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The hypothesis is made that the sum of the imaginary parts of the baryonic Regge contributions to
exotic meson-baryon scattering amplitudes must vanish. This hypothesis is combined with the assumptions
that all coupling constants satisfy exact SU(3) symmetry and that the Z-A mass splitting cannot be ne-
glected, so that the Z and A lie on different Regge trajectories. All possible partitions of the spin-parity-2 A. s
and Z s (belonging to an octet, singlet, and decuplet) into the two trajectories are considered. A set of
consistency equations is derived, and all solutions are obtained. If the A (1520) is the only odd-parity hyperon
on the bottom PA(1115)g trajectory, and the A(1690) and one or two Z's lie on the top trajectory, there is
only one solution. In this solution, there is no odd-parity decuplet, the F/D ratios of the couplings to meson-
baryon states of the j =2+ and ~ trajectories are 1, and the singlet-octet mixing angle of the —', A s is
0= tan 'v'-2. This solution is in approximate agreement with experiment.

I. INTRODUCTION

ECENTLY, the author has applied the exchange-
degeneracy (ED) hypothesis to various ampli-

tudes involving P'8 and PD states, where P denotes the
pseudoscalar meson octet, and 8 and D denote the spin-
parity ~+ octet and ~+ decuplet. ' ' The hypothesis states
that in all amplitudes of exotic internal quantum
numbers (quantum numbers for which no resonances
occur), the sum of the imaginary parts of the baryon-
exchange Regge contributions must vanish. ' This
usually requires cancellation from trajectories of oppo-
site signature (and hence representing physical baryons
of opposite parity).

There is some experimental evidence for the existence
of three SU(3) rnultiplets of spin-parity —,

' that are
approximately ED with the nucleon octet; these are the
singlet and octet that include the A particles at 1520 and
1690 MeV, and the decuplet that includes the 1690-
MeV A*.4 This set of multiplets coincides with the pre-
dictions of the quark. model or SU(6)s model, if the
SU(6) representations 56 and 70 are associated with
baryon states of even and odd parity, respectively. '" In
the quark model, the increasing angular momentum
along a trajectory is associated with increasing orbital
angular momentum; thus the even- and odd-parity
multiplets that are approximately exchange-degenerate
should correspond to the same quark spin or SU(6)
spin. The only spin-rs multiplet in the SU(6) representa, -

tion 56 is an octet, while the 70 contains a spin--, octet,

*Part of this work was done while the author was visiting the
Lawrence Radiation Laboratory, university of California,
Berkeley.

j Supported in part by the U. S. Atomic Energy Commission.
R. H. Capps, Phys. Rev. Letters 22, 215 (1969).' R. H. Capps, Phys. Rev. 186, 2008 (1969).' A recent discussion of the motivation of this hypothesis is given

by Haim Harari, Phys. Rev. Letters 22, 562 (1969), and by
references cited therein.' Except where otherwise noted, the experimental numbers are
taken from the compilation of X. Barash-Schmidt et at. , Rev.
Mod. Phys. 41, 109 (1969).

~ The predictions of the SU(6)z model for odd-parity baryon
resonances are given by R. H. Capps, Phys. Rev. 158, 1433 (1967).
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singlet, and decuplet. Thus, the experimental and
quark-model associations of ED multiplets are the same.

We denote the four ~+ and ~ multiplets by 8(+&, 8& ',
1' ), and 10' ', where the superscript is the parity. The
consistency conditions that result from the ED hy-
pothesis are not sufhcient to determine the relative
couplings of these four multiplets. ' However, it was
pointed out in Ref. 1 that if the A(1115) and Z(1193)
are assumed sufficiently different in mass so that their
Regge trajectories cannot be considered degenerate, the
ED conditions may be applied to the two trajectories
separately, and more consistency conditions result. The
purpose of this paper is to carry out this program com-

pletely, making all possible assumptions concerning the
partitioning of the odd-parity A's and 2's between the
A(1115) and Z(1193) trajectories. We continue to as-
sume exact SU(3) symmetry of the coupling constants. '

Of course, the Z-A mass splitting is not extremely
large. In terms of the mass squared, it is about half the
~-@ splitting. However, it seems to increase as one
ascends the Regge trajectories, i.e., the splitting of the
~+ hyperons that are usually regarded as recurrences of
the 2 and A is greater than the Z-A splitting, even if one
uses mass rather than the mass squared as the variable. 4

Furthermore, the assumption that the A(1115) and
A(1520) lie on an ED trajectory that does not include
the A, (1690) is fairly conventional in Regge analyses of
EE and KE scattering. 7

If one assumes that all meson states other than singlet
and octet states are exotic, the ED principle breaks
down when applied to baryon-antibaryon amplitudes. '
There are two different reasonable viewpoints concern-
ing this problem. The erst assumes that exotic meson
resonances will be found that are not coupled strongly
to meson-meson states. The second assumes that no

' A similar program, for the singlet-octet splitting of the mesons,
has been carried out by C. B. Chiu and J. Finkelstein, Phys.
Letters 27B, 510 (1968). The baryon case is more complicated,
because of the different set of SU(3) multiplets of the even- and
odd-parity particles.

'See, for example, V. Barger, Phys. Rev. 179, 1371 (1969);
K. Igi and J. K. Storrow, Nuovo Cimento 62A, 972 (1969),

'For a discussion of this problem, see Jonathan L. Rosner,
Phys. Rev. Letters 21, 950 (1968); see also Ref. 2, Sec. II B.

254



EXCHANGE DEGENERACY AND 5 —A. SPLITTING 255

exotic mesons will be found, and that the ED hypoth-
esis cannot be applied to BB states. (In this paragraph
only, Bdenotes either an octet or decuplet baryon. ) One
can 6nd a theoretical reason why the second view might
be correct, involving the fact that BB states (unlike
MM, MB, or BB states) are coupled by unitarity to
states of much lighter rest mass. In this paper we adopt
the second viewpoint, using as justi6'cation only the
experimental absence of exotic mesons. Hence, we do
not apply the ED principle to the processes I'I' —+ BB.
The extension of the principle to these processes has
been discussed recently by Barger and Michael, ' and by
Mandula et al. '

The self-consistency equations are derived in Sec. II,
and all the solutions are found in Sec. III. One of the
solutions involves a spectrum of Z and A particles that
corresponds very well with the experimental spectrum.
A comparison with experiment of some of the branching
ratios predicted by this solution is given in Sec. IV.

IL CONSISTENCY EQUATIONS

The ED principle leads to two types of restrictions
on Regge amplitudes: one referring to the trajectories
and the other to the residues. We are concerned only
with the residue conditions. As shown in several places,
these conditions are simple, namely, the sum of the
residues of even-parity (even-signature) Regge con-
tributions to an exotic amplitude must be equal to the
corresponding sum of odd-parity contributions. "Since
the form of the conditions is the same for each spin
state and each momentum transfer, we may omit
spin and momentum-transfer variables in writing the
conditions.

All I'8 states other than singlet, octet, and decuplet
states are exotic. The I, and V quantum numbers of
exotic I'8 states are shown in Fig. 1. These states are
of two types, denoted by A and B.There are three types
of exotic PB —+ PB processes; the crossed (u-channel)

FrG. 1. I, and Y quantum numbers of the A-type and 8-type
exotic PJ3 states. The states labeled X are the decuplet states that
are outside the octet.

V. Barger and C. Michael, Phys. Rev. 186, 1592 (1969);J.
Mandula et u/. , Phys. Rev. Letters 22, 1147 (1969).

TABLE l. Three possible partitions of the A. ( & and Z& ) particles
to the Regge trajectories of the Z(1193) and the A(1115).

Trajectory

Top EZ+(1193)3
Bottom P.+(1115)j

Odd-parity Ps
2and2 3and1 1 and 3

Zg
Z QgAI

amplitudes corresponding to these are

(K p) (~ Z+)(K'=')

(Kpp) (KpZ+) (~==p),

B;„: ~ Z+ —+Kp p, K p —+Ken

(1a)

(1b)

(1c)

The states in parentheses denote elastic processes, and
the subscripts "el" and "in" denote elastic and inelastic.
Amplitudes related to the above by reRection around
the line I,= 0 are omitted. The only baryon trajectories
that contribute to the A, i and 8;„amplitudes are the
A and Z' trajectories.

A. PB Equations for Two-and-Two Case

There are two A' ' and two Z( ' particles in the odd-

parity octet, singlet, and decuplet. (Superscript signs
in parentheses denote parity. ) The nature and number
of the self-consistency equations depend on how these
four particles are assumed partitioned to the bottom
[A(1115)g and top LZ(1193)] trajectories. We consider
here the most complicated case, in which there is one
A. ' ) and one 2& ' on each trajectory. This is the two-
and-two case shown in Table I. The subscripts t and b

refer to the top and bottom trajectories. The equations
for the other interesting partitions are obtained later by
suitable modifications of the two-and-two equations.

The odd-parity particles on the bottom trajectory,
A&( ' and Z&& ', may be a singlet-octet mixture and an
octet-decuplet mixture, respectively. We deine two
mixing angles nq and e~ such that the state vectors of
the odd-parity hyperons on the bottom trajectory are

hpi & =At& & cosnq+Ast & sinn', (2a)

Z pt & = —Zrpt & sinnq+Zs& ' cosns, (2b)

where the numerical subscripts denote SU(3) rnulti-
plets. The state vectors for the particles on the top
trajectory are orthogonal to these.

Since the consistency conditions to be used here
apply only to the ratios of coupling constants, we
normalize the coupling to I'8 states of the 8&+~ tra-
jectory to unity. There are then seven constants to be
determined in the two-and-two scheme, i.e.,

Gs, Gr, Grp, 8+, |), nx, and ns. (3)

The C's are the coupling constants of the odd-parity
trajectories. The normalization is such that G8' is the
sum of the squares of the couplings of one member of the
8' & trajectory octet with all PB states in the direct (u)
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channel in which the trajectory particles exist. The 8's

the 8&+~ and 8( & trajectories by the equation tan8~
= (9/5)i/'(&/D)~. Exact SU(3) symmetry of the
coupling constants is assumed.

We write the conditions by referring to the u-channel
amplitudes in Eqs. (1a) and (1c), the crossed exotic
amplitudes. The residue of a Y(A or Z') trajectory for
the exotic amplitude is just the product of the couplings
of the Y with the initial and final I-channel states. The
consistency condition is that the sum of the Y& '

residues cancel (be equal to) the sum of the I'+&

residues.
We consider first the E1V states. Because of the

crossed exotic amplitude K p —+ E'I, and the crossed
exotic amplitude Eop-+E'p (coupled to charged Z
trajectories), the couplings of A trajectories to E1V
amplitudes must cancel, and the couplings of Z tra-
jectories to EN amplitudes must cancel also. We first

apply these conditions, that the A and Z couplings for
K p scattering cancel separately, to the sum of the top
and bottom trajectories. The results, obtained with the
help of an SU(3) Clebsch-Gordan table, are"

G 2(L1/2c +s )2+ iG 2= (Ll/2c +s )2 (C1.)

Gs L(9/5)'/2c —s l2+Giom= E(9/5)' 2c+ s+32 (( 2

For convenience we label all consistency conditions with
capital C.

If we had followed the procedure of Refs. 1 and 2, and
required cancellation in pure states of the exotic I'8
representations 27 and 10*, two independent linear
combinations of Eqs. (Ci) and (C2) would have re-

sulted. Since adding the two trajectories gives the
exact-SU(3) results, no further independent I'8 condi-
tions may be obtained by adding the trajectories.

The requirement that the couplings of the bottom
trajectory A's cancel for K p states, and the corre-
sponding requirement for Z's, lead to the equations

G&L(1/20)'/'c +-"/'s $ sinn'+ —"/'Gi cosnq
= (1/20)'/'c++-"/2s„, (C3)

G8$—(3/20)'/2c +P~'/'s $ cosnr,

+ i ~'/2Gio sinn'= 0. (C4)

The fact that Eq. (C3) is not squared is discussed later.
Sometimes it is convenient to replace Eq. (C3) by the
condition that the A& & on the top LZ(1193)g trajectory
is decoupled from K p states. This condition is

Gs/(1/20)"'c +-"'s J cos/&//, "/'Gi sinn/i—=-o. (C3')

We now turn to the x Z+ and E'™pstates. We note
from Eqs. (1a) and (1c) that the u-channel processes
include elastic z Z+ and E ~ scatterings and the
inelastic amplitude n Z+ —+K'"0. If G(i,j) is used to
denote the coupling of the trajectory i to the state j,

"Tables of SV(3} Clebsch-Gordan coeKcients are given by
P. McNamee, S. J. Chilton, and Frank Chilton, Rev. Mod. Phys.
36, 1005 (I964}.

then application of the KD hypothesis to the elastic and
inelastic processes leads to the conditions

G(A, &-&,j)=pG(A~+&, j),
G(Z, &-&,j)= qG(A&+&,j),

(4)

(5)

where P'+q'=1, and j refers to either the vr Z+ or
K'Z' state. If one writes the G's in terms of SU(3)
Clebsch-Gordan coeKcients and the constants of Eq.
(3), the result is"

—-', "'Gac sinn~+xi/'Gi cosn~ p——-',—"c+, (C5)

-'/'G8s cosnr ——"'Gio sinnx = —
/1
—"/'c+, (C6)

G/&L(1/20)" c —i'/ s ) sinnii+~~'/2Gi cosa'
=pt (1/20)i/"+ —l""+J, (C7)

Gsf(3/20)'/'c +—''/'s
g cosa'+ —,', '/'G, o sinai

=
qt (1/20)"'c+——""s+g, p'+q'= 1 (CS)

Here, Eqs. (C5) and (C6) are related to the ir=Z+ state,
while Eqs. (C7) and (CS) are related to the K' ' state.

The conditions we have given are not all independent,
but are complete, in the sense that any solution satisfy-
ing Eqs. (C1)—(CS) will lead to satisfaction of the
residue conditions associated with every exotic I'B
process.

We now make some phase conventions. The condition
that the A&+& and A/, & & couplings cancel in the K p
amplitude is a,ctually the square of Eq. (C3), so that
we should insert a ~ before the right-hand side of the
equation. However, any solution to the set of equations
that corresponds to the insertion of a minus sign in

Eq. (C3) is related to a solution involving the plus

sign, if the signs of Gi, Gs, Gio, p, and q are changed.
Hence, we lose no generality by omitting the ~ sign.
We also make the conventions that eg and eg are
between 0' and 90', while 8+ and 8 are between —90'
and 90'. It is easy to show that any solution excluded

by these conventions is related to an included solution

by a change of sign of an appropriate subset of G~, G8,

Gip, p and /t. These latter constants may be positive
or negative.

B. Extension to PD States

In this section we write the extra consistency condi-
tions for the two-and-two case of Table I that result
from considering I'D as well as I'8 states. Since the
conditions involve only ratios of couplings to the same
states, we normalize the coupling of the 8&+) trajectory
to I'D states to be unity (assuming that this coupling is

not zero). The constants of interaction of the 8& ' and
10& ) trajectories to the I'D states are denoted by F&

and Fyp.
We first consider the exact SV(3) conditions that

result from summing the top and bottom trajectories.
The A trajectories are not coupled to KA states. The
requirement that the sum of the Z' ' couplings cancels
the Z'+) coupling to K h+ elastic scattering leads to
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the condition
Fs'+ sFips=1 (C9)

Fs sinn'= p, (C11)

(1/15)' 'Fs cosnq+e't'F~p sintsq= —"t'q (C12)

where the p and q are the same as in Eqs. (CS)—(C8).
The conditions that result from considering the E' ~o'

state are the same as these, rather than being
independent.

There is one further condition, involving the bottom
trajectory and K 6+ states. This is the condition that
Z~' ' decouples from the K ~+ state, i.e.,

—(4/15)U'Fs cosnz+P 'F» sinnz=0. (C13)

The constants Fs and Fio may be positive or negative.
This completes the list of consistency conditions for the
two-and-two case.

III. SOLUTIONS

In one solution to the two-a, nd-two case (and to some
other cases also), Gt=Gtp=0 Gs=1, 8+=8, and the
A. ( ' and A.~+& cancel each other, as do the Z~ ' and Z&+).

We call this solution the trivial solution, and ignore it.
The consistency equations lead to simple relations

for the mixing angles o.~ and o.q. Combination of Eqs.
(C1) and (C3') yields a simple expression for (G& seen&)'
in terms of c~ and s+. One may use Eqs. (C3), (C5), and
(C7) to write Gt cosna in terms of c+ and s+. If GtNO,
it ma.y be eliminated from these relations, yielding

cosa& ——L:;(1—p)]'t', if G,AO. (6)

In a similar fashion, one may use Eqs. (C2), (C4),

This condition assures that cancellation occurs in both
the exotic representations 27 and BS, as shown in Ref. 2.
Cancellation of the Z couplings in the crossed-exotic
inelastic process K p —+ X 6+ leads to the condition

FsGsf sc +—(4/45)'t s ]—(1/18)'t FlpGlp
= —-'c + (4/45)'tss+. (C10)

This condition assures cancellation in the exotic
representation 27.

%e now turn to the conditions resulting from requir-
ing cancellation of bottom-trajectory contributions.
The list of crossed-exotic processes coupled to the
A. and Z trajectories may be extended to include I'D
states by making any number of the replacements,

~p 6 ~B Z],p~Z, and yp~ ln the 2 t and
8;„amplit udes of Eqs. (1a) and (1c).The subscript 10
denotes a decuplet member. All of the states involving
baryons of nonzero strangeness are connected by in-
elastic as well as elastic crossed-exotic amplitudes, so
that the conditions involving these states may be
written in the form of Eqs. (4) and (5), with j referring
either to the m Z~()+ or K' ~0' state. The conditions
related to the m 2~0+ state are

(C6), and (C8) to write the following equation for nq.

sin'csq cos'et'= $q', if Gt»0.
These equations are used in the following sections.

(7)

Gtp' ———2P (9/5) '~'c+ —s+]' (8)

Since 6~0' cannot be negative, this equation determines
that G~P= 0 and tan8+= (9/5)' s. All the FB constants
are then determined to have the values

Gs ——-'"' Gt ——(32/21)'" Gtp=0

tan8+= tan8 = (9/5)"', cosng=-s"t'. (9)

Since one of the Z( 's is decoupled, this should be
called the two-and-one solution.

One can attempt to extend this solution to processes
involing FD states by considering Eqs. (C9)—(C11),
with p= —1. A contradiction results; the solution
cannot be extended unless all coupling to I'D sta, tes
vanishes. On the other hand, if one considers only those
equations obtained by adding together the contributions
of the two trajectories, Eqs. (C9) and (C10), no contra-
diction results, provided the I's are chosen so that
Eq. (C9) is satisfied. It may be that the Z-h. splitting
must be neglected when considering I'D states. " At
any rate, since the experimental Y spectrum seems to
be of the two-and-one type, we compare the predictions
of this solution with experiment in Sec. IV.

» The results of Barger and Michael, Ref. 9, may be used to
show that this solution also leads to equality of the even- and odd-
parity trajectory contributions for the exotic PP~BB (t-channel)
amplitudes propided that one adds the contributions of the top and
bottoxn trajectories.

A. Three-and-One and One-and-Three Solutions

It is reasonable to assume that the two known
j"=2 A.'s at 1520 and 1690 MeV are on the bottom
and top trajectories, respectively. Experimentally, there
is evidence for one (and possible two) s Z's at around
1660 MeV. Thus, the partition of the four I"~ ~'s that is
suggested by the data is not that of the tvro-and-two
solution of Table I, but rather that of the three-and-one
solution, with one A. ~ &, alone of the I'( & on the bottom
trajectory. The modification of the I'8 —&I'J3 con-
sistency equations of Sec. II A that is necessary to
describe the three-in-one case is fairly simple. There is
no o.~, and the Z~& & consistency equations must be
dropped. The remaining equations are (C1), (C2), (C3)
Lor (C3')], (CS), and (C7). The quantity p must be
&1.The choice p = —1 means that the relative prZ/EX
phases of the A'+) and A~( ' are opposite.

If p=1, it is easy to show that the only solution is
the trivial one mentioned at the beginning of this
section. Hence, we choose p= —1. The value of cosna
is —,'"', as seen from Eq. (6). Using this value of nq, one
may solve Eqs. (C3), (CS), and (C7) for G&, Gsc, and
G8s in terms of c+ and s+, and substitute these expres-
sions into Eq. (C2). The result of this procedure is
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For completeness we include here another case very
similar to the three-and-one case. This is the one-and-
three case of Table I, in which only one Z& & lies on the
top trajectory, and the other 2' ' and two A( ' lie on
the bottom trajectory. In this case, it is simpler to use
consistency conditions that emphasize the top tra-
jectory. If one does this, and carries out a procedure
analogous to that described above for the three-and-one
case, one nontrivial solution results, with the constants
given by

Gi= o) Gs=-"" Gio=-'

Param-
eter

tang

coseg

Solution I
arbitrary

tana++ (9/5) '~'

(5)"' tano~ —1

11/2

Solution II
11/2
5

11/2
5

(2& 3&»»

Solution III

(9/5) 1/2

(9/5) 1/2

yl/2

TABLE II. Solutions of the consistency equations
for the two-and-two case.

tan&+ ——tane = ——,'»2, cosn~ ———,'"'.
This solution may be extended to satisfy all the PD
conditions also, if the following couplings are chosen:

P Ll/2 P (16/1 5)1/2

Cosa@ 11/2
2 &1/2

(gy 3y2) o2

& 1-y )

G1 S++5 C+ ()6y/7) 1/2

G8s s'"'Ls++ (9/5)'"c+] —(-,' (1—x)]'" L (9/14) (1—y) )"'

This solution does not correspond to experiment.

B. Two-and-Two Solutions

4'12t:s+ —(9/5)"'c+] (Sx/3) om

(1—3~+3&2)»2 1—3y

We now return to the equations for the two-and-two
case, Eqs. (C1)—(C13). If one solves Eqs. (C4), (C6),
and (CS) for GM sinn', Gas cosa.a, and Gao cosa', and
takes the ratio of the latter two quantities, then the
following equation relating 0+ and 0 results:

11/2
2

41/2
5

Px(1—x)]"' —Py(2 —3y) ]'"
(1 x)1/2

(Sx/5)'"

tan8 =Ltan8++ (9/5)'~'j/(5 "~' tan8+ —1) . (12)

If one uses Eqs. (C3), (C5), and (C7) to write equations
for G8s sinn' and G8c sinn~, and takes the ratio of
these, another equation for tano may be obtained.
Setting this equation equal to Eq. (12) leads to the
equation

(1+2p) (tan8++-,"~')ftan8+ —(9/5)'t') =0 (13)

Setting each of these factors in turn equal to zero leads
to three solutions of the PB equations, each a function
of one continuous variable. These three solutions are
shown in Table II. We have chosen cosnr (denoted
by x'~2) to be the arbitrary parameter for solution II,
and cosnz (denoted by y'") to be the arbitrary param-
eter for solution III. Solutions I and II may be extended
to satisfy the PD equations, as shown in Table II. The
variables x'" and y'" are limited to ranges for which all
cosines and sines of angles, and p and q, are of magni-
tudes not less than zero nor greater than 1.

We discuss these three solutions briefly. In solution
II, for which tan8+= tane = ——,'"', the singlet does not
interact with P'8 states and it cannot interact with
PD states. Effectively, one sees an octet split into two
parts of different masses. If we require that all existing
trajectories couple to either the PB or PD states, so
that no singlet exists in this solution, then we should
require that the octet A. is a single particle at a single
mass. Solution II reduces to a solution with one A. ( )

only if @=0 or 3. The value x=O leads to the trivial
two-octet solution. The value x= 3 leads to the one-and-
three solution of Eqs. (10) and (11); this solution is in

fact a one-and-two solution since one A. ( ' vanishes, and
the other lies on the bottom trajectory.

In solution III, the decuplet trajectory is not coupled
to PB states, but may be coupled to PD states. How-
ever, it can be shown that the solution can be extended
to include the I'D equations, Eqs. (C9)—(C13), only
if p= 1 (y=0), in which case the trivial solution results,
or if p= ——„in. which case the solution is a special
case of solution I.

Solution I is an interesting solution. Both mixing
angles are 45'. It can be shown that Eq. (12), the
relation between 0+ and 0 in all two-and-two solutions,
is the condition that these angles are conjugate in the
sense defined in Ref. 1, that is, the ratios of forces in the
two exotic representations 10* and 2?, produced by the
exchange of two octets with these 0 values, are the
same. The conjugate values coincide only in the cases
tan8= (9/5)"' and tan8= ——"" If one chooses tan8+
=-,""in solution I, then the values of the coupling
constants G and the angles 0 correspond to the quark
or SU(6)s model. ' This solution can correspond to
experiment only if a Z( ~ particle is discovered in the
vicinity of 1520 MeV.

C. Other Possible Solutions

Although we have described only a few of the possible
partitions of the A. ( ) and 2& & particles to the top and
bottom trajectories, we have investigated all possibili-
ties. No partition leads to a solution that is different
from all those mentioned here. It is interesting that one
of the partitions that seems simplest u priori, namely,
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that of assigning both A' 's to the A(+' trajectory and
both Z( )'s to the Z&+' trajectory, leads to no solution
other than the trivial two-octet solution.

A mass, spin,
and parity 1520(~3 ) 1815(~+) 2100(-,' )

TABLE III. Experimental mZ/XE coupling ratios of A
particles on the bottom trajectory.

IV. COMPARISON OF THREE-AND-ONE
SOLUTION WITH EXPERIMENT mZ/E X ratio 0.79 0.35 0.30

The experimental spectrum of j~=
~ hyperons

includes the A. (1690), Z(1660), and, at a lower mass, the
A(1520). No other —,

' I"s are known in this mass
region. The spectrum corresponds to that predicted in
the three-and-one solution, Eq. (9), since the decuplet
Z is not coupled in this solution. In this section, we

compare this solution with experiment. In making this
comparison, it is assumed that the ratios of interactions
of the same spin structure (such as F/D ratios) are
the same in the Regge-exchange region as in the
positive-u region of the resonance decays.

The prediction that G&0 ——0 is violated by the
A*(1690)

&
if this particle is a member of the decuplet in

question. However, the I'B coupling of this 6* is weak. "
Since no Z* member of this decuplet has been identified
as yet, we assume that such a Z* is also coupled weakly
to I'8 states (if it exists at all).

An interesting property of this solution is that it
disagrees with the quark model [or the equivalent
SU(6)s model]. In the quark model, the F/D ratios
of the —', + and —,

' octets are —', and 5/3, respectively,
rather than both being 1, as in the solution of Eq. (9).'
The analysis of —,

' -octet data by Tripp yields the value
Ii/D~1. 2." The value F/D= 1[tang= (9/5)"'$ is the
value for which Z particles are decoupled from KN
states. The fact that F/D is fairly close to 1 for the s+
multiplet which is the recurrence of the nucleon octet
helps explain the puzzle that Tripp's branching-ratio
analysis for this multiplet yields the result F/D 1.2,"
while the phase argument of Kernan and Smart yields
the result F/D(1 '4 "

In order to avoid assuming the Gell-Mann —Okubo
mass formula, we will not check the predicted mixing
angle nz directly, but rather will check the related A.*

branching ratios. The ED hypothesis, together with
the assumption that one A. ( ' is "alone" of the I"( & on
the A'+& trajectory, implies that the 7rZ/E1V coupling
ratio should be the same for all A's on this trajectory.
The ratio predicted by the parameters of Eq. (9) is s.

'~ Data concerning this resonance are given by A. Donnachie,
R. G. Kirsopp, and C. Lovelace, Phys. Letters 268, 161 (1968).

"R. D. Tripp, in Proceedings of the Fourteenth Internationat
Conference on High-Energy Physics, Vienna, 1968 (CERN,
Geneva, 1968), pp. 173—191.The a parameter of this reference is
related to F/D by the formula n=D/(F+D).

"Anne Kernan and Wesley B. Smart, Phys. Rev. Letters 17,
832 (1966).

"The author would like to thank Mr. V. V. Dixit for a useful
conversation concerning this point.

We have calculated these experimental ratios from the
data of Ref. 4, using the popular phase-space factor
p=k"+'/[(W+m)' —p'j, where W, m, and p are the
masses of the resonance, baryon, and meson, respec-
tively. " The results are shown in Table III. The
experimental ratio for the A(1520) is between our pre-
diction of 8 and the ~ value that corresponds to a pure
singlet, but the A.(1815) and A. (2100) ratios are in very
good agreement with the predictions. By contrast, the
experimental 7rZ/E1V ratio for the A.(1690), which lies
on the top trajectory, is 2.4. The predicted KE width
for this particle is zero. It should be noted that while
the experimental data concerning the A's of high mass
are not very accurate, the data concerning the A(1520)
are sufficiently accurate to rule out definitely the
vrZ/E1V ratio that corresponds to a pure SU(3) singlet. 'r

As pointed out in Sec. III A, the predicted relative
mZ/E1V phases of the even- and odd-pa. rity A's on the
bottom trajectory are opposite. This predicted phase for
the A(1520) has been verified experimentally. " (The
predicted ~Z/E1V phase of the A& & is that of the
singlet. ) It will be interesting to see if the phase pre-
dictions are correct for the heavier A's on this trajectory.

We conclude by noting that while deviations from
the predictions of the three-and-one solution are not
negligible, the solution is in fair agreement with experi-
ment. The data support the contention than the ED
hypothesis applies approximately to the "bottom" V
trajectory, which includes the A. (1115) and the A.

*

particles of Table III. The ED principle may be the
reason that the even- and odd-parity A's on this
trajectory have similar properties, despite having quite
different SU(3) assignments.
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