginary part are
associated with inelastic processes.

In Ref. 2 we discussed at some length how to make
unitarity approximations for the case of spinless par-
ticles. In the present case, it is only necessary to
extend the notation slightly, in order to accommodate
the fact that there are two amplitudes and two sets
of partial waves, with j=l~—', . Let us denote the
partial-wave amplitudes as

where the index is

&m= &m+&gm,

no= j+l+-', . (2)

where the X are the "Born approximation" (the
contribution of the A and Z poles). In general, none

5 S. Ciulli, Nuovo Cimento 61A, 787 (1969).' R. E. Cutkosky, Ann. Phys. (N.Y.) 54, 350 (1969).

We write the scattering amplitude in the form

F(x) =fg(x)+o'2'o rcfg(x), (3)

where Pc and Pc' are unit vectors in the directions of
the initial and Anal kaon momenta. The amplitudes
f; are linear combinations of A and J3, with coeK-
cients which depend only on the energy. We now
expand the real parts of the f, (apart from the con-
tribution of the pole terms) in polynomials in s. I.et
$„, with e=i+2r, be the coeRcient of s" in f, , and
let the total number of coefficients be A, where E is
any positive integer. The order of the approximation
is defined by X, which determines where the two
expansions are truncated.

Following the method of Ref. 2, we construct all
of the x from the polynomial approximations to the
f, by the usual integration formula, leading to equa-
tions of the form

N

*m= g Cmnkn+Xmy

of the x would vanish, but we would expect that
the amplitudes with lowest angular momenta would
be related most directly to the coefficients. Given the
x for no=1, . . . , E, we may calculate the coefficients
by solving (4):

$~= g D~~m(xm —Xm).

On substituting back into (4), we obtain

i = Q I'~ (x„—X„)+X, (6)

where
Ixmn g CmkDNkn

k

We have put a caret on the variable on the left-hand
side of (6) because it is just an approximation for
m)X, as we shall describe shortly. The imaginary
parts of the partial-wave amplitudes, y, are given
by formulas exactly like (6), except that there is no
Born approximation, and the values of the coeS.cients
I'~ „are somewhat different, because of the diQerent
domain of analyticity of the imaginary parts of the f,.

We have, through Eq. (6) and its counterpart for
y, parametrized the set of partial-wave amplitudes
by the values of the first E. For m&E, therefore,
we can guarantee explicitly that the partial waves
satisfy the unitarity condition. However, for m&E,
the amplitude ~ =i„+~j will not, in general, be
unitary. We define the unitarized amplitude a to be
the amplitude, satisfying the unitary condition, ob-
tained by adding to i the complex number of smallest
possible modulus. In the study reported here, we found
that in all cases only very small corrections needed
to be made for unitary, provided SU3 values were
used for the coupling constants, and when the total
inelastic cross section was appreciable, no correction
was needed —the inelasticity of all partial waves was
positive. This result is related to the fact that the
inelastic processes controlled the rate of convergence
of the imaginary part. In other words, the fact that
our expansion does not satisfy elastic unitarity term
by term is an advantage, rather than a defect.

The computational procedure used in the present
study was as follows. At each momentum, we first
calculated the elliptic mapping, using the algorithm
described in Ref. 2, for about 400 points in the physi-
gcal region. The C „and X were then computed by
numerical integration. In calculating the X, we ne--
lected the A-Z mass difference and used the form
factor described in earlier work. ~ The X and the
I'~ for both the real and imaginary parts were then
punched on cards. In the data-fitting program, the a
for m&E were considered as parameters; from them
the i were calculated and unitarized as described
above, and then the partial-wave sum was evaluated.

R. E. Cutkosky and B. B. Deo, Phys. Rev. Letters 20, 1272
(1968}.
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I~ „=6 for m, e&Ã.

for m) Er .„~0

In order to understand the practical eGect of the course, the point of truncation should be determined

expansion, it is useful to note that the I's possess by consideration of the convergence rate of the ex-

the following properties: pansions and the statistical significance of the pa-
rameters. ' In the present initial study, we have pri-

(i) By construction, marily used the minimum number of parameters
needed for a reasonable value of y'. However, we have
also been guided by the numbers of parameters needed

(ii) At low momenta (~0), at nearby energies, and the estimated uncertainties
are based on a conservatively large number of pa-
rameters.

and therefore

DNmn ~mn lf S= 1) 2~

lf m=1

This means that the S~p and P~~~2 amplitudes are not
correlated with the higher partial waves. In particular,
the Born approximation to the S~f2 and P~~f~ amplitudes
is of no consequence in the partial wave analysis.
The elliptical transformation does not have much
eAect, therefore, if the S~f2 and P~~f2 amplitudes domi-
nate in the Born approximation as well as in the
physical amplitude or in other words, if purely short-
range effects predominate. On the other hand, the
higher partial-wave amplitudes are correlated with the
P3/2 or Daf2 amplitudes, for example. Furthermore,
since the form factor used in the Born approximation
mainly affects the j=~ amplitudes, the results are
not very sensitive to the choice of this form factor.

It is usually assumed that the phase shifts with
the same value of / are of similar importance, and
that the partial wave sum should be truncated with
the terms /=l, ; then fs(x) is a polynomial in x
which is one degree lower than ft(x). Our truncation,
when E is odd, is similar in spirit. However, we do
not know any convincing general argument why the
total angular momentum should always be less sig-
nificant than the orbital angular momentum. In some
cases, although not, perhaps, at very low energies,
it might be reasonable to include terms of the same
order in f, and f,. We have therefore also allowed for
truncations with even values of E. In either case, of

(unless E is even, r=t1V and hatt =1V+ 1) .
(iii) For m) PE+1, we have the consistency relation

1N+1,mn+ 1N+I, m, tv+11 tv, N+1,e PNmn

This means that if the 4 are first obtained from the
a„ for e&E using the 1'~ „, th, en if we use a~+~ as
a given parameter and construct the a (nz)%+1)
using the I'~+~, „, we get the same values as before;
in other words, the higher partial waves are stable
in a change of X.

(iv) Since the constant terms in ft and fs con-
tribute only to S~/~ and P~~f~, or, in other words,

if m=1, 2,

we have also

III. DATA

We have used the following subset of the data
discussed by LMO. These data are the differential
cross section only, unless otherwise noted.

(i) 140—642 MeV/c (combined): Data of Goldhaber
et ul. '

(ii) 520 MeV/c: Data of Ref. 8, combined with
the data of Kycia et al. ,

' which were renormalized

by 10'P~ as suggested by LMO.
(iii) 642 MeV/c: Ref. 8.
(iv) 778 MeV/c: Differential cross section data of

Focardi et al." and polarization data (two points) of
Femino et ul"

(v) 860 MeV/c: Unpublished data of Bland et al. rz

(vi) 910 MeV/c: Differential cross section data and
polarization data (four points) of Hirsch and Gidal. "

(vii) 960 MeV/c: Ref. 12.
(viii) 1170 MeV/c: Cook et al. '4

(ix) 1200 MeV/c: Carroll et al." and Ref. 12.
(x) 1450 MeV/c: Bettini et al"

The data most useful for our purposes appeared to
be (i), (iv), (vi), (viii), and (x). Although the po-
larization data of (iv) and (vi) had very poor sta-
tistics, these polarization data did help to delimit the
phase shifts; the angular distribution at 778 MeV/c
had the better statistics. The data (x) had good
statistics, but the energy may be too high for the
small number of parameters we used. (We got rea-
sonable its, but good polarization data or a careful

S. Goldhaber, W. Chinowsky, G. Goldhaber, W. Lee, T.
O'Halloran, T. F. Stubbs, G. M. Pjerrou, D. H. Stork, and H. K.
Ticho, Phys. Rev. Letters 9, 135 (1962).' T. F. Kycia, L. T. Kerth, and R. G. Baender, Phys. Rev. 118,
553 (1960)."S.Focardi, A. Minguzzo-Ranzi, L. Monari, G. Saltini, and P.
Serra, Phys. Letters 24B, 314 (1967)."S.Femino S. Jannelli, and F. Mezzanares, Nuovo Cimento
SOA, 371 (196 )."R. W. Bland et a/. , quoted by G. Goldhaber, in UCRL-
Report No. UCRL-17388 (unpublished).

rs W. Hirsch and G. Gidal, Phys. Rev. 135, B191 (1964) .
"V.Cook, D. Keefe, L.T. Kerth, P. G. Murphy, W. A. Wenzel,

and T. F. Zipf, Phys. Rev. 129, 2743 (1963).
"A. S. Carroll, J. Fischer, A. Lundby, R. H. Phillips, C. L.

Wang, F. Lobkowicz, A. C. Melissinos, Y. Nagashima, C. A.
Smith, and S. Tewksbury, Phys. Rev. Letters 21, 1282 (1968).

' A. Bettini, M. Cresti, S.Limentari, L. Peruzzo, R. Santangelo,
D. Locke, D. J. Cremmell, W. T. Davies, and P. B. Jones, Phys.
Letters 16, 83 (1965).
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TABLE I. Values of the phase shifts (in degrees) for various laboratory momenta {in MeV/c) and coupling constants, obtained in the
energy-dependent Qt to the lower-energy data.

205
7

235
7

355
6 (49)

1
2

3

1
2

+2
3
2
5

(x')
1
2

3
2
5

1
2

3
2

—7.8
—0.05

0.04
0.001
0.001
2.3

—7.7
—0.10
+0.06
—0.000
—0.001

2.2

—7.8
—0.15

0,09
—0.002
—0.003

2.2

—7.9
—0.20

0.12
—0.003
—0, 005

2.2

—9.8
—0.10

0.07
0.003
0.003
7.8

—9.6
—0.19
+0.12
—0.000
—0.002

8 ' 3

—9 8
—0.30

0.18
—0.004
—0.007

7.6
—9.9
—0.38

0.22
—0.009
—0.014

6.9

—11.5
—0.15

0.11
0.007
0,007

15.1
—11.4
—0.30

0.19
—0.001
—0.004
14.7

—0.47
0.29

—0, 008
—0.015
15.0

—0.60
0.35

—0.02
—0.03
15.5

—13.2
—O. 23

0.17
0.012
0.012
7 4

—0.44
0.28

—0.002
—0.008

7.2
—13.1
—0.69

0.43
—0.013
—0.026

6.9
—13.1
—0.88

0.55
—0.03
—0.05

7.0

—15.0
—0.32

0.24
0.020
0.020
2.9

—14.8
—0.62

0.40
—0.002
—0.012

2.7

—14.8
—0.98

0.60
—0.02
—0.04

2.7

—14.7
—1.2

0.74
—0.04
—0.08

2.8

—20. 1
—0.73

0.53
0.060
0.060
8.1

—19.9
—1.4

0.90
1.002

—0.036
8.3

—2.2
1.4

—0.05
—0.12

8.5
—19.2
—2.8

1.7
—0.11
—0.23

9 4

—29.0
—2.0

1.5
0.22
0.22
2.8

—28.7
—3.9

2.5
0.06

—0.17
4.5

—27.6
—6.1

3.8
—0.07
—0.41

5.8
—26.5
—7.7

4.6
—0.26
—0.76

9

—34.8
—3.4

2.5
0.41
0.41
7.1

—34.5
—6.6

4.2

0.17
—0.18

4. 1

—32.7
—10 ~ 3

6.4
—0.01
—0.70

4.5

—31.1
—13.0

7.7
—0.31
—1.4

3.9

53.5

52 ' 0

52.8

21

+k

2

(x')

3

(x')
1
2

3
2
5

3
.2
5

—7.8
0.12

—0.05
—0.002
—0.002

2.0
—7 ~ 7

0.12
—0.04
—0.004
—0.005

2.3
—8.2

0.29
—O. 10
—0.008
—0.01

2.7

—8.4
0.33

—0.11
—0.01
—0.01

3.8

9
0.24

—0.09
—0.004
—0 ~ 004

8.3
—9.7

0.23
—0.08
—0.01
—0.01

9.1

0.55
—0.19
—0.02
—0.03

6.1

—10.2
0.63

—0.21
—0.03
—0.04

5.5

0.37
—0.14
—0,009
—0.009
14.7

—11.4
0.37

—0.13
—0 ~ 02
—0.02
14.3

—11.6
0.88

—0.31
—0, 04
—0.05
15.4

—11.7
1.0

—0.34
—0.06
—0.07
15.8

—13.1
0.55

—0.21
—0.015
—0.015

7.0
—13.1

0.55
—0.20
—0.04
—0.04

6.9
—13 ~ 2

1.3
—0.45
—0.08
—0 ~ 09

6.5
—13.1

1.5
—O. 50
—0.10
—0.12

6.3

—14.8
0.78

—0.29
—0.025
—0.025

2.7

—14.8
0.77

—0.28
—0.06
—0.07

2.8
—14.6

1.8
—0.64
—0.12
—0.15

2.6

—14.5
2.1

—0.70
—0.16
—0.20

2.9

—19.9
1.8

—0.66
—0.074
—0.074

9.0
—20.0

1.8
—0.63
—0.17
—0.21
11.8

—18.6
4. 1

—1.4
—0.36
—0.44
14.2

7
—1.6
—O. 47
—0.59
19.3

—28. 7
4.8

—1.8
—0.27
—0.27

—28.8
4.8

—1.7
—0.57
—0.74
13.9

—24.8
11.3

—4.0
1 ~ 2

—1.5
19.9

—23.3
12.8

—1.6
—2.1
26.8

—34.5
8.2

—3.1
—0.50
—0.50

2.2
—34.6

8.1
—3.0
—1.0

~ 3
3.5

—28.5
18.8

—6.8
2. 1

—2.8
5.5

—26.4
21.1

—7.4
—2.8
—3.7
10.6

53.0

64.6

72.9

91.0
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TABLF- II. The scattering lengths and the S-wave effective ranges as obtained from the acceptable 6ts to the lower-energy data.

g2 rOs am/2

0 ( I')
0 (F)
7

14
21

—0.283+0.004
—0.286a0. 004
—0.283&0.006
—0.292&0.006
—0.299+0.005

0.54+0.09
0.54+0.09
0.54~0.09
0.35~0.09
0, 15&0.10

0.020&0.005
—0.009&0.004
—0.018~0.005
—0.028&0.003
—0.038~0.006

—0.008+0.002
0.006+0.002
0.011~0.002
0.016+0.001
0.021+0.004

TABLE III. The phase shifts (in degrees) at 600 MeV/c, ob-
tained from our best fit, compared with the values obtained by
Ray et al. from a standard analysis which included charge-ex-
change data.

pj 1
2 +2

This work, g'=14
Reference 3

—31 —8.5 5.3
—32.7+3.0 —8.6+3.0 4.2~3.0

'7 Y. A. Chao, R. E. Cutkosky, and B.B, Deo, in Proceedings of
the Folrtheenth International Conference on High-Energy Physics,
Vienna, 10M (CERN, Geneva, 1969)."R. Levi Setti, Rapporteur, Proceedings of the Lund Inter-
national conference on Elementary Particles (1969) (unpub-
lished), p. 340.

' A. D. Martin and F. Poole, Nucl. Phys. B4, 467 (1968).
20M. Lusignoli, M. Restignoli, G. A. Snow, and G. Violini,

Phys. Letters 21, 229 (1966)."R. L. Cool, G. Giacomelli, T. F. Kycia, B.A. Leontic, K. K..
Li, A. Lnndiey, and J. Teiger, Phys. Rev. Letters 17,.102 (1966).

study of the energy dependence might show a need
for more parameters. )

In polynomial Qts to the differential cross section,
for the purpose of estimating the coupling constant'
gqzs=grrrvas+gx~z' and the real part of the forward
scattering amplitude, "reasonably precise (&35%%u~) and
consistent estimates of gg~' were obtained from the
data (iv), (vii), and (viii). The data (v) seemed to
give too large a value (gzzs ——22&6); this may be
related to the fact that the backward points of (v)
do not appear to lie on LMQ's interpolated curve.
The values of gqz' adduced from (ix) and (x) were
somewhat low and had very large uncertainties. The
consistency of the two sets of angular distributions
of (ix) with each other or with (viii) appeared to be
marginal. It has since been reported" that systematic
errors have been found in the data (ix).

The data (ii) and (iii) have limited statistical ac-
curacy for a fixed-energy analysis and are really at
too-low momenta for our transformation to have a
pronounced effect. We included them in our analysis
in order to provide a basis for comparison with the
E+d charge-exchange scattering experiment at 600
MeV/c of Ray ef al.' In addition, these data were
used in an energy-dependent analysis.

At all energies, we used as additional input data
values of the forward amplitude as obtained from the
dispersion-relation studies of Martin and Poole' and
Lusignoli et al.20 We also used. the total cross-section
data of Cool et al."

IV. ANALYSIS OF LOW-ENERGY DATA

Over a suKciently limited range of energies, it is
possible to parametrize simply the energy dependence
of partial-wave amplitudes. Fortunately, also, experi-
mental data from one group (Berkeley)s are available
at eight different momenta from 140 to 642 MeV/c.
Although the start of the inelastic threshold corre-
sponds to a beam momentum of 521 MeV/c, the in-
elastic cross section at 642 MeV/c is less than 0.5%,'
so that the data at all these momenta can be treated
as being fully elastic. Furthermore, apart from the
inelastic branch cut which, we neglect, and possible
singularities on the "second sheet" of the partial-wave
amplitude, the function M~(k') = (k/p) "k cosset is ana-
lytic in the k' plane except for a cut —~ &k'& —p,',
so that one can make an eRective range expansion

(k/p) 'tk cotb) ——a) '+-', rek'+ ~ ~ .. (8)

This expansion, however, does not converge outside
the circle

~

k'
~

&p'. One can increase the region of
convergence by constructing the "parabolic" variable
discussed in our earlier paper, '

P'= p'Lcosh '(1+k'/ys) '"g'

and expanding M~(k') as

M)(k') = a( '+-', rs(p'+ ~ ~
,
~ . (10)

This variable transforms the left-hand. cut to a pa-
rabola, and the Taylor expansion (10) is convergent
for

~

p'
~

(-,'s'ps, i.e., (k'), Sps. (Considered as an
expansion in orthogonal polynomials, the region of
convergence is larger. )

Thus the expansion (10) was used to parametrize
the partial-wave amplitudes. (I MO expand the phase
shifts themselves as a power series. ) In practice, the
expansion (10) was used only for the large 5-wave
amplitudes in this low-energy region.

A preliminary analysis4 had indicated that even at
Pt,b=520 MeV/c, the I'r~~s phases are too large to be
ignored. Since one also wishes to consider the Fermi-
Vang ambiguity, one is led to introduce at least three
partial waves, S~~2, I'~~~~, and P3/~, which is also the
minimum number required for our transformation
method to affect the analysis. The P&~2 and I'3/2 phases
are quite small, and a simple scattering length was
found to be,enough to characterize them. (Introduc-
tion of quadratic terms in 8 waves and/or linear
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TABLE IV. Phase shifts (in degrees) obtained in energy-independent analyses at the laboratory momentum indicated (in MeV/c).
In addition to the solutions listed, two distinct I'-type solutions were found at 1450 MeV/c.

P (lab) (DF) g' 1
2

778 (18) 0

14

—42.9
0.997

—42.3
1.00

—39.6
1.00

—36.8
0.999

0.38
1.00

—3.0
0.999

—10.3
0.973

—15.0
0.990

+0.66
0.987
2.3
0.987
6.64
1.00
9 0
1.00

—0.21
1.00

—0.80
0.998

—0.85
0.997

—0.75
0.994

0.11
0.998

—0.80
0.998

—1.66
0.999

—2.6
0.998

16.1

15.7

20

860 (32) —48.3
0.93

—49.0
0.82

—41.3
0.999

—42.5
0.93

—2, 74
0.97

—6.3
0.89

—11.7
0.966

—13.9
0.991

5.45
0.989
7.3
0.84

11.5
0.986

10.9
0.993

—5.43
1.00
4 9
1.00

—3.8
0.995

—3.4
0.996

0.48
0.996

—1.6
0.988

—3.4
0.996

22

25

0.94
0.996 25

910 (10) 0

7

14

21

—60.7

0.68
—41.0

1.00
—31.8

l.00
—26.0

0.89

—8.0
1.00

—14.2
0.87

—24.4
0.68

—28.5
0.999

2.9
1.00

10.5
0.98

+15.6
0.976

16.6
1.00

—3.7
1.00

—2.0
0.988

—2.9
0.979

—4.0
0.983

1.00
—0.2

0.985
—1.4

0.975
—3.2

0.979

5.4

4.3

4.0

960 (38) 0

7

14

21

—46.9
0.997

—49.2

0.983
—43.7

0.96
—42.8

0.82

—8.14
0.91
9 44
0.943

—19.5
0.68

—22.7
0.86

10.1
0.91
8.33
0.91

10.9
0.999

13.1
0.999

—5.25
0.993

—3.72
0.988

—2.9
0.993

—3 ~ 6
0.980

1.64
0.978

—0.88
0.980

—2.5
0.992

—4.1
0.999

33

32
33

1170 (13) 0

14

21

—43.9
0.88

—45 ~ 9
0.90

—43.7

0.981
—34.7

0.990

—30.5
0.29

—23.4
0.27

—24.9
0.22

—35,0
0.77

4.7

0.79
3.0
0.79
1.5
0.78

10.6
0.710

—8.6
1.00

—8.0
1.00

—6.2

0.983
—5.8

0.960

0 ' 22
0.96

—0.39
0.96

—1.0
0.96

—1.9
0 94

15.7

15.8

16.0

1200 (56)

21

—32.5
0.61

—35, 1

0.72
—45.8

0, 92
—46.3

0.82

—74.4
0.44

—77.9
0.37

—30.1

0.81
—32.3

0.83

—3.0
0.86

—5.0
0.85
6.2
0.89
6.8
0.74

—9.0
1.00

—6.5
0.995

—3.2
0.95

—3.3
0.96

—1.1
0.970

—1.3
0.971

—3.4
0.95

0
0.96



ANALYSIS OP LOW-ENERGY E+p SCATTERING DATA

TABLE IV (Coeti sued)

2553

I' (lab) (DF) g'

1430 (34) 0 0

7

14

—46.3
0.48

—43.4
0.46

—41.5
0.39

—43.7

0.46

—65.8
0.35

—64 ~ 7
0.42

—60
0.26

—40.0
0.98

—11.2
0.76

—1.1.4
0.70

—11.2
0.82
0.3
0.59

—9.0
0.993

—7.6
0.980

—5.2
0.94

—8.3
0.96

4 9
0.96

—5.7
0.96

—7.5
0.999

—6.0
0.95

47.5

48.7

49.7

51.0

860 (32) 0

7

14

21

—47.3
0.90

—47.0
0 ' 990

—37.6
0.998

—22.5
0.973

6.0
0.86
9.3
0 ' 86

26.7
0.978

40 ' 3
0.89

—0.2
0.997

—0.6
0.999
4 3
0.96

—5.2

0.998

—4.3
1.00

—2.7

1.00
—2.2

0.993
—3.2

1.00

0.002
0.999

—1.9
1.00

—4.2
1.00

—6,0
1.00

33

22

22

960 (38) 0

7 6

14

21

—49.9
0.93

—54.7
0.81

—46.6
0.98

—46.9
0.89

16.1
0.85

17.1
0.75
20.0
0.70

19.4
0.75

—4.8
0.94

—3.0
0.99

—0.6
0.96

—0.7

0.97

4 9
1.00

—4.2
1.00
2.0
0.99
6.4
1.00

—0.8
0.99

—2.7
0.99

—4.5
1.00

—6.4
1.00

37

32

38

1170 (13) 0 S

21

—42.8
0.90

45
0.92

—42. 1

0.95
—40.0

0.995

33.5
0 ' 22

19.3
0.18

26.6
0.08

34.6
0.08

0.79
3.3
0.81

—3.5
0.79
9 3
0.998

1.6
0.96
0.9
0.96

+0.3
0.96

—3.2
0.999

—6.7
0.988

—6.5
0.990

—5.6
0.98

—4.0
0.988

15.7

15.8

16

17

1200 (56) 0

14
21
21

—29.6
0.51

—31.0
0.48

—35.5
0.67

—40. 1

0.989

80.5
0.37

83,3
0.35

83.8
0.24

25, 0
0.67

0.89
—7.6

0.90
—7.8

0.87
—17.9

0.81

1.4
0.97
1.3
0.976

—2.3
0.98

—3.4
0.95

—9.4
1.00
9 5
F 00

—5.2
0.98

—2.7
0 94

83.5

83

terms in Pi/3 and/or P3/3 waves improves somewhat
the fit at 642 MeV/c. ) Thus we used four parameters
to fit the 53 data points of Goldhaber et at.3 /There
are 45 data on differential scattering cross sections
and eight values of the real part of the forward am-
plitude taken from the dispersion relations" ' (with
large uncertainties) .]

Our results are shown in Tables I and II. For the
solution of the type F P(Pi/3) (S(P3/3) j, we find that
the y' is quite independent of g' in the range of in-

terest (one notes, however, the different phases ob-
tained at 520 and 642 MeV/c for g3=0 and g'&0).
For the solution of type I" Lb(pi/3) )S(p3/3) $, we find
that the best 6t is obtained for g'&7. Previous anal-
ysis' and our analysis at higher momenta indicate
that g'&7, which leads us to believe that for the
favored solution in the low-energy region, 3(Pi/3) (
8(P3/3). LIf one considers only values of g' which are
consistent with SU(3), this P solution is the only
acceptable one. g This favored solution is included in
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confusion by systematic errors. We did, however, make
an analysis at this energy alone, and the phases ob-
tained are shown in Fig. 1, and the fit in Fig. 2. To
compare further the energy-dependent and energy-
independent analyses, we compared the results also
at 640 MeV/c. These results are also shown in Figs.
1 and 2. A small change in the E-wave amplitudes
of 640 MeV/c would remove the small disagreement
between the two fits.

B. 780 and 910 MeV/c

1. 780 MeV/c. From the experiments of Focardi
et al. ,

" data with very good statistics on differential
scattering cross sections are available at 780-MeV/c
lab momenta. The inelastic cross section is not neg-
ligible, and the total cross section is quite accurately
known. There is also a measurement of polarization
with large errors by Femino et a/. " We carried out
a very detailed search for all acceptable fits. It was
found convenient to search for the real and imaginary
parts of the partial-wave amplitudes instead of the
phase shifts and the inelasticities. Since the ellipse of

-10—
I

0.5
Piab

I I

1

G vg
5

520 Me V/c
1.95

1.81 e
I

FIG. 1. Momentum dependence of the phase shifts. The 5-wave
points are denoted by squares. The energy-dependent fit of Sec.
IV is shown as solid curves; a guess as to the continuation
through the independent Qts at higher single energies is shown by
the dashed curves. The D-wave points shown as circles without
error bars were not associated with adjustable parameters, but
were generated from the more 'central partial waves. In obtaining
all of the points on these curves, it was assumed that g'= g~~g'+
gxxz'= &4

I
I

I I

6

I'ig. I. The only point which prevents us from getting
a nearly exact fit is the most forward point at 205
MeV/c. We have, however, not retouched the data
and have analyzed them as they were obtained from
the published 6gures. Goldhaber et ul. ' made an anal-
ysis with S waves only, and LMO a 6t with smaller
I" waves. However, our fit is really very similar to
theirs, except for small details.

Using expression (10) one can calcula, te the three
phase shifts for 600 MeV/c. An estimate of the phases
at this beam momentum (including charge-exchange
data) has also been obtained by Ray et at.' The agree-
ment from two such widely diGerent analyses, as
shown in Table III, makes us believe that the phases
found are approximately correct.

V. SINGLE-ENERGY ANALYSES

A. Low-Energy Data

There are data on the di8erential scattering cross
section at 522 MeV/c by Kycia et al.~ We did not
introduce this set in the above, in order to avoid

640 Me V/c

1.0

0.5
-1.0 -0.5

I

0
cos 8

I

0.5 1.0

Fxc. 2. Fits to the 520- and 640-MeV/c data. The circles denote
the data of Goldhaber et al. (Ref. 8) and the squares denote the
renormalized data of Kycia et al. (Ref. 9). The solid lines show
the results of an energy-dependent 6t including the lower-energy
data of Goldhaber eg al. , and the dashed lines show the best
three-parameter energy-independent fits with B(P1t2) )B(p312) . For
all these its, it was assumed that g'= 14.
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1.4—
Standard ——---—N = 6
Analysis ———.—- - N =8

This ——
N =6

Analysis N=7 g =14

convergence is larger for the imaginary part, a smaller
number of parameters is needed for good fits to it.
So we studied the solutions as they were obtained
by searching on three real and three imaginary am-
plitudes and also on four real and three imaginary
amplitudes. The best set of phases was again with
8(Pi/~)(0, and the results are shown in Table IV.
The fit to the angular distribution is shown in Fig. 3.
For comparison with our results, we also show the
best fits to the differential cross-section data as ob-
tained by the group of Focardi ef, al."using the stand-
ard method. It is evident from Fig. 3 that the in-
clusion of partial-wave amplitudes with /&2 is required
for an acceptable ht to the data; it is also quite clear
that these amplitudes are required only in the amount
by which they are automatically generated by our
prescription.

Since the data had good statistics, we also studied
the variation of x' with g', which is not inconsistent.
with other determinations (see Fig. 4). Furthermore,
we note that consistency with the lower-energy fits
requires 7 &g~ &21.

2. 910 MeV/c. Hirsch and Gidal" carried out mea-
surements of the differential cross section at 910 MeV/c
and also measured the polarization. The errors are so
large that the resulting phase shifts have only quali-
tative significance; however, the 8(pi/, ) )0 solution is
not obtained and furthermore, the fit is sensitive to g'.
We again made a detailed study with six and seven
parameters; the results are shown in Table IV, and
a graph showing the variation of y' with g' is given
in Fig. 4.

At these two energies there is no Fermi-Yang am-
biguity, so one can, with some con6dence, assert that
B(Pi/~) (0, at least up to 910 MeV/c.

C. 860 and 960 MeV/c

These data from Berkeley" can be well fitted by
seven parameters, the real parts of the (Si/9 I'l/2,

1

20—\

\

778 Me Vtc
25 data IIII

/
I

I

10—
r

rrrr
~&t~esw~ ~

~egg z

910 Me V/c
&7 data

0
0

I

10
I

15 20 25

FxG. 4, Graphs illustrating the degree of sensitivity to the
coupling-constant combination g2= g~~g'+g~~g2, for two ener-
gies where polarization information existed before this work was
carried out.

Pa/, , D&/&) amplitudes, and the imaginary parts of the
first three. They exhibit clearly two solutions (F and
I' solutions) for all values of g~'+gz', in the range
0—21. These solutions are tabulated. in Tables IV
and V. However, the analysis at 780 and 910 MeV/c
having required that B(pi/&) (0, the solution for 860
MeV/c would still be 8(pi/~) (0. At 960 Mev/c, how-
ever, besides the smoothly increasing —b(Pi/2), one
could think of a E'~~2-wave phase shift approaching
zero or crossing over to the 5(pi/~) )0 solution. Po-
larization data would greatly reduce the uncertainties
in the phase shifts.

t.2—

t0 =-----

I

-0.5
0.8

-1.0
I I

0 0.5 1.0
cos 8

PiG. 3. Pits to the 778-MeV/c data of Pocardi et al. (Ref. 10)
using g'=14. The "standard analysis" curves (Ref. 10) were
fItted to the differential cross section and total inelastic cross
section;$'for~N=6, only S and/'E~'waves were considered, while
for N =8 elastic D waves were also included.

D. 1170 and 1200 MeV/c

The set at 1170 MeV/c consists of rather old (1961)
spark. -chamber data of Cook et al. '4 but contains
measurements close to forward angles. The set used
at 1200 MeV/c was the Berkeley data" of 1967—1968
in our initial runs. We found first that both sets
could be well fitted by seven parameters, as for the
smaller (860, 960) beam momenta. We had, however,
noted that even though the beam momenta are close,
a combined analysis of both sets of data at an average
momentum of 1190 Mev/c could not be fitted by
seven parameters. When we included the recent BNI.
data" at backward angles (we obtained a g'=95 for
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].0

0,5

-0.5

-1.0
-1.0 -0.5 0

cos e

I
Ij
Ir I(I/

I

1.00,5

FIG. 5. The renormalized polarization data at 1220 MeV/c,
compared with the predicted polarization at 1170 MeV/c (with
g'=14). The solid curves indicate, roughly, a one-standard-
deviation band around the best fit with B(pus) (B(p312). The
dashed curves (and the lower bound I'& —1) gives the same
information for the its with 8(p&/2) )Bp3/2). By comparing the
size of the band with the error bars on the data, some idea can
be gained of how the precision of the phase-shift determination
can be increased by use of polarization data.

60 degrees of freedom), we also could not obtain a
good fit with seven parameters at 1200 MeV/c alone.
A somewhat more acceptable fit was obtained with
eight parameters with 6ve real amplitudes (Sr/s, Er/s,I s//z Ds/z and Ds/s) and the imaginary parts of the
first three, the z' dropping down to 80. It may be
noted that after renormalization, the BNL data can
form a good continuation of the 1170-MeV/c data.

With eight parameters we obtained two main solu-
tions when only the 1200 MeU/c angular distribution
data was used; these are shown in Tables IV and V.
The polarization data of Andersson et al.' are con-
sistent with the solution shown in Table IV.

In view of the fact that systematic errors have
been discovered in the 1200 MeV/c data, " the
results quoted for this set are not very signi6cant.
In this energy region, we found from the angular
distribution what can be described as a two-parameter
family of solutions; the two parameters can conven-

iently be taken as the real and imaginary parts of
the I'&~& amplitude, which could vary within wide
limits, but with the other amplitudes then being
strongly correlated with it. The polarization data
essentially 6x these parameters.

In Fig. 5 we have superposed the renormalized
1200-MeV/c polarization data on the bands of pre-
dicted polarizations obtained from the 1170-MeV/c
differential cross section. The bands were obtained as
the envelope of the polarization curves derived from
constrained 6ts, when the I'j/~ amplitude was 6xed at
various points along the Ay'=1 contour.

TABLE V. Uncertainties for the phase shifts obtained with
g'=14 listed in Table IV (F). These may be considered typical.
The uncertainty in (1-q) is about 50'%%u~.

P (lab) +2 3
2

VI. SUMMARY

The primary results of this study are contained in
the tables, especially Tables IV and V, and also in
Fig. 1, which shows the trend with energy of the
phase shifts obtained by the analysis reported here.

The uncertainties in the phase shifts, listed sepa-
rately in Table V, are essentially independent of g2.

However, we wish to remark that a realistic estimate
of the uncertainty is very hard to obtain, because
the y' surface is quite irregular, as is common in this
sort of work. The inelasticity parameters g are all
uncertain by about 50'Po of the amount by which
they differ from unity.

However, our motivation in undertaking this work.
was only in part derived from the desire to clarify
the nature of E+p interactions. We also had the aim
of testing our proposed new method for partial-wave
analysis in a practical application and, in particular,
to see whether any unexpected technical problems
would impair its usefulness. Compared with the usual
partial-wave expansion, the one used, here has strong
theoretical advantages. It has sometimes been con-
sidered that the ordinary expansion is the simplest
and easiest to use. However, our experience in this
work has shown that the improved expansion is just
as convenient, when organized in the manner described
in Sec. II; thus, the traditional method has no ad-
vantages whatsoever, which could compensate for its
inherent biases.

A perhaps unexpected bonus of our new method is
that fewer ambiguous sets of fits were obtained. This
was also noted by Ray et ul. 3 In addition, we did not
need to make any arbitrary guesses about which
partial waves were responsible for the inelasticity.

A question of great interest at the time this work
was begun concerned the existence of a I'~p resonance.
The data of Andersson et al.4 proved that this sus-
pected resonance did not exist, although, indeed, our
fits at lower energies also de6nitely favored the non-
resonant possibility. The question of a resonance in
the I'3/2 partial wave is still open. However, we wish
to point out that the possible counterclockwise mo-
tion in the Argand diagram might be associated not

E. 1450 MeV/c

This set of data from CERN" can be equally well

6tted with seven or eight parameters, but the results
quoted in the tables are for eight. At this momentum,
all phases are negative, as are all the larger Born
waves.

780
860
910
960

1170
1200
1450

6 2.5
5 3
8 4

10 20
7 20
8 30
6 35

3 1.5
2.5
3 1.5
3.5 1.5
3 3
3 2
8 3

2
3
3



ANALYSIS OF LOW-ENERGY E+p SCATTERING DATA 2SS7

with a resonance pole on the unphysical sheet, but
instead with the complex normal threshold branch
cuts for the two-body processes E+E'~E+4 or
E+X~'E*+E. Very precise data and careful anal-
ysis would be required to distinguish between a pole
and a branch cut.

Finally we wish to emphasize that, apart from the
importance for establishing the trends of the phase
shifts, highly accurate data on the diRerential scat-
tering cross section and polarization in this energy

region would be especially valuable, in that they
would make possible a precision determination of the
coupling constants.
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Inelastic Processes in the Eikonal Expansion~"
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Glauber's eikonal approximation for multiple scattering is extended to include inelastic processes. It
is found that inelastic contributions to the diAerential cross section for the reaction 7f d~~ d are negligible,
while such contributions dominate the double-charge-exchange reaction a He'~7i-+3n.

I. INTRODUCTION

~ 1HE systematic presentation made by Glauber of.the high-energy eikonal approximation' has made
possible the widespread use of this method in recent
years to analyze high-energy scattering data. This
method makes it possible to express the scattering
amplitude for the process of an elementary projectile
incident on a composite target in terms of the elastic
amplitudes for the same projectile incident on the
individual constituents of the target, and of certain
parameters of the target. The approximation has thus
been used extensively in the analysis of hadron-hadron
interactions at high energy and of nuclear-structure
parameters. '—"Until recently, however, very little of
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this work has treated pion-nucleus interactions. '''7
Some work has been done on charge-exchange scat-
tering, but only as quasi-elastic corrections to elastic
processes. ' ' ' '

If k and k' represent, respectively, the initial and
final momentum of the projectile, formal derivation of
the multiple-scattering expansion as it is commonly
used requires that k be nearly perpendicular to k—k'
for small scattering angles. "This condition is met for
elastic and quasi-elastic (e.g. , s. p—+rr'rr) processes, but
is invalidated by the longitudinal momentum transfer
involved in inelastic processes (e.g. , 7r p~p'rs). At-
tempts have been made to modify this approximation
to include such processes, ""but we feel that the
present analysis is considerably more transparent.

In this paper we rigorously extend the eikonal
approximation to include inelastic processes in order to
understand better all contributions to a given reaction,
and we note one process in particular which could
provide a test of the theory as well as an excellent
vehicle for the study of certain resonances.

We begin in Sec. II with a reformulation of the
multiple-scattering expansion in terms of coupled
channels of different mass. The resulting expression
reduces to the Glauber result in the special case of
elastic scattering or channels of equal mass, but takes
specific account of the longitudinal momentum transfer
in the unequal-mass case.

Section III contains a brief study of the reaction
m d—+m d, paying particular attention to inelastic
intermediate-state contributions. Section IV is an
analysis of the double-charge-exchange reaction
x He'—&x+3m. It is shown that inelastic processes

rr C. Michael and C. Wilkin, Nucl. Phys. Bll, 99 (1969).


