1 FORWARD PEAK STRUCTURE IN QUASI-TWO-BODY REACTIONS

it depends on the way in which LRPE is interpolated
to small d. Since there is no unique way to make this
interpolation, we must make an arbitrary choice. In our
calculations we used the interpolation Eq. (22). Here
we show how fa/" can be used to approximate fa"
[see Eq. (27)].

The functions fa" depend on the two elastic scattering
parameters ¢ and a. For meson-baryon scattering ¢=
0.58 and ¢=4.5. We can effectively take into account
the absorption appropriate to meson-baryon scattering
contained in fa™ by choosing ¢p=>5.25 (GeV/c)™! and
a1=6.2 (GeV/c)™!in fa'". For AN=0 and u'=up, the
equality for=fo'" is valid to 5%, for —t<u% For p'=
1.5u, the equality fo"=/f,' is valid to 109, for —¢'<u'2
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For AA=1 and p'=p, the equality fir=f'" is valid to
109, for —t<2u?. For p’=1.5p, the equality fir=f,'" is
valid to 159, for —#<2u’. For baryon-baryon scatter-
ing the absorption in fa~ is larger. For this case, for
AN=0 and AA=1 and p'=p, fa"=fm'" within 159 for
—1<u? when ¢,=6.25 (GeV/c)™! and ¢;=6.75 (GeV/
c) .

Note that Eq. (C3) gives the energy dependence of
LRPE at #/=0 to be

Jo' (s, 1'=0) = (=1) @12 (ao/p’) Ky (aou’) . (C4)

For ay nonzero and energy independent, f,'*(s, #=0)
decreases with energy more slowly than the Born
approximation, which is given by the limit ao=0.
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We show how the reaction e“e*—n"n%y can be used to study the dipion system in states of even charge
conjugation (and even angular momentum). In particular, its utility for experimentally investigating an

I=0, J=0 resonance (e meson) is discussed in detail.

INTRODUCTION

O lowest order in the fine-structure constant «, the

reaction e"+e*—H (H being any neutral hadronic
system) produces only final states with charge conjuga-
tion (C) odd and angular momentum (J) equal to
unity. This property is one of the primary advantages
of electron-positron colliding beam experiments; i.e.,
it allows the careful experimental study of a specific
hadronic channel. Already this reaction has yielded
beautiful results on the pion' and kaon? form factors
as well as the three-pion final state.2? However, this
property is at the same time one of the limitations of
electron-positron storage rings, since one would also
like to investigate experimentally other hadronic chan-
nels. In a previous paper,* we showed how one could
use reactions of the form

e +et—HA+,

where v is a hard photon, to study hadronic systems
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with even C. Although the hadrons H may emerge
from this reaction with either even or odd C, quantum
electrodynamics plus knowledge of the cross section
for e+e¢t—H allows one to remove the odd-C con-
tribution. Consequently, the effects of the production
of hadronic states with even C can be isolated and
studied in a model-independent way. We have illus-
trated* the method of analysis by considering the
reaction
e +tet—r+art4r.

In this expanded discussion we will present the details
of the analysis and consider further experimental prob-
lems and theoretical implications.

The outline of the paper is as follows: In Sec. I we
summarize the theoretical predictions and experimental
results bearing on the existence of an I=0, J=0 dipion
resonance (the e meson). In Sec. II we discuss the
kinematics of the reaction being considered. We in-
clude here a brief discussion of how such an experiment
may be analyzed and discuss some features of the
Dalitz plot. In Sec. III a particular model for estimat-
ing the order of magnitude of the contribution from
the € meson is presented. In Sec. IV we discuss the
constraints that unitarity imposes on the production
amplitude. We point out in particular that there is no
simple analog here of the Fermi-Watson final-state
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interaction theorem.”? We also suggest a formalism
which may be useful for parametrizing the data. The
final section concludes with some general remarks on
related problems and reactions.

I. ¢ MESON

Although pion-pion collisions may some day be ex-
perimentally possible, so far all such scattering in-
formation must be inferred indirectly. Consequently,
statements on the experimental knowledge of 7 inter-
actions are inextricably linked to theoretical models of
various other reactions. The most popular reaction, for
which experimental data are now abundant, has been
wN—2xN.” However, the theoretical foundations for
extracting pion phase shifts are shaky and, not sur-
prisingly, applying the same methods of analysis to
different charge states for this reaction sometimes leads
to ambiguous, if not contradictory, results.” The results
agree concerning the /=2, s-wave wr phase shift 6?;
it is quite small and negative, decreasing from 0° at
300 MeV to about —20° at 1000 MeV. This confirms
that there is no exotic resonance in this channel over
this energy range. The /=1, p-wave phase &' contains
the p-meson resonance, as we know it must from meas-
urements! of the pion form factor in eet—r~rt. The
I=0, s-wave phase §° is the most controversial. At
best, a broad resonance somewhere between 650 and
900 MeV is compatible with the data but not un-
ambiguously implied by them.” In our opinion, the
strongest quantitative evidence for believing that the
¢ exists comes from two recent experiments® on 7 p—
77%. The 27° state cannot couple to an /=1 state,
such as the p meson, and hence background problems
are considerably less than when charged pions are pro-
duced in this process. The broad bump reported in the
dipion invariant mass spectrum is probably due to the
e resonance, although the mass and width are quite
model dependent and not well determined.

Theoretically, there are a number of reasons for
believing in the existence of the ¢ meson. Although
nearly all such predictions are based on current alge-
bra, one of the earliest is not. Lovelace ¢t al.® investi-
gated the contribution of mm—NN to backward =V

5 See, for example, S. Gasiorowicz, Elementary Particle Physics
(Wiley, New York, 1966), p. 449.

6P, L. Csonka, CERN Report No. 67-30 (unpublished); R.
Macek and R. Maglic, University of Pennsylvania Report No.
PPAR-14, 1969 (unpublished).

7 Excellent reviews on this subject were presented in Proceedings
of the Argonne Conference on the = and K# Interactions, Argonne
National Laboratory, 1969 (unpublished)—hereafter referred
to as the Argonne Conference. See in particular the summaries
by L. J. Gutay and by P. E. Schlein. See also the experiment
reported by K. J. Braun, D. Cline, and V. R. Sherer. A sub-
sequent reference is G. A. Smith and R. J. Manning, Phys. Rev.
Letters 23, 335 (1969).

8 P, Sonderegger and P. Bonamy, reported in Proceedings of
the Lund International Conference on Elementary Particles,
1969 (unpublished); W. Deinet et al., Phys. Letters 30B, 359
(1969). Since writing this, a third 2#° experiment appeared:
Z. S. Strugalski et al., 7bid. 29B, 518 (1969).

9 C, Lovelace et al., Phys. Letters 22, 332 (1966).
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scattering via dispersion relations. In the unphysical
region from 2m, to 800-1000 MeV, the phase of
mr—NN in the s wave is just 6. Assuming no d-wave
contribution, it was found that backward #V scatter-
ing is sensitive to this phase shift, and these authors
found that they could only fit the =V data with a
resonant phase. The fit was not very sensitive to the
mass or width of the resonance, but that there be a
resonance was an unavoidable conclusion.

Following Weinberg’s calculation of the s-wave wr
scattering lengths,® Carbone et al.* used dispersion
relations to investigate the validity of the extrapolation
of the current-algebra prediction of the scattering
lengths for zero-mass pions to the physical threshold
for massive pions. As expected, such an extrapolation
is sensitive to a low-lying s-wave resonance. They
found, for example, that for m. 2700 MeV, the cor-
rection due to the extrapolation was 20% or less. On
the other hand, for . less than 500 MeV, the correc-
tion grew to more than 1009,. Thus if the theorems on
soft pions are to hold and if Weinberg’s prediction of
pion scattering lengths is to be valid, there cannot be
an e with mass below 700 MeV. More ambitious calcu-
lations'? showed that a broad e with a mass between
700 and 1000 MeV provided consistent parametriza-
tions of the data then available but such a resonance
was not necessarily required.

Stronger theoretical motivation for this meson comes
from the saturation by resonances of sum rules implied
by current algebra.’® An e meson is definitely required
for conmsistency, and, in fact, these schemes suggest
that me=m, and that the width T, is very large (~400
MeV). Finally, these features are reproduced in Venezi-
ano’s model applied to w7 scattering. The e is the O+
daughter of the p, degenerate in mass with the p,
having a width of about 400 MeV.

Should the ¢ meson be found not to exist in nature,
a good deal of the theory built up from the current
algebra would have to be modified somehow. Clearly,
then, the experimental confirmation of the existence of
the € is interesting and important.

II. KINEMATICS

The qualitative features of the analysis of the reac-
tion e~e¢t—r~nty were discussed in L.? For continuity,
we summarize the discussion here. To order ¢, the
amplitude for the reaction is written as the sum of two

10 S. Weinberg, Phys. Rev. Letters 17, 616 (1966).

11 G, Carbone et al., Nuovo Cimento 58A, 668 (1968).

12 A sample of such references has been supplied by S. Weinberg,
in Proceedings of the Fourtheenth International Conference on
High-Energy Physics, Vienna, 1968, edited by J. Prentki and J.
Steinberger (CERN, Geneva, 1968), p. 263. In view of the
recent experiments (Ref. 8), perhaps some theoretical reanalysis
would be useful. Unlike the previous analyses, this would probably
show that a broad e is not only consistent with the data but also
is necessary in order to fit the data.

B F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).
S. Weinberg, Phys. Rev. Letters 22, 1023 (1969).

14 A summary of applications of the model to 7 scattering was
presented by C. Lovelace, the Argonne Conference.



1 PION-PION SCATTERING INFORMATION

terms which are distinguished by the charge conjuga-
tion value (C) of the dipion system (see Fig. 1). In
A, the pions have C even and, hence, by Bose statistics,
have their relative angular momentum J even. In B,
the pions have C odd and, because they interact with
the electromagnetic current, must have J=1. It follows
from the generalized Pauli principal that in 4 (B) the
pions have I=0 or 2 (I=1). The differential cross sec-
tion do_ 4 for ee"—r—r*y is proportional to | A4 B |2
Under the exchange of the pion charges (or momenta)
the amplitude B changes sign but 4 does not. Thus the
cross section for producing charged pions is domn=
do_ y+do, —< | A |+ | B|% Knowing the magnitude
of the pion form factor’® from e~e™—n—#t and using
quantum electrodynamics, one can calculate the mag-
nitude of | B| precisely. Consequently | B |* may be
removed from dog, in a model-independent way. Thus,
| 4|2, the contribution to doe from dipion states with
even charge conjugation (and even angular momenta),
may be unambiguously isolated. If there is a dipion
resonance with even angular momentum, it should ap-
pear as a resonance peak in | 4 |2

If an experiment is done in which the charge of each
pion is identified so that do_, and do, _ are sepa-
rately known, then the interference term may be easily
isolated from the difference:

do_ +— d0'+ o Re(A*B) .

Combined with the previous determination of | 4 |, the
interference term yields the relative phase between
A and B.

We now enter into the detailed expression of the
ideas sketched above. Define the electron and positron
momenta'® to be /_ and Z;, respectively; the =—, =+
momenta, ¢_, ¢+; the photon momentum, k2. We define
the following useful sum and difference momenta:

P=Z_+l+, L=l_._ l+,
(1)
Q=¢+q, A=¢—q.
" Sw, e
e o+
4 CLASS A
T e e
S
T , et 7T"'"" et
CLASS B

Fic. 1. Classification”of diagrams.

15 As we point out later, the magnitude of the pion form factor
can be determined from an analysis of e et—a~7ty itself. Hence
the assumption of knowledge of the form factor is practically
convenient but theoretically unnecessary.

18 For the energies under consideration here, it is an excellent
approximation (better than one part in 10%) to neglect the electron
mass. Recall that %% =9v=0 for massless electrons.
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Fic. 2. Contribution of the . -,p»fw
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Momentum conservation is expressed by P=(Q-k.
Finally, define scalar invariants

s=PY  t=Q2,
(2)
(QAPL) = €4,,Q*A PP L0,

In addition, we define three angles in terms of the
manifestly covariant quantities®

u="Fk-A=—%(s—1)Bx cosb,
v=Fk+L=—3%(s—1) cosb,,
(QAPL) = — (st) 1?3 (s—t) Bx sind, sinf,, sing.

Here, 8. is the velocity of the pions in the dipion
center-of-mass system. We also denote w=L-A. These
angles have simple physical interpretations: 6., is the
angle between the photon and one of the pions in the
dipion rest frame; 6, is the angle between photon and
the direction of the electron axis in the electron-positron
center-of-mass system; in either of the two Lorentz
frames, ¢ is the angle between the electron-positron-
photon plane and the pion-pion-photon plane. The am-
plitudes corresponding to 4 and B are

A= (e"/5)5(ls) v (l-) owsmaty | | 0), (4a)
B= (ie*/)o(l4) Ly € (k= 1) Myt vu(l— R) 7y €*]
Xu(l-) ou(mmt | ] 0).  (4b)

Here ¢, is the photon polarization vector; # () is the
electron (positron) spinor, j* the electromagnetic cur-
rent.”” Recall that the vertex in B is related to the pion
form factor according to

our{mmt | 4| 0)=—eAF(t). (5)
Turning to 4, we define a tensor H* by

(mwty | j# | 0) =12, *H™.

3)

(6)

The most general form for the “virtual y’—a wty
vertex, consistent with gauge invariance and current
conservation, may be taken to be

H#=[P*(ke+ Ak P) — A"J{Hy(Po— sk# k- P)
+H[A*— (k- A/k+ P)k* ]} +Hs[ g — P'k*/k-P].  (7)

The form factors’® H,; depend on three kinematical
invariants, which we choose to be (s, {, cosfr,). In the
decomposition (7), the contribution from a scalar
dipion resonance (Fig. 2) enters only into Hj;, and,

17 Qur normalization of spinors is the one appropriate to massless
fermions, viz., ufu=2FE.

18 Although convenient algebraically, this decomposition of the
tensor into invariant functions may not be the most convenient
for analytical purposes. In particular, we expect the H; to have
kinematical singularities.
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to the extent the scalar partial wave dominates, H;
will be independent of 6,,, i.e., in its rest frame, a scalar
resonance decays isotropically into two pions. An ex-
perimental test of this is a good check on the spin of
the resonance.

The differential cross section ds_ , for the reaction
e“e+—>1r“7r+7 is

&o_ = | A+ B |2,

where @°® is the invariant phase space. The unpolarized
cross section {d%s_ ,) involves averaging | A+ B |2 over
the lepton spins and summing over the photon polariza-
tions. This average rate (| A+B|) is independent
under rotations about the beam axis (in the electron-
positron rest frame). We eliminate the redundant vari-
able by integrating this angle from 0 to 27 to get

(dlo— )= (| A+ B 1?)d*®.
The phase space may be simply expressed as
d*®/didudvdw=[1/4(4x)4*[1/ | (PLQA) | ], (8)

where the covariant variables s, £, #, v, and w were
introduced earlier [Eqgs. (2) and (3)7]. From this co-
variant expression (8), it is straightforward to express
the phase space in any convenient Lorentz frame.

The cross section for charged pions is

Fom=do_ 1 +doy _= (| A !+ | B ).

The contribution from | B |2, averaged over lepton
spins, may be written as

(| B 2)y=[26 | Fat) [2/¢(s—1)? sint0, T4(B. st — )
+B.2(s—1)2(sin%,+cos?,) ].  (9)

If we denote by B the relative velocity between the
dipion and dilepton rest frames, then w may be ex-
pressed as

w=— B (st) 2(7y cosfr, cosb,+sinfr, sinf, cose),

where y=1/(1—p8?)%2 The contribution from | 4 |? is
very complicated algebraically and is reproduced in an
appendix for those interested in such unpleasant de-
tails. It is interesting that, from the unpolarized differ-
ential cross section (d%_ ), all four form factors, Fy,
H,, H,, and H;, can be extracted both as to magnitudes
and relative phases. In this respect, this process bears
a strong resemblance to Ky decay.® As is discussed
further below, a scalar resonance contributes only to
H; and, barring certain sensitive directions in phase
space, we expect H; to dominate H; and H; near the
resonance. Here, then, we quote the contribution com-
ing from Hs:

(1 4 5=[| Hs(s, t, cosbry) |*/25](1+4cos,).
The interference term is
Poiny=dP0_ — oy =4 Re(A*B)dd.

A, Pais and S. B. Treiman, Phys. Rev. 168, 1858 (1968).
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Again, keeping only the contribution to 4 from Hj, we
find the contribution to the unpolarized difference:

(Re(4*B) )=[¢® Re(H;Fn*) /4st sin%,]
X {[2s(s4t) — (s—£)? sin%),, |Bx cosf, cosb,
42w (s—t+ (s+1£) cos)}.

In the dilepton rest frame, the energy of the photon
is K= (s—1t) /24/s. We note that the contribution from
| B |2 [Eq. (9)] shows the typical 1/ bremsstrahlung
dependence. Similarly, from photon emission from ex-
ternal pion legs, there will be contributions to | 4 |2 of
this form. On the other hand, we expect the contribu-
tion from the e resonance to be typical of internal
bremsstrahlung, of order k¢%. Thus, it is necessary to
observe a fairly hard photon to see the effect of the
resonance. One can minimize the effect of the 1/kg2
dependence by concentrating on those portions of phase
space where such contributions are suppressed and,
consequently, contributions from internal bremsstrah-
lung relative enhanced. For example, in (| B |2), if we
choose B,%st—w?=0, then the numerator will be of
order ko* and cancel the 1/k¢ in front.® One simple
way to satisfy this condition experimentally (and in
a manner which is independent of s and ) is to choose

0,= %77, Ory= %7"; ¢=0.

In the electron-positron rest frame, this corresponds
to all particles lying in the same plane with the photon
emitted at right angles to the beam direction. The
pions are emitted symmetrically about the axis defined
by the photon (Fig. 3). The arrangement also mini-
mizes the contribution of external bremsstrahlung from
pions. Even in an experiment with limited statistics,
one could set up his photon detector on one side of the
beam and his spark chamber for the pions on the other
side.

It is easy to see that both the emitted photon and
virtual photon in diagram 4 must have the same G
parity; that is, they are either both isovector or both
isoscalar photons. However, in B, the virtual photon
couples to two pions and so must be an isovector.
Thus, unlike 4, B receives contributions from only
isovector photons. We pointed out earliert that, for
this reason, it is possible to enhance the contribution
of A with respect to B by setting the colliding beam
energy to an isoscalar resonance. The ¢ meson is par-

-~ /\, +
3 :/\y \ <i e

L
T 77'"'

Fic. 3. Experimental configuration
minimizing | B |2

2 The existence of such a choice may be traced to the fact
that, for a massless electron, ¢ et—z 7t vanishes in the for-
ward direction. This is due to the fact that the vector current
coupling the leptons requires the massless electron and positron
to have opposite helicities.
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ticularly well suited for this purpose. The ¢ has a mass
of 1019 MeV; hence, in the decay ¢—ey, the photon
will carry off 200-300 MeV, depending on the mass of
the e.

One can think of other diagrams, corresponding to
radiative decay of the p meson (Fig. 4), which might
compete with the contribution from e (Fig. 3). How-
ever, if one constructs a Dalitz plot (Fig. 5) for the
final-state kinematics, one sees that for s=mg? there
is rather little overlap between these contributions. In
any case, their distinct signatures on such a plot should
make them easy to separate. There is another reason
why Fig. 4 is small, viz., the $—3m coupling constant
is known? to be much smaller than might have been
expected. Using the ¢—3x rate to give an upper bound
for gspm, the ¢-p-m coupling constant, one can show
Fig. 5 to give a smaller contribution by a factor of
107-10"2 than the contribution of the e estimated in
Sec. III.

III. MODEL FOR ¢ PRODUCTION

Having presented above a qualitative discussion of
how best to observe the ¢, we would like to compare
this contribution to 4 with the contribution from B.
It would be unfortunate if | B |* were very much larger
than | 4 |2, for the requirements on experimental errors
would become extremely important. To obtain an esti-
mate for the contribution of the ¢, we used a model
based on the idea of vector-meson dominance which
we believe will yield the correct order of magnitude even
though the model may be incorrect in its details. Ac-
cording to this model, depicted in Fig. 6, the contribu-
tion to Hj is

= (&r) 1 (8e¢¢)( My’ 8o ) 1
P NNVB ) = (me—3iT0)? \ m2/\s— (my—5iT4)?/ g,
X3(s—1)

Recognizing the photon emitted as purely internal
bremsstrahlung, the factor k- P=%(s—f) must be in-
serted in order to ensure the proper behavior of H*
for a soft photon [see Eq. (7)]. For dimensional rea-
sons, the e-¢-¢ coupling constant has been written as
gess/me. The e coupling has the Clebsch-Gordan
coefficient 1/V3 removed; the relation between ge.. and
the width of the e (assuming no inelasticity) is

meLe= (gers?/32m) (1—4ms2/m2) 2.

We maximize this contribution by choosing s=my?, as
discussed above, and ¢{=m?. The coupling constant

Fic. 4. Contribution of radiative p
decay.

21 Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
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800 MeV

Mg+~ = 700 MeVl

2, -
me L

2
m,r—y

F16. 5. Dalitz plot for the n*n™y final state at s=mgy%

Zeso 1s unknown. To get an order of magnitude, we
assume this is of the same order as the strong coupling
Zerm, and thus we set? gepg = gerr = ge. With these assump-
tions, then, the contribution to | 4 |2 for 6,=1%, 8,,=1r,
¢=0is

A g (1@,)2 8 <m¢2—mﬁ>2 1
AL/ (g¥/4m)\ me me’

This is to be compared with the contribution of the
pto] B

28
| Bl= 5] Fa(mé) 182

oot (2)
T (mE—md)*+ (L) \mé)
If the p and e are really degenerate, m,=m., then

| B [*= (2¢"/mé) (m,/T,)*.

Comparing these expressions, we see the enormous en-
hancement of | 4 |? due to the narrowness of the ¢ peak
compared to the p, viz.,

7%¢/P¢N250

m,/ T y~5.

Using® gs2/4r=11, we find that | 4 |2 is nearly an
order of magnitude larger than | B |2. Even after inte-

2 Even if the e is the daughter of the p, we known of no
hereditary principle which suggests that the universality possessed
by the p should be transmitted to the e. We suspect, however,
that such a characteristic might be inherent in the crossing-
symmetric models first discussed by Veneziano. For example, see
Ref. 14. Dr. S. Nussinov (private communication) has pointed
out that, if the e should turn out to be a mixture of purely non-
strange quarks, then it will not couple to the ¢ meson, which,
ideally, is purely X\. Thus g will be suppressed for the same
reason that ¢—3m is suppressed. Although these quark-riodel
arguments are never precisely borne out experimentally, it would
be expected that our estimate in this section would be too
optimistic for the relative magnitudes of 4 and B. However, the
SU(3) or quark assignment of the e is unresolved at present.

% J. E. Augustin et al., Phys. Letters 28B, 503 (1969).
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F16. 6. Vector-meson-dominance
model for the amplitude.

grating over a range of phase space
ir<0,<%mr, IT<0,,<32m,
0.1 GeV2<£<0.9 GeV?,

we find the contribution of a broad ¢ to dominate the
contribution from the p. The cross section so obtained
is on the order expected, e~1073-10"2 ub.

In Fig. 7, we plot the contributions to do/dt (over
the region of phase space described in the preceding
paragraph) for | B |? and for | 4 |2 in the model above.
Notice how badly skewed the e-resonance contribution
becomes for widths larger than 150 MeV. This asym-
metry is attributable to two factors: (1) phase space
which enhances the significance of small ¢ values; and
(2) the photon energy which multiplies the form factor
H; gives a contribution (s—£)? to the cross section.
This factor is characteristic of internal bremsstrahlung
and, consequently, is independent of the particular
model for the resonance. This suggests that one divide
the experimentally determined value of do/dt not by
phase space alone (as is usually done), but by the
contribution to do/dt corresponding to a constant value
of H;/(s—1t). In the model above, this procedure iso-
lates the Breit-Wigner approximation to Hj;, which
may be a good first approximation to the data. The
identification of the mass and width of a broad reso-
nance from experimental data is a difficult problem in
itself. It is clear from Fig. 7, however, that for I'.> 150
MeV, it would be a serious mistake to fit a Breit-
Wigner formula to the experimental data for do/dt. In
Sec. IV we suggest an alternative parametrization of H.

So far as the actual experiment goes, we have empha-
sized above that one obtains very useful information
without observing which pion has which charge. One
knows the initial energy accurately. Presumably, one
can use spark chambers to determine the directions in
which the pions emerge and, somewhat less accurately,
one can also determine the direction of the emerging
photon in a shower counter. By observing the rate of
buildup of the shower, one can estimate roughly the
energy of the photon as well. These measurements,
three directions and two energies, overdetermine the
kinematics for the reaction e~et—r—7ty. In fact, there
are two constraints available. Given the three direc-
tions, one can check that, in the electron-positron
center-of-mass system, the three emerging particles are
coplanar. Also, from the directions and a knowledge of
the initial energy, one can calculate the photon’s energy
and compare with the measured value. These two con-
straints on the kinematics will be useful in discriminat-
ing against the reaction e"et—u~u*y and against photon

0<¢p< 2,
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background from e~et—r—wtad, x9—2y. Of course, if
the magnitude of the pions’ momenta are also meas-
ured, the reaction is even further overdetermined.

To conclude, we note that, given a storage ring with
the luminosity of Adone (Frascati) or with the higher
luminosity anticipated for CEA (Cambridge), the ex-
periment discussed here is possible but the analysis of
fully differential cross sections may be limited by poor
statistics. With the luminosities projected for the stor-
age rings at DESY (Hamburg) or SPEAR (SLAC),
very detailed measurements will be possible and one
will be able to determine the magnitude and relative
phases of all four unknown amplitudes F,, H;, H,, and
H;. The analysis of H; should lead to reliable values
for the e mass and width. But, even with limited
statistics, the e will not be difficult to resolve.

IV. PHASE RELATIONS

In Kiy decay, as discussed by Pais and Trieman,?
one can derive a final-state interaction theorem. This
theorem relates the phase of the Ky decay amplitude
to the pion-pion scattering phase shifts. The theorem
is valid to lowest order in the weak and electromagnetic
interactions, assuming time-reversal invariance and
elastic unitarity. In the reaction

v(s)ortta+y

[here v(s) represents the virtual photon of mass=~/s],
the final state again has two pions as the only hadrons.
Thus one might naively expect a similar phase theorem
to hold to the lowest order in the electromagnetic
interaction. However, the amplitude for this process
is at least second order in e, the electric charge. This
fact, as we show below, destroys any exact phase
theorem.

Physically the problem arises because the virtual
photon can first decay into two pions which later
interact to produce the final state. To the lowest non-
trivial order in e, an isoscalar photon cannot decay
into two pions. This enables one to derive a rigorous
phase theorem which applied to isoscalar photons for
s< (3ma)2

We conclude this section with an approximate phase
relation when s is near a vector-meson resonance. This
relation becomes exact as the width of the vector meson
goes to zero and s approaches the pole at the vector-
meson mass squared.

To discuss the phase relations, it is easiest to use the
basis of two-pion states described by* P=total four-
momentum of the two-pion system, I=isospin, I3=
third component of isospin, J=total angular momen-
tum, and A= component of angular momentum along P

#To give precise meaning to a phase theorem, some arbitrary
phase conventions must first be established. For example, the
state with P=0 can be chosen to be those defined by M. Jacob
and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959). States with
arbitrary (P9, P) may be defined from the state of the same P2,
but P=0 by boosting in the z direction and then rotating into
the direction of P.
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(for states with P=0 let A=J3). We normalize these
states so that
<I/7 13,7 Jl; AI: Pl; l ]7 I3y Ja >‘; P))

=08p1877 50131300 (2) %4 (P'— P).
These states can be defined either in terms of two
incoming pions at time equal to —o or in terms of
outgoing pions at time equal to 4 . Call these states
| I, I, J, \, P)in or | I, I3, J, \, P)ous, respectively. If
we neglect the electromagnetic interactions, below the
inelastic threshold these states can only - differ by a

phase. We thus define the pion-pion phase shifts
8,5 (P?) by

| I, I3) Ja )‘: P>in=exp[2iaJI(P2)] | I; I3; ]7 )\y P>°“1‘r'

) - &
(o)

Frc. 8. Phase theorem for rr—wmy.

Isospin and Lorentz invariance tell us that &r,;(P?)
depends only on I, J, and P2
Let T be the antiunitary time-reversal operator and
R,(w) be a rotation of 180° about the y axis. Let
Y=TR,(w). Consider 27 states with P in the z direc-
tion. We can choose our phases* so that for these states
Y [ I; I3; Jy )\; P>in (out)
= !I’ I3, J, A, -P>0ut(in) (P”ez>°

Let 7,(0) be the electromagnetic current at the point
x=0. Form the following combinations of the 7,(0):

7+(0) =71(0) +72(0),
7-(0) =41(0) —52(0),
Jo(0),  73(0).

These combinations all commute with Y.

Now we have the machinery necessary to derive
phase theorems for pions. Before considering our reac-
tion, let us demonstrate the technique on the reaction

TT—TTY.

Go to the center-of-mass frame for the initial pions
with the final photon going in the —z direction. Let "’
be the photon helicity. The amplitude for this process is

T(Sy t) =0ut<11? 13” Jl, )\,; P’ |j)\"(0) I Ir I-')‘, J: >‘a P>in-

We define s=P?, t=P"2 Implicitly, 7" depends on A,
)\’ J,and J'. Angular momentum conservation 1mphes
" \’=. Consider shand ¢ below the inelastic threshold
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Fic. 9. Unitarity relation for “y”—rry [Eq. (13)7].

at 16m.,% Inserting jy(0) =YY/ (0)Y into Eq. (6)

implies

T(S, t) = (in<I’7 ]3,a ],7 )\I: P’ lj’\" I I7 137 ]7 )‘7 P)out)*
=exp{2i[8,7(s) 46,7 () ]} T*(s, t).

This equation is shown with diagrams in Fig. 8. This
gives our phase theorem?®:

Im (exp{—i[8,/(s) 40,7 () } T'(s, ©))=0. (10)

Phase theorems for the pion form factor or pion electro-
production on pions can be derived by replacing the
state | I, I;, J, A, P)in by the vacuum or one-pion
state, respectively.

Now let us use this technique to investigate the vir-
tual photon decay. Since I3=0 for the two-pion states
discussed here, we will not write I3 explicitly. Working
in the rest frame of the initial virtual photon with
s< (3m.)2, we let ' be the z component of this photon’s
angular momentum. Furthermore, let the final photon
have helicity N and four-momentum £ with k in the
—z direction. Then for the final photon state,

V[ y(k,N))= |7k N)).

With these conventions the matrix element for the
process is

(I, T\, N, s, 8)
:out<1; J; )\+)\’; Q; 'Y(k7 )\) Ij)\'(o) l O>' (11)

% Tt is interesting that the low-energy theorem [F. E. Low,
Phys. Rev. 110, 974 (1958) ] for bremsstrahlung of a soft photon
does not have the phase required by the theroem here. The
source of this paradox rests in the masslessness of the photon.
There are several ways to state its resolution. If the photon has a
finite mass, however small, then our theorem is exact but there
is no Low theorem. If the photon is massless, the low-energy
theorem holds, but, strictly speaking, there does not exist an
s-matrix element for scattering for a finite number of photons
(the infrared divergence). From another point of view, one can
say that perturbation theory is invalid for soft photons and our
expression of unitarity is wrong. One way to preserve both the
Low theorem and our theorem is to split the photon energy spec-
trum into “hard” and “soft” photons. Low’s theorem applies
for soft photons; our theorem, for hard photons. A particularly
convenient formalism for expressing this fact incorporates coherent
states. See T. W. B. Kibble, #bid. 175, 1624 (1968). Our
theorem applies to Kibble’s “core” amplitudes. Low’s theorem
is reflected in the coupling of the soft photons to the classical
currents associated with the “in” and ‘““out” states. This latter
contribution is what Low refers to as the £, contribution. The
precise statement of the relationship of his (E,)° contribution
and the soft-photon coupling eludes us.
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Here t=(? s=(Q+%)?, and k=—Q. Using our oper-
ator Y=TR, () gives

T= Ollt<l; ]) >‘+>\/’ Q; 7(k1 >‘) I Y—lyj)\’ (0) 1y I 0>
=L, T, AN, Q5 v (R, M) [0 (0) [0)TF. (12)

Now we try to relate the “in” state in Eq. (12) to the
“out” state in Eq. (11) by inserting a sum over a
complete set of “out” states:

L1, T, NN, Q5 v (R, N) Yin
= 27| BYous ous( | I, T, NN, Q; v (%, A) dine

In the sum over | 7)o we find contributions to order
¢?in T from the state

[m)=|1, 7, NN, Q5 v(ky N) Yout,
as well as from the two-pion state
|n)y=|I=1,T=1,N, P)ous,
where P=(Q-Fk. Thus,

T=exp[ 28,7 (£) JT* = iTrranny X T*yyore.  (13)

Here
—1(2m) %84 (Q+k—P) * Trrsnry
=outll, I, J, NN, Q; v (B, \) | I=1,T=1, X, P)in,
Ty@homr=ou{I=1,T=1,\, P |4 (0) | 0).

To get (13) we used ¥ in Trrorry, and all the above
equations are taken to lowest nontrivial order in e.
[Equation (13) is shown diagrammatically in Fig. 9.7 1t
is this second term on the right-hand side of Eq. (13)
that does not permit us to derive an exact phase
theorem. However, if somehow the contribution of an
isoscalar initial photon could be isolated, we would
have a phase theorem. This is because T'y¢,r=gyorr="0
to order e, so there is no additional term. We then have

Im{exp[ — 8,7 (t) ]T (isoscalar v (P?))=0}.

This theorem will break down at the threshold for
isoscalar continuum states; this occurs at s= (3m,)2.
For isovector photons, Eq. (13) holds for s< (4m,)?
as does Eq. (10). This difference is a consequence of
G-parity conservation.

If we had a hadron that only decayed into 27y, then
we could derive a phase theorem as discussed above.
If this hadron were unstable, we might still expect an
approximate phase relation if the width were small.
compared with its mass. Furthermore, if there were
such a relation, it should be independent of how the
particle was created. We now derive heuristically an
approximate relation for the reaction of interest e~¢t—>
Twty.

Virtual photons couple to the vector mesons p, w,
and ¢. Let my be the mass of one of these mesons. Set
s near my® and (< 16m,%. Expanding (13) to include
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other hadronic states gives
2¢ Im{exp[—6,7 (¢) 1T}
= 2 oull, , AN, Q5 v(R, N) [ )i

n=hadron

X Loue(n | v (0) | 0) " exp[—id,7 (). (14)

Note that both sides of this equation are purely imagi-
nary. If there were a stable vector particle contributing
to the sum over #, the right-hand side would have a
contribution proportional to §(my?—s). This indicates
that for s near my? for an unstable vector particle
Eq. (14) is approximately
24 Im{exp[— 18,1 (£) 1T}

~— ZI{MVFV/I:(S— mv2) 2+MV2PV2]} XRI,J(t) )
where Rz s(t) is some real function.

Assuming analyticity in the upper half s plane, Eq.
(15) implies that near the resonance,

T(S, t)%exp[i&,,’(t) ]R[’J(t) { 1/[(8— mv2) —l—imﬂ‘ﬂ(} . )
16

This is the approximate phase relation mentioned above.
If the vector meson is a simple pole on the second
Riemann sheet, a continued form of this relation should
become arbitrarily accurate as this pole is approached.
We remind the reader that 7" implicitly depends on
I, J, \, and \'. In the case of the ¢ meson, the width
Ty is only 4 MeV and this relation should be quite
good. The restriction t<16m,> can in practice be
dropped as long as four-pion states are unimportant,
which we expect to be true up to 900 or 1000 MeV.

Let us close this section with the suggestion of using
Eq. (16) to parametrize the data on et+e—nt+
7~+. Assuming that the reaction is dominated by
I=J=0 in the two-pion final state, a simple approxi-
mation for an e resonance would be

exp[46,°(£) JRo () S (&) [1/ (—mZ+imT) ], (17)

where S(#) is a polynomial and m. and T, are param-
eters, all chosen to fit the data. Equation (17) does
not have the right analytic behavior near the threshold
at t=4m,% This might be a problem if I'. was very
large. An effective-range approximation does behave
correctly at threshold; thus, a more sophisticated pro-
cedure would be to use

exp[id° (£) IR (¢)~2S’ () exp [1 /w AL (l_)} ,

) A
(18)

where S’ (#) is a low-order polynomial and an effective-
range approximation is made for 6,2(¢).% We anticipate

(15)

% We ignore the question of kinematical singularities here. The
statements in this paragraph must be applied to kinematical-
singularity-free amplitudes.

" This approximation is [ (¢—4m,2)12/(ml2—4m,2)2] cotd®=
(m&—1t) /mcT'.. This equation relates I'. to the slope of the phase
shift of Fw. Equation (16) relates T'. to the width of a Breit-
Wigner resonance formula. For a broad resonance, these two
definitions can be in substantial disagreement: M. B. Einhorn,
Phys. Rev. 185, 1960_(1969).
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that such an approach to the parametrization of Hj
will be useful phenomenologically.

CONCLUSIONS

The recent observations® of 7~ p—r%7% provide un-
mistakable evidence for the existence of the e.?® Ob-
servation of the reaction discussed in this paper may
still be interesting for two reasons: (1) This reaction
may be the only way to observe clearly the charged
pion decay mode of the e. (2) The dynamical and,
especially, the kinematical analysis of this reaction
appears to be simpler than for tN—27N. Furthermore,
as discussed in Sec. III, one can hope to obtain reliable
values for the ¢ mass and width.

The same experiment described here at higher energy
and higher dipion invariant mass can be used to exam-
ine other isosinglet mesons, such as the #5+(1070),
f(1260), and f'(1515). It goes without saying that the
analysis in this paper applies equally well to e~et—
KK, except that KK in a C-even (J-even) state can
have either =0 or I=1. Similarly, e~¢*—3mry can be
used to study three pions in a C-even state. In addition
to the mesons mentioned above, one can use these
reactions to study the 4,(1070), = (1016), 4% (1320),
and perhaps the 4,%(1270), to name a few. Turning to
particles with spin, we recall that in baryon-antibaryon
production e¢“¢*—BB in the one-photon annihilation
approximation, the selection rules J=1, C odd, along
with parity odd, restrict the final state to be 351 or *Di.
The reaction ¢~¢*—BBy opens up the C-even channel,
which low angular momenta include the LS and D
states as well as the 3P, 3Py, 3P,, and °F, states.

As long as we are considering higher-order effects,
we should recall that there are contributions of order
a® to e"et—rrt from two-photon annihilation.? This
will also lead to a C-even final state, although it will
require a very accurate (19;) experiment to isolate
this interference effect. On the other hand, the counting
rate obtainable should make possible this accuracy, so
an s-wave enhancement will be seen here as well.

One could probably also utilize ¢“et—rn—7ty when
the two pions have little kinetic energy, t=s4u?, to in-
vestigate the soft-pion theorems of current algebra. In
the other extreme, for a very soft photon, s, the
amplitude is given by Low’s theorem. Can these two
limits be somehow expressed as subtractions in a dis-

28 These experiments had not been reported when this work was
begun. The use of this reaction to determine the existence of the
€ was one reason we brought in so many kinematical details.

2 This was called to our attention by S. J. Brodsky. See. R.
Gatto in Proceedings of the International Symposium on Electron
and Photon Interactions at High Energies, Hamburg, 1965, p. 122
(unpublished). do_ .—doy _ receives its lowest contribution in
order of from interference of the one-photon annihilation with
the two-photon contribution. Incidentally, in the symmetrical
experiments, do_ ;-+doy _, as Gatto points out, there is no two-
photon contribution to this order. The selection rules P=—1,
C=—1, J=1 ‘are not violated in symmetrical experiments
until order o#; however, even in order o isospin is not well defined,
so that one cannot assert that =1 until order .
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persion relation analysis of the amplitude?® What other
dynamical effects can be studied if one is given the
differential cross section?

In conclusion, we anticipate that the general method
described in L for the analysis of C-even states from
colliding beams will expand considerably the usefulness

of high-luminosity storage rings. We have illustrated -

the method with a detailed discussion of e~et—rmty,
and, in particular, related this analysis to the question
of the existence of the ¢ meson.
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APPENDIX

In this appendix, we display the unfortunately com-
plicated expressions for the cross sections discussed in
Sec. IT. There is some arbitrariness as to the choice of
variables in which to express everything. It has been
our experience that the simplest choice is the two
energies, s and £, and three angles, 6., 0., and ¢, defined
in the text. ;

The dependence of the cross section on the angles 8
and ¢ is explicit; the several form factors depend only
on s, t, and 6,,. In terms of these variables

w=— B[ (s+¢t) coshr, cosh,+ (st)'/2 sinb,, sinf,, cose ].

% This question was raised by S.:D..Drell.
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The contribution from photon emission from the leptons
is then [cf. Eq. (9)]
(| B[)=[2¢"| Fx(t) |"8:*/t(s—1)* sin, ]
X { (s+2)2(1+cos%,)
—[2(st) 2 sinf., sinf,, cosp+ (s+1t) cosf, cosfr, I2}.
(A1)

The contribution to emission from the final state is
(I 4 )=%| H1[*8:* sin0, sin*f,

+31 | H; |228:4 sin%ry{ 0520+ (#/5) sinn,

— [cosb,y cosfr,+ (4/s) /2 sinf.,, sinf., cosp |}

+ (| By [2/25) (14-cos0,)
+Re(H1H5*) B, sinf,, sin’f,,,

X[ (#/s)Y2 sinfy., cosby cosp— sinby cosfr, |
+Re(H H3*)B,(¢/s)V? sinf., cosf, sinfy., cose
+Re(HoH5*)B:2(t/5) V2 sinby,[ sinb,, cosh, cosr, cosep

+ (¢/5) V2 sinb,., (1—sin?0, cos?p) 1.
The interference term is
(2Re(A*B) )=[ReF,*/64st(s—t) sin%, ]
X {H3B, sinf,, (st)Y2[2(st) 12 sinf,, cosb, cosfr,
— (s—t+ (s+¢) cos.,) sinby., cose ]
+ H,yB8.35t (s—1) cos*0, sin?0ry cosf,y
— (4/5) Y2 sinf,, sinby., cos¢ (¢ cos'0, sin%f,,+s(2 sin’d,
+cos?,, sin?0r,) )+ 2 (s—+1) sin%,, cosf, sin®6,, cosfr, cos’d
+2(st) 12 sin%,, sin®0., cos’ep |
~+ H 18,2t sin%., sinf,[ (s—1) cosf, sinf,

+2(st)12 sinf., coSOry COSP— 25 O8O, Sinbyy cOS?P |} .



