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We Gnd that a coherent-droplet model with long-range pion exchange successfully fits the forward
peak structure oi the diiIerential cross sections for s.+p~o'n++, 7r+p~f'n+ +, z- p~o a, s+p~p+p, pp —+rin+ +,
J p +X~—'(890)n, and E p +IV* (—890) p. For —t'(0.02 (GeV/e)', the measured ditierential cross sections
exhibit anomalous behaviors: spikes and dips and no structure. The different behaviors are explained
Inainly by the kinematic structure of pion-pole residues. In some of the reactions, the known magnitude of
the pion-pole residue leads us to expect structures near t =0 which require data with higher statistical
precision for confirmation. In 7r+P~f'n++ at 8 GeV/c, our model can explain the absence of an anomaly
near t =0 in terms of the large distance from the physical region to the pion pole. However, this distance
decreases with increasing energy, and our model predicts structure near t'=0 in z+p +f'n+—+ at 16 GeV/c.

Long-range pion exch, ange contributes only for —I,'&
0.06 (GeV/c)'. To include this contribution and to
understand the data over a larger region of t', a model
for the low partial waves is necessary. In previous work,
Byers~ has shown that the coherent-droplet model with
long-range pion exchange can explain the rip charge-
exchange differential cross section for 0& t & —0.5
(GeV/c)'. Chou' has proposed a modified coherent-
droplet model for photoproduction, and general two-
body inelastic processes, This modified drop1. et model
with long-range pion exchange describes well the x+
photoproduction differential cross section for 0&f&
—0.8 (GeV/c)'. We give a possible extension of the
coherent-droplet model to quasi-two-body reactions.
However, in the approximation which we use, namely,
that initial- and final-state elastic scattering is the same,
this model is just the original droplet mode1 of Byers
and yang io

We apply the coherent-droplet model with long-range
pion exchange to the following reactions:

I. INTRODUCTION

KCENT experiments' ' with high statistical pre-
cision give the shapes of the differential cross

sections of a number of quasi-two-body reactions in the
region —t'(0.06 (GeV/c)' (see Figs. 2 and 3).

There is a steep rise in the sr+p~p 6++ data' for
—t'(0.03 (GeV/c)'. A similar spike has been seen
previously in Np charge exchange' and in the m+ photo-
production. ' In these reactions, the spike for —t(0.02
(GeV/c)' has been shown to be a consequence of pion
exchange dominating large-impact-parameter colli-
sions v s

There is, however, no spike in the 7r+p &f'A—++ data. '
Furthermore, a dip is seen in the 7r p-+p'rs data. ' This
variety of shapes is interesting because pion exchange
is allowed in these reactions also.

In this paper we show that all the observed spikes
and dips for —t'(0.03 ( GeV/c) ' can be explained very
simply by the effects of long-range pion exchange. By
long-range pion exchange we mean the high partial
waves of the pion-exchange scattering amplitudes calcu-
lated using the Feynman diagram of Fig. 1(a). Indeed,
the variety of structures is explained. mainly by mass,
spin, and isospin effects.
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The model gives good fits to the data for —t'(0.3
(GeV/c) s for ail these reactions.

In reactions which have large mass changes at both
pion vertices, the long-range pion contribution peaks
sharply at 0=0'. Long-range pion exchange can account
for the slope and magnitude of the spike in sr+p —i p'A+ +

at 8 GeV/c. In 7r+p~f'6++ at 8 GeV/c, the physical
region is farther from the pion pole than in sr+p —rp'5++
at 8 GeV/c. As a result, the long-range pion contribu-
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tion is both broader and smaller than in s.+~peA++.
This long-range pion contribution is consistent with the
data.

As the energy increases, however, the physical region
moves closer to the pion pole. Between 8 and 16
( GeV/c) ' in ~+~f'6++, the long-range pion contribu-
tion at t'=0 remains roughly constant, while its half-
width decreases. Our model predicts in ~+p +f'-6++ at
16 GeV/c a spike similar in shape to that seen in 7r+~
p'5++ at 8 GeV/c if there is no interference between
long-range pion exchange and small-impact-parameter
partial-wave amplitudes. The shape and magnitude of
the spike is sensitive to this interference.

The other five reactions have a mass change at only
one vertex. At the other vertex the nucleon goes straight
through. In these reactions the single-helicity-Qip pion
amplitudes dominate, causing the long-range pion con-
tribution to dip in the forward direction and to peak
near t'= —0.015 ( GeV/c) '. Such structure is indicated
by the data for s. p-+p'e and is consistent with the data
for s.+p~t~+p E-p~E*'(890)e and pp eh++" ""
However, this structure is not seen in E p—+E* (890)p."
By isospin conservation, the pion contributions to
E p—+E* (890)p are four times smaller than to E p~
E*'(890)e. The large t' data indic—ate that the low-
partial-wave contributions to E p~E*—(890)p are
larger and, indeed, swamp the pion contributions even
at small —t'.

In Sec. II we discuss an important kinematic con-
sideration. In Sec. III we discuss the main assumptions
of our model. In Secs. IV and V we give detailed dis-
cussions of the partial-wave amplitudes in our model,
while in Sec. VI we discuss the scattering amphtudes.
In Sec. VII we apply our analysis to seven reactions
and discuss our fits. In Sec, VIII we discuss the energy
dependence of long-range pion exchange. We have
included two appendices on the kinematic structure of
pion helicity vertex functions. One appendix discusses
the kinematic structure for particles of arbitrary mass,
spin, and parity; the other gives detailed expressions
for the special cases analyzed in this paper. We have
also included an appendix which gives simple, approx-
imate expressions for the long-range pion contribution
to scattering amplitudes. These expressions are useful
for numerical calculations.

II. IMPORTANT KINEMATIC CONSIDERATION

In this paper we discuss, at finite energies, reactions
a+b+c+d where c o-r d or both are broad. resonances.
In our notation s=(p,+pb)' and t=(p, —p, )'. The
minimum physical value of —t, that is, —t at 0=0',

"Aachen-Berlin-CERN-London (I.C.) -Vienna Collaboration,
Nucl. Phys. 87, 111 (1968);BS, 567 (1968)."H. C. Dehne, J.Diaz, K. Stromer, A. Schmitt, W. P. Swanson,
I. Borecka, G. Knies, and G. Wolf, Nuovo Cimento S3A, 232
(1968).

is —t „„.At large energies,

t;„=—(m.'—m ') (ms' —md') /s —(m 'ms' —m 'mp)

&((m,'—mP+mss —m@')/s'+O(s '). (1)
The c.m. scattering angle is 8 and the c.m. three-
momenta of initial- and final-state particles are y and p',
respectively. The helicities are X„P~, X„and Pd.

When c or d are resonances, t;„has a range of values.
Consequently, the differential cross section for small t
is dominated by this kinematic effect when data are
plotted against t. To eliminate this effect, the data are
plotted against the variable"

The relation of t' to the c.m. scattering angle is

t'= 4pp' si—n'(-'0) .

To simplify our discussion, we shall refer to the
eikonal approximation to the partial-wave expansion.
We define the impact parameter to be b= (J+ts)/
(pp')'i'. Then the partial-wave sums for the helicity
scattering amplitudes may be approximated by

J'iyi (s, t') =p' n(y) (b, s)Jsi(b+—t') b db, (4)

where IX}= IX„Xs, )i„Xb} and LA=X, —Xs—X,+As. t4

Note from (4) that t' rather than t is the variable con-
jugate to b. This is due to the relation (3). In actual
numerical calculations, partial-wave sums were used.

III. MODEL

Our model is a physical assumption for the partial-
wave amplitudes ni, (b, s) in high-energy quasi-two-body
scattering. The interacting hadrons are assumed to be
extended objects. We use the eikonal picture in which a
ray passes through an effective matter distribution. At
high energies, the bulk of the matter is confined within
a disk of radius a. This radius is (roughly) determined
from elastic scattering. In our model the core of radius u
is surrounded by a pion cloud.

For collisions with large impact parameter, b))a,
scattering is mainly due to the pion cloud. For these
collisions, we use the Born approximation for pion ex-
change.

For collisions with small impact parameter, b &a, the
matter distributions of the colliding hadrons overlap
appreciably. Many different short-range interactions
can contribute. To take into account all mechanisms
that can contribute to low partial waves, we use
coherent-droplet-model amplitudes.

Our model applies at such energies that the wave-

"See, e.g. , Refs. 1—3. See also J. T. Donahue, Nuovo Cimento
SSA, 527 (1968),

'4We use the partial-wave expansion for helicity amplitudes
given by M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404
(1959): P~q} (0) = (1/P) Zg( J+-,')n~q}~dy„~(0). Using —t'=4pp'
sin'(-,'8) and the high-J and small-angle limit of d),„~, namely,
dq„~(g)~ J„qL(J+s'l2 sins'gg, we find (4) with b as given.
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lengths of the interacting particles are small compared
to the interaction volume. Under these conditions the
low partial waves are most strongly affected by short-
range interactions, and use of simple pion exchange for
the low partial waves is unreasonable. Our model, then,
applies for laboratory momenta higher than a few
Gev/c.

Briefly our assumptions are: Vertex

Partial
Strength width~

g'/4e. (MeV)

TABLE I. De6nitions of coupling constants and values obtained
from partial widths. e„ is a spin-1 polarization vector, e„, is a
spin-2 polarization tensor, I and N„are spinors for the spin--,

and spin--', particles, respectively. The t/~, ), are evaluated ex-

plicitly in Appendix B.

(a) High partial waves, b))a, are given by the Born
approximation for pion exchange; we call these partial
waves long-range pion exchange.

(b) Low partial waves, b &a, are of the coherent-
droplet-model form.

(c) The transition between these two forms is smooth.

Iv. LONG-RANGE PION EXCHANGE
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(a)
FIG. 1. ,Feynman diagrams: (a)

for pion exchange in the process
a+b~c+d and (b) for the decay
c~a+'tl .

"F{),~ are normalized so that

da/dn= L1/(25, +1) (2Se+1)g Z
~

Fig)P.
IQ

The kinematic factors are given by

&= (1/8 V'~) (P'/p)'" (boson-boson),

= (1/4~V'~) (P'/P) '"(~~') '" (boson-fermion),

= (1/2~+s) (
'

P/)P'~ (m, mmmm, me)'~' (fermion-fermion),

where m and m, ' are fermion masses.
"See, e.g., L. Durand, III, and Y. T. Chiu, Phys. Rev. 139,

8646 (1965).

In this section we calculate the high-partial-wave
amplitudes for pion exchange in the Born approxima-
tion. We take the Born approximation to be the Feyn-
man amplitude for Fig. 1(a). For the reactions we
consider, there is only one independent coupling mode
for each vertex that satisfies I.orentz invariance and
parity conservation. We choose the coupling modes
given in Table I. There is only one coupling constant
at each vertex. For unstable particles, we evaluate the
coupling constants using the relations between the
coupling constants and the decay widths given by the
Feynman diagram in Fig. 1(b).

The helicity amplitudes for one-pion exchange
(OPE) have the form

Fig} (s, t) =EVg, g. (s, t) Vg,g, (s) t) /(t —ts') ) (5)

where X is a kinematic factor, "p, is the pion mass, and
the V~„are vertex functions given in Table I. The
technique for performing the partial-wave decomposi-
tion of (5) is well known" With b= (J+-')/(pp')'~' we
find that, for J))1and pp')) (ts' —t; ), the partial-wave

a Particle Data Group, Rev. Mod. Phys. 40, 77 (1968).

amplitudes are

ui„" (b, s) = —L(—1)- '/p'jNVy, , (s, p,')

XV)„)„(s,y') Kgg (p'b), (,6)
where

and K (x) is the modified Bessel function. "The quan-
tity p,

" is the distance from the physical region to the
pion pole. The V),„are evaluated in the c.m. frame with
s fixed and t continued to the unphysical point t= p,'.
In our analysis, we use the central values of the reso-
nance masses.

For ts'b)
~
6) ~, n~qiopE has the form

er v'"(b s)—=«&,} (-'s)'"Le ""/(ts'b)'") (8)

where

&. —=—L(—1) '""/p']&V. .(, ')V ~ .(, ') (9)

R{),l is just the pion-pole residue, aside from a multi-
plicative factor.

In our model, the partial-wave amplitudes have the
form (8) for b) a We refer t.o these high partial waves
as long-range pion exchange (LRPE). H

~

5)
~

)y'b,
the partial waves of the Born approximation for b~a
are larger than (8). However, we always use (8) to
estimate LRPE because we believe the large values of
Ezz in this range of b are a consequence of unphysical
singularities in Born partial-wave amplitudes at b=0.

The scattering amplitudes in our model have a pole
at t= p,'. For elastic scattering it has been proved that
if partial-wave amplitudes have the asymptotic be-
havior e &'/(tsb)"', then the scattering amplitude has a
pole at t= p,'. That proof can be extended to inelastic
scattering. This is done simply by replacing t by t' and

p, by p,'. In this way one can prove that if the partial-
wave amplitudes have the asymptotic behavior

~7 Handbook of Mathematica/ Flnctions, edited by M.
Abramowitz and I. Stegun (Dover, New York, 1965).
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Thar. z II. Pion helicity vertex functions in the limit p,~p,~~ with t 6nite,
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{g., /m, v'(6m, m, ) JP(m, +m ) L(m '—m, '—t)/2m, J——,'t J

e ""/(p, 'b)"', then the scattering amplitude has a pole
at t'=tt". By Eqs. (2) and (/), t'=tt" is equivalent to
t= p2.

The LRPE contribution to the differential cross sec-
tion can peak or dip at t'=0 depending on the relative
magnitudes of the pion-pole residues in amplitudes with
AX=0 compared to the residues in amplitudes with
I AX

I
&0. From (9) we see that the helicity dependence

of the RI),)vis determined by Vz,z. (s, tt2) and Vz,)„(s,p,').
In Appendix A we give the general helicity depend-

ence of Vi,z. (s, t) for particles of arbitrary mass, spin,
and parity. Ke show that near t= 0, the helicity depend-
ence of V)„i.(s, t) is sensitive to t)t,—m, . For m, Am.
and the spins and parities of c and a arbitrary, we show
that for t su%.ciently small,

I V)„i.(s, t) II/ —i I=„) I Vi. i. (s, t) II) o'-xo'I=„+i. (10)

For m =m„s, arbitrary, and s =0 or —'„w~ show, for t
sufficiently small and the parities the same, that

VX,X (~y t) I'IX,-X I=(odd)) I VX, 'X, '(~y t) IIX.'—X~'I=(even) ~

For the same conditions on the masses, spins, and t, but
with the parities opposite, we show that

VX,4(~& t) I I4-Xe)=(even) ) I Vi. i. (~, t) IIX, '-X, 'I=(odd) ~

In Appendix 8 we give detailed expressions for the
particular vertex functions that we use. Since the
general expressions are complicated, we give in Table II
expressions for these vertex functions in the limit
I p, l

=
I p, I

= ~ with t finite.
For the unequal-mass vertices we consider, the mass

difference is large compared to the pion mass. From
Table II we see that for these vertices the inequality
(10) is satisfied at t=ti'. The only equal-mass vertex
we consider is the nucleon-nucleon vertex. For this case,
when X, =X„Vi.),. is zero for all t if

I p, I

=
I p, I, and is

finite but very small if
I p, I

—
I p, I. Vi,i. is propor-

tional to Q( —t') when
I

X,—X,
I
=1. At high energies

in the c.m. frame for the scattering process a+6—)c+d,
I p, I

—
I p, I, so that the nucleon-nucleon vertex func-

tion with
I
1,—X, I

=1 dominates the vertex function
with X,=A, .

Using (10) and the special properties of the nucleon-
nucleon vertex functions, we place quasi-two-body reac-
tions into two classes. Class I consists of reactions in
~h~~h

I
~ —~ I)» and

I
~~—~dl))t F«m (10)

we And that the largest E~q~ has d X=0 and X = X, and
Xq=Xq. Class II consists of reactions with a large mass
change at one vertex while the nucleon passes straight
through at the other vertex. Equation (10), together
with the special properties of the nucleon-nucleon ver-
tex, leads to the result that the largest E~~~~ has X =X,
at the vertex for which

I
ttt. —t)t. I ))tt, and

I
»—) d

I

= 1

at the nucleon-nucleon vertex. Thus in Class-II reac-
tions the largest RISHI has

I
AA

I
=1.As we shall show,

the different helicity dependence of the pion-pole
residue in Class-I and Class-II reactions leads to a
forward peak in the LRPE contribution in Class-I
reactions and to a forward dip in Class-II reactions.

In order to calculate the effects of LRPE on differen-
tial cross sections, we must consider the low partial
waves. We do this in Sec. V.

a(g) (b, s) =EP,)b(d"I dh expL2ib, (—oops) j
&&8(b, s) expr 2ibt(z coo) ), -(13)

where E~z~ is an energy-dependent constant. The factor
bI~~I represents the assumption th, at glancing collisions

"This model is an extension to quasi-two-body reactions of
the coherent-droplet model introduced for charge exchange by
Byers and Yang (Ref. 10) . We use the notation of Chou (Ref. 9}.
See also extensions of the droplet model to elastic scattering:
T. T. Chou and C. N. Yang, Phys. Rev. 170, 1591 (1968); and
in High Energy Physics and Xucleur Strlctlre, edited by G.
Alexander (North-Holland, Amsterdam, 1967), pp. 348-359.

V. LOW PARTIAL WAVES

An extension of the coherent-droplet (CD) model to
inelastic scattering is's
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228 (—eo-+S) = (COnSt) ds1 p;(b, s1), (15)

with an analogous expression for 8~. The 6 are normal-
ized such that 8(—~~~) is the elastic phase shift.

Elastic scattering information is available for Ep, 2rp,
and pp so that the f „"p;(b, s) ds are approximately
known. However, there are no elastic scattering data
for the final states pp, E*(890)p, ph, f'6++, and pA.
In the absence of this information we take

p ~=pm' and p~~= pea. (16)

The elastic scattering data that are available indicate
that Eq. (16) is approximately true for the Ep and 2rp

systems. Equation (16) is suflicient for our analysis
because our amplitudes in the small t' region are not
sensitive to detailed features of the density functions.

With these approximations (13) reduces to the
original form of the coherent-droplet model introduced
for charge exchange:

o//, loD(b& s) =El/, lo (f//g) ~a" ~ exp(2ib, 1)29,1, (17)

where E~q»
D is a dimensionless constant which can

depend on energy. The elastic phase shifts are con-
veniently parametrized bp

exp(2i8, 1) = [1—c exp( —b2/g2) ]. (18)

From the elastic scattering data, " the meson-baryon
elastic parameters are determined to be approximately

g=4.5 (GeV/c) ', c=0.58, (19)

while the baryon-baryon parameters are approximately

g=4.5 (GeV/c) ' c=0.91. (20)

For the droplet mod. el to be applicable it is necessary
that there be coherence of phase over the interaction
volume. ' That is, the phase shift of the initial-state
particles in passing through the interaction volume and
the phase shift of the 6nal-state particles should differ
by less than m. The condition which ensures coherence

"K. J. Foley, S. J. Lindenbaum, %. A. Love, S. Ozaki, J.
J. Russell, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 (1963);
11, 503 (1963).

are more effective in producing helicity Qips. ~ The beam
direction is along the s axis. P(b, s) is the probability
that the scattering occurs at position s and impact
parameter b. The factor exp[2i5, (—co~a)] gives the
absorption of the beam before scattering and
exp[2i/i/(s —+~ ) ] gives the absorption after scattering.
Following Chou, ' we assume

~(b, &) = Lp'(b, s) p/(b, s) ]"', (14)

where the p(b, s) are taken to be the hadronic matter
density functions of the initial and final states. The
absorption factors are given by

of phase is

~
2/2.2+2N p —t/2, 2 —2/2'

~
g(pt.b)

—'((~. (21)

For the most inelastic reaction that we consider, namely,
2r+p +f'—A++, this requires p1,b to be 8 GeV/c or greater.

To join the exponential tail of LRPE (8) smoothly
to the droplet amplitudes, we use an interpolation
similar to that introduced by Byers~:

n//, l (b, s) =Ep, l (1—n, t) (—2,
2r)'/'

$2 ) fax[/2 exp[ /1~ (b2+g2) 1/2]

$2+g2) [pI (b2+ g2) 1/2]1/2 ),22,

where [see Eq. (18)]
o..t ——c exp (—b'/g') (23)

For b&&a these amplitudes have the required asymptotic
behavior (8), while for b&g they are smooth functions
of b similar in shape to the droplet amplitudes. The
absorption factor (1—c2,1) and the factor

p2/($2+ g2) ]fa1)/2

are included to make these amplitudes similar in shape
to the droplet amplitudes at small b.

Since the droplet parameters E~),»
are unknown and

must be determined from experiment, we must check
in each reaction that the interpolation (22) does in fact
lead to a smooth joining of droplet and pion amplitudes.
For all the reactions we consider, (22) does lead to a
smooth joining.

VI. MODEL AMPLITUDES

Adding (22) and (17), we get the partial-wave
amplitudes of the droplet model with LRPE, namely,

u/1/(b, s) =ct/1} (b, s)+u/1/ (b& s). (24)

We emphasize that only the second term contains
LRPE. At large b, this term is uniquely determined by
the pion-pole residue. This term is real for all b. At
small b, O.~q» has the coherent-droplet-model form. Dif-
ferent interpolations of the long-range-pion effect into
the small-b region affect the behavior of O.~q» between
b(a and b»a. The main effect of different choices of
interpolation is that the real part of 0.~),»

is distributed
differently between Renp, »

D and n~), »
. A particular

choice of interpolation serves to define ReE~q» . We
found that different smooth interpolations do not pro-
duce signi6cant changes in the behaviors of our ampli-
tudes at small —3'. Therefore, our assumption that the
large-impact-parameter collisions are dominated by
pion exchange has consequences that are insensitive to
the detailed features of our model.

The scattering amplitudes of our model, at high
energy and small t', are given by"

~/1/(s, /') =p +/11 fa1 (/ )+p'%1/ fa1, (s, / ), (25)
"For our numerical calculations for each helicity Rip d,X, we

found the amplitude which has the largest pion-pole residue. We
used the exact partial-wave sum to calculate this amplitude. We
used this amPlitude and Eq. (25) to de/inc fa1on and faq».
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Fzo. 2. Fits to the data: (a) and (b) for s+p~p'n+ + at 8 GeV/c; (cl for s+p~f'n+ + at 8 GeV/c; (d) for pp~n++ at 10 GeV/c. The
parameters for these fits are given in Table I&I. The data in (a), (b), and (c) are from Refs. 1 and 2; the data in (d) are from Ref. 12

where

fa/ (t') =

and

b db J'q/, (bQ —t') (b/a) In~i exp(2ib, i) 2ib, l

(26)

convenient for numerical estimates of the shapes and
magnitudes of the fan for small t' The express. ions in
Appendix C are also convenient for considering the
energy dependence of f&z~(s, t').

Since the f&ion and f»,~ depend on helicities only
through hX, the differential cross section in our model
has the simple form

$2 (LD j/2 exp p~ $2 g2 1/2

~~ 27
b2+g2 Lp~ (bs+ @2)1/2jl/2

The fan n and fbi, are real functions. Theft/, cn functions
depend only on t' The presence .of /i' in (27) yields
some energy dependence for the fan~ functions; the fan~
functions increase with decreasing p', and the peaking
near 3'=0 gets sharper. As s—+~, p,

' decreases to p.
In Appendix C we give another interpolation of

LRPE to small b which allows the integral in (27) to
be evaluated analytically. This form is particularly

—,= Q j Gt„ f„(s, t')+C„exp(id„)f„cn(t') ~', (28)

where Is=
~

hX
~

and I = t. for Os~Os, rI, =2 for
0,'— -1—'„etc. The (R„are given by the residues Ep, I as
follows:

&- = I(P'/P)l: /(». +&) (»+&)j
Z I &I/ I I'b, ia/ II'", (29)

) g, )b, )ie, hg
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TAnLE III. Residues and parameters used to calculate the theoretical curves. They are dimensionless (see text). The 01 are deter-
mined from known decay widths. The C„and cosp„are droplet-model parameters chosen to lit the data. ( ~ ~ ~ ) indicates the parameter
was not used.

Reaction (momentum) Co COSPp C1 COS$1 (R2 C2 cosp. N3~ N4~

n.+P~p'n+ +(8 GeV/c)
n+p~f'ti+ +(8 GeV/c)
~ p~p'n (11.2 GeV/c)
m+p~p+p (8.0 GeV/c)
X P~IP'(890)n (10.0 GeV/c)
E p IP (890)p (10.0 GeV//c)

pp —&6++n (10 GeV/c)

0.412
1.18
0.0250
0.0283
0.0206
0.0103
0.0815

0.51
0.34
0.28
0.27
0.088
0.095
0.44

—0.55
—0.87

0.0
—0.725
—0.5
—0.75

0.363
1.24
0.0768
0.0771
0.0563
0.0282
0.220

0.16
0.13
0.16
0.30
0.088
0.34
0.47

0.75

0.115
0.556
0.0203
0.0207
0.0179
0.00895
0.0792

0.072

0 ' 095
0.088
0.019
0.20
0 ' 25

0.075
0.031

0.005

0.019

and the C„are related to the E~z» by

C-= ~(P'/P)l: /(». +1)(»+1)3
Z I

&(xi'D I'8-, I» I
I'" (3o)

) ~, Xy, ho, hg

To get information on the individual droplet pararn-
eters E~z~, one must study density-matrix elements.
The differential cross section depends only on the cosine
of the phases P„; the cosg„are given by

cosg„= (p'/p) Ln/(2s, +1) (2ss+ 1)j((R„C„)

&& Z ~w «(&w' )&., i»i (31)
Xg, ,kb, )l.o, ) g

Although, from their definition, the cos@„can vary
from —1 to +1, our requirement that the transition
between LRPE and the coherent-droplet form be
smooth in certain cases restricts the variation to a
smaller range.

Equation (28) is a simple and physical parametriza-
tion of the differential cross section which we use to
analyze the data on quasi-two-body reactions with pion
exchange. The pion amplitudes R„f„(s, t') are sharply
peaked at small t' and are responsible for any structure
in the differential cross section for —t' &p". The droplet
amplitudes C„expLig„jf„cn(t') describe the effects of
the low partial waves. They give relatively slowly
varying contributions to the differential cross section.
These contributions dominate for —t'))p, ".

The rapid variation of the differential cross section
for —t'(p, "is model independent. The behavior of the
differential cross section in this region follows from our
assumptions that pion exchange dominates large-
impact-parameter collisions and that the partial-wave
amplitudes are smooth and slowly varying functions of
b. Near t'=0, one can regard the coherent-droplet model
as just a convenient parametrization of the large-( —t')
data which gives an estimate of the low-partial-wave
contributions near t'= 0.

Our calculated amplitudes for —t'&)p" can be used
to test the coherent-droplet model. In this region LRPE
contributions are small. The larger the value of —t' the
more sensitive the amplitudes are to the detailed
features of the low partial waves.

VII. RESULTS

Here we present our fits to the data and our analysis
of the seven reactions (A) —(G). We consider first the
two Class-I reactions (A) —(8). In Sec. IV we showed
that for Class-I reactions the pion-pole residue is largest
in the helicity amplitude with AX=0 and X =X, and
Xg= Xq. The LRPE contribution to this amplitude peaks
sharply at t'=0.

A. sr+P—+y'4+ + at 8 GeV/c

The Aachen-Berlin-CERN data' displayed in Figs.
2(a) and 2(b) clearly show a sharp rise for —t'(0.03
(GeV/c) '. In Figs. 2(a) and 2(b), we show a fit to the
data using our model. The fit shown is a visual fit to
the data with the parameters Cp, C~, and C2 chosen to
fit the 0.3& t' &0.07 (G—eV/c) ' data and cosd s chosen
to fit the shape and magnitude of the forward spike.
In our analysis we found C3 to be small. Also, we found
the effect of interference between LRPE and the droplet
amplitudes for

~

L&
~

=1 and I hX
~

=2 to be small
compared to the contributions of AX=0 amplitudes.
For simplicity, we chose Cs, costi, cosg, and cos@, to
be zero. The residues and parameter values for our fit
are given in Table III. For —t')0.3 (GeV/c)', the
coherent-droplet model fails to account for the data
(see Fig. 5). We expect the coherent-droplet model to
work over a larger region of t' at higher energies, when
the condition for phase coherence (21) is better satisfied.

In this reaction, there are high-statistics data for
—t'(0.03 (GeV/c)' Lsee Fig. 2(b)). The shape and
magnitude of the differential cross section in this region
depend sensitively on the interference parameter cosine.
This parameter gives information about the phases of
the small-b partial waves. Our fit shows that, roughly
speaking, there is no interference between LRPE and
the small-b partial waves. Three diff erent helicity

amplitudes contribute to Rp, Cp, and cos@p. LRPE
contributes mainly to the amplitude with I XI = (0, —', ;
0, —', ). If we assume that this amplitude dominates the
LD=O contribution to the differential cross section, our
fit implies that the small-b partial waves are mainly
imaginary. Since the high partial waves are real, the
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m=p- p'n !1.2 GeV/c

(b)

7T'p —p' p 8 GeV/c

b Ol

I
~ Q ~

Fro. 3. (a) A 6t to the data for
e p—&e.+w e at 11.2 GeV/c. The
theoretical curve includes only
I'-wave m+m production. The
experimental data may include
some S-wave production (see
text). The data are from Ref. 3.
(h) A 6t to the data for m+p —&p+p

at 8 GeV/c. The data are from
Ref. 1. The parameters for these
fIts are given in Table III.
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phases of the partial-wave amplitudes must vary rapidly
near the surface of the interaction volume. If the droplet
contributions to other AX=0 amplitudes are large, we
can make no conclusions about the phase variation.

Another way to see that the data correspond to little
interference between LRPE and the small-b partial
waves is to note the following: The partial-wave ampli-
tudes of pion exchange (6) for b&7 (GeV/c) ' con-
tribute 5.3 mb (GeV/c) ' to the differential cross sec-
tion at t'=0. LRPE, defined to be these partial waves,
therefore accounts for the magnitude of the spike. LRPE
also accounts for its slope near t'= 0.

Our analysis shows that any simply modified OPE
model in which the low partial waves differ from OPE
in magnitude but are mainly real cannot account for
these data"

B. rr+P~f'4++ at 8 GeV/c

The 8-GeV/c data, shown in Fig. 2(c), show no
structure for —t'&0. 1 (GeV/c)'. In particular, they
give no evidence for a spike as seen in s-+p~p'5++.

In this reaction, at 8 GeV/c the distance from the
physical region to the pion pole is large compared to
the pion mass squared; that is, JLf,

" 6p'. One might thus
expect the pion effect to be small. The differential cross
section in the simple Born approximation, however, is
five times larger than the observed differential cross
section at t'=0. Furthermore, the discrepancy increases
as —t' increases.

LRPE, however, is consistent with the data. The
partial-wave amplitudes of pion exchange (6) for b) 7

(GeV/c) ' contribute only 1.8 mb (GeV/c) ' to the
differential cross section at t'=0. From Eq. (8), we see

"See, e.g., J.D. Jackson, Rev. Mod. Phys. 37, 484 (1965);J.D.
Jackson, J. T. Donahue, K. Gottfried, R. Keyser, and B. E. Y.
Svensson, Phys. Rev. 139, 3428 (1965).

that (p') ' can be regarded as the range of the pion-
exchange interaction. The pion effect in 7r+~f'6+ + at
8 GeV/c is therefore broader than in 7r+p~p'6+ + at the
same energy. Because interference is possible between
LRPE and the small-6 partial waves, the pion effect in
the differential cross section at t'=0 can be smaller or
larger than 1.8 mb (GeV/c) '. A rise of 1.5 mb (GeV/
c) ' for —t'&0.04 (GeV/c)' is certainly consistent with
the data.

Our model does not provide a particularly convenient
parametrization for the differential cross section in this
reaction because p,

' is large. LRPE contributions to
scattering amplitudes are important in a region of t'

characterized by p,".At 8 GeV/c, p" is approximately
0.11 (GeV/c) '. Interference effects between LRPE and
the small-b partial waves at this energy can be important
in the entire range —t'&0.3 (GeV/c)'. Because the
final-state particle spins are large and interference effects
are important over such a large range of t', do/dt' in our.
model (28) can depend importantly on too many
parameters (five droplet and five interference) to allow
a meaningful detailed Qt to the available data. However,
for —t'&0. 1 (GeV/c)' the dominant contributions to
do/dt' come from

~

AX I
=0,1 amplitudes. Possible inter-

ference effects in AX=0 amplitudes are much larger
than those in

I
LD

~

= 1 amplitudes. In Fig. 2 (c) we show
a curve given by the model when only the three pararn-
eters Ce, Ci, and cosg, are used. Since there are so many
parameters in the coherent-droplet model for this reac-
tion, these data do not provide a good test for the model.
Our curve shows only that the coherent-droplet model
with LRPE is consistent with these data. |A'hile these
data are consistent with LRPE, they give no evidence
for LRPE because they show no structure near t'=0.
(See Sec. VIII for the possible effects of LRPE in this
reaction at higher energies. )
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For —t')0.3 (GeV/c)', the model cannot account
for the data. For —t')0.3 (GeV/c)' the data show a
broadening of slope which cannot be explained by the
coherent-droplet model. However, we expect the coher-
ent-droplet model to give good fits to the data over a
wider region of —t' at higher energies when the mass
changes are smaller relative to the total energy.

Next we consider reactions in Class II, that is, reac-
tions for which m &m, while the nucleon passes straight
through at the other vertex. For these reactions, we
showed in Sec. IV that the pion-pole residue is largest
for those helicity amplitudes for which X,=X, and

~
X&

—Xz
~

=1. As a consequence, for the reactions we
consider, the LRPE contribution always dips in the
forward direction. If LRPE dominates at small —t',
the differential cross section dips in the iorward direc-
tion and peaks near t'~ —p'. The details of the curva-
ture at small —t' depend on the relative phases and
magnitudes of LRPK and the small-6 partial waves, as
is shown in the various cases we discuss. Our model
cannot predict if the LRPK effect dominates at sm'll

t' H—ow.ever, using the large-( —t') data, we can use
the model to predict whether the LRPE effect domi-
nates.

For the reactions in Class II, the change in wave-
lengths of the particles between initial and final states
is not as great as for the reactions in Class I. It is
characteristic of Class-II reactions that the coherent-
droplet model fits the data over a larger range of t'.

C. n p~g'n at 11.2 GeV/c

The data shown in Fig. 3 (a) indicate the LRPE effect
characteristic of reactions in Class II. The data include
non-p' background. Our fit to the data includes only the
long-range-pion contribution to p' production. The
parameter values for our curve are given in Table III.
Our curve has the shape indicated by the data, but for
—t'&0.06 ( GeV/c) ' it tends to be low. We can account
for this discrepancy by noting that LRPK can contrib-
ute to 5-wave m+~ production. Ke estimate this effect
by calculating the LRPE contribution to the produc-
tion of an S-wave m+~ resonance near the mass of the
p using the Feynman diagram in Fig. 1(a). There are
only two independent helicity amplitudes for this reac-
tion, AX=0 and 1. Pion exchange contributes only to
the

~

hX
~

=1 amplitude. The t' dependence of the
LRPE contribution to the

~

L&
~

=1 amplitude in S-
wave x+x production is the same as the corresponding
contribution to the

~

AX
~

=1 amplitude in po produc-
tion. If the LRPK effect in 5-wave ~++ production is
20 j~ of the

~
L&

~

=1 contribution in p production, its
inclusion improves the fit for —t'&0.06 (GeV/c) '.

D. m+P~p+P at 8 GeV/c

Owing to isospin conservation, the LRPK eBect in
this reaction is smaller by ~ than it is in the n p ~p tt
at the same energy. However, owing to the energy

dependence of the pion-exchange interaction, the LRPK
effect is as strong in ~+p-+p+p at 8 GeV/c as it is in
ir p-+p'I at 11 GeV/c. Since the large-( —t') data are
of the same order of magnitude as in ~ ~pox, we

expect to see a LRPK effect in the data. The LRPE
effect always has its maximum near t'= —0.015
(GeV/c)' and dips in the forward direction. The data
displayed in Fig. 3(b) are consistent with this behavior.
The curve in Fig. 3(b) indicates the type of structure
our model gives. The interference parameters cos@o and
cos» are not well determined by the data. Since the
contributions of droplet and LRPE amplitudes are like
those in m p-+p'n, a different choice of cosgo and costi
could give similar structure to that shown in Fig. 3(a) .
The values of the C„we found from the large-( —t')
data and the values of cos@„we chose for the fit shown
in Fig. 3(b) are given in Table III. We note that the
data seem to indicate peaking near t' = —0.05 (GeV/c) '.
Such structure could not be accounted for by our model.

E. pp~nA++ at 10 GeV/c

The analysis of this reaction is similar to that of the
preceding two. Again the pion contribution peaks near
t' = —0.015 (GeV/c) ' and dips in the forward direction.
In this reaction, owing to large statistical errors, the
large-( —t') data allow only a rough estimate of the
small-6 p" rtial-wave-amplitude contributions to the
differential cross section near t'=0 )see Fig. 2(d) $. We
find that LRPE and short-range interactions give com-
parable contributions for —t'&0.04 (GeV/c)'. For
most parameter values, we find structure like that
shown by the curve in Fig. 2(d) . The detailed features
of the curve, such as the depth of the dip and the
curvature, depend on the particular parameter values
chosen. More reliable estimates of the parameters
require data of higher statistica" precision. The param-
eter values for the curve shown are given in Table III.

Note that in this reaction LRPK produces a dip in
the forward direction. In ep charge exchange, on the
other hand, it produces a sharp peak. This different
behavior follows from the different mass structure of
these reactions and the kinematic properties of pion
helicity vertex functions (see Sec. IV). The helicity
must fhp at both pion vertices in np charge excha, nge.
LRPE contributes to

~
AX

~

=0 and 2 amplitudes. The
helicity-Rip-zero contribution dominates near t' =0 and
produces the spike.

F. X p~X*'(890)n at 10 GeV/c

Using the —t')0. 1 (GeV/c)' data, we estimate the
small-b partial-wave-amplitude contributions to the
differential cross section near t'=0 to be 0.1 mb
(GeV/c) '. The magnitude of the long-range pion con-
tribution at t'= —0.015 (GeV/c)' is approximately
0.26 mb (GeV/c) '. Thus, we find that the LRPE
contribution dominates the —t'&0.05 (GeV/c)' dif-
ferential cross section. The LRPK eGect is so large that
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FIG. 4. Our fits to the data: {a) for E p—+E*'{890)e and
(b) for E p~E* (890)p at 10 GeV/c in the region 0(—t'&0.2
{GeV/c)'. These fits at larger —t' are displayed in Fig. 5. The
data are from Ref. 11.The parameters are given in Table III.

G. X P—+K* (890)P at 10 GeV/c

In this reaction, by isospin conservation, the LRPE
contribution is four times smaller than in E P ~
E*P(890)n The —t') 0.0.5 (GeV/c) ' data require much
larger small-b partial-wave-amplitude contributions to
the differential cross section in this reaction. At small
—3', the LRPE contributions are swamped by the small-
y contributjonsc. In Fig, 4(b) we present our fit to the

there is some LRPE effect in the whole range —3'&4p, '.
LRPE produces a rise for —t'(0.08 ( GeV/c) ', peaking
near —t'(0.015 (GeV/c)P, and a dip in the forward
direction. These features are illustrated in our 6t shown
in Fig. 4(a) . The parameter values for our fit are given
in Table III.

Detailed features of our fit, such as the depth of the
dip, the height of the maximum, and the curvature
from 0.02) —t')0. 1 (GeV/c)' depend on the param-
eters and might change with higher statistics and a
better determination of the parameters. The qualitative
features of the curve, the rise for —t'(0.1 (GeV/c)',
the peak near t'= —0.015 (GeV/c)', and the dip in the
forward direction, follow only from the magnitude of
the large-( —t') data and the fact that for —t'(0.02
(GeU/c)', do/dt'(3. 5 mb (GeU/c) ', as indicated by
the data. The model gives no dip in the forward direc-
tion, only in the extreme case that cos&p=+1 and
cos»= —1.These conditions imply that the low partial
waves with AA. =O are real and in phase with the high
partial waves while the

~

t)A
~

= 1 low partial waves are
real and 180' out of phase with the high partial waves.
This extreme case occurs for do/dt' 4 mb (.GeV/c) '
at t'=0. Thus, for E ~E*'(890)e, the model predicts
a dip for —t'(0.01 (GeV/c)' on the basis only of the
large-( —t') data and a lower limit for do/dt' a,t t'=0.
given by the data. Since the entire dip is in the 6rst bin
of the data, this prediction of the model requires higher
statistics for confirmation.

data. The parameter values for the 6t are given in
Table III.

The depth of the dip is controlled mainly by the
parameter cos@0.Our Gt corresponds to large destructive
interference between LRPE and small-b partial waves
in the AX=0 partial-wave amplitudes. However, good
6ts to the present data are obtained for any value of
cos/p. For cos&p=+1, do/dt would be approximately
0.2 mb (GeV/c) ' at t'=0. For t')—0 05 (.GeV/c)',
the effects of varying cos@0 are negligible. In this reac-
tion the long-range pion effect is too small to be detected
with the available data. The peak in the data near t'=
—0.1 (GeV/c)' and the dip in the forward direction
imply large contributions to the differential cross section
from

~
L&

~

= 1 droplet amplitudes.
To summarize, LRPE can produce both dips and

peaks characterized by a width p". In every reaction
we considered, the data near t'=0 are consistent with
the presence of LRPE. Only for 7r+p -+p'6+ + at 8 GeV/c,
however, is the detailed structure caused by LRPE
6rmly established. In the other reactions higher statis-
tics are required.

Our good fits to the data for 0.3)—t') 0.1 (GeV/c) '
indicate that the coherent-droplet model describes
approximately the partial-wave amplitudes for b(a.
The coherent-droplet model is a model for scattering
at infinite energies. At 6nite energies, the mass changes
in the reactions we consider partly destroy the coherence
of phase over the interaction volume. In Fig. 5 we com-
pare the coherent-droplet model with the data over a
large range of t' for the reactio—ns ~+p ~pp6++, ir+p-+
foa++, ~+p t+p, E-p E*'(890)I, and E p ~
E* (890)p. (The data points for small t' are —omitted
because they are shown in previous figures. ) In the
first two reactions the mass changes are large. In these
reactions the data deviate from the coherent-droplet
form for —t') 0.3 (GeV/c)'. In the remaining reactions,
there is a mass change at only one vertex. In these
reactions the coherent-droplet model its the data over
a larger range of —t'. As the energy increases, we expect
the deviations of the data from the coherent-droplet
form to occur at larger values of —t' for all these reac-
tions.

In Sec. VIII we discuss the energy dependence of
LRPE.

VIII. ENERGY DEPENDENCE

Before we consider the energy dependence of the
LRPE contribution to the differential cross section, we
review briefty the well-known energy dependence of
pion exchange in the simple Born approximation. For
reactions with one independent coupling mode at each
pion vertex, the differential cross section for pion
exchange in the Horn approximation has the form

d~/«= (~/Pi"') I1/(t —
t ') '7

)& Lt—(m.—m, ) '7&- Lt—(nt.+m.) ']&-+

&& Lt—(mp fits) '$&" P—t (mp+md) —'7&"+ (32).
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FIG. 5. Deviation of our model
from the data at large —t'. The
small-( —t') data points are given
in~, the preceding figures. All the
available data for the two reactions
omitted here are displayed in Pigs.
2(d) and 3(a).
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Here G is independent of s and t. It depends on coupling
constants and the masses, spins, and parities of particles
u, b, c, and d. The powers g,+ and q~~+ are integers that
depend on the spins and parities of particles ac and bd,
respectively. Expressions for these factors have been
given, for example, by Jackson and Hite" and by
Frampton. " At Axed ~, da/dt in (32) de. creases with
increasing energy like pi,b 2. For Class-I reactions ~ and
t' are different at Gnite energies. For these reactions it
is interesting to consider (32) at fixed ~'. For Class-I
reactions, a 6xed value of t' corresponds to values of —t
which decrease with increasing energy. , For Class-I
reactions in which (nz, —yg )'))p' and (mq —mg) ))p'
the differential cross section peaks sharply for —t&p'
and is concave. Thus, as the energy increases, the Born
approximation at fixed t' decreases more slowly than
P',b

' and the peaking near t'= 0 becomes sharper.
We consider next the energy dependence of LRPE.

At large b, the partial waves of pion exchange are given
by Eq. (8):

p (—u'&)/(~'&)"' (8)

When the range of the pion-exchange interaction p,
' '

is energy independent, the energy dependence of

"See, e.g., J. D. Jackson and G. E. Hite, Phys. Rev. 169, 1248
(1968);P. H. Frampton, "Nucl. Phys. B7, 507 {1968}.

LRPE is determined by the factor Biz~ and is the same

as in the Born approximation. For Class-II reactions
p' p for p', b in the GeV region. For Class-I reactions,

however, p,
' is greater than p, at 6nite energies. For these

reactions p,
' decreases with increasing energy. The

exponential factor exp( —p, '~)/(p'~) "2 in (8), therefore,
increases with increasing energy; the larger the value of

b, the larger the increase. Since the large-b partial waves

increase in magnitude relative to the small-b partial
waves, LRPE decreases with increasing energy more

slowly at fixed t' than the Born approximation. For
p,'))p, , the difference in energy dependence can be
significant at small —t'. In Appendix C we give analytic
expressions which approximate the LRPE contribution
to scattering amplitudes. These expressions give numer-

ical estimates for the magnitude of these energy-

dependent eGects.
To illustrate the energy dependence of the long-range

pion contribution in a particular reaction, we consider

~+P ~f'6++ between 8 and 16 GeV/c. In this interval,

p,"decreases from 6p,' to 3p,'. In the Born approximation,
the differential cross section at t'=0 decreases from

12.O mb (GeV/c) ' at 8 GeV/c to 6.64 mb (GeV/c) '
at 16 GeV/c. The long-range pion contribution to the
differential cross section at t'= 0 decreases more slowly.

An estimate of this contribution is obtained by con-

sidering the'partial-wave amplitudes of the simple Born
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approximation (6) for b) 7 (GeV/), ) ' only. These
partial waves contribute 1.8 mb (Gev/c) ' at 8 GeV/c
and 1.73 mb (GeV/c) ' at 16 GeV/c; that is, the long-
range. pion contribution at t'=0 is roughly constant in
this energy interval. It is not possible to give the eGect
of LRPE on the differential cross section a,t 16 Gev/c
without knowing the phases and magnitudes of the
partial waves with b(7 (GeV/c) '. The coherent-
droplet model does not give the energy dependence of
either the droplet or interference parameters. We dis-
cuss the effect of LRPE at 16 GeV/c under various
assumptions about the droplet and interference param-
eters. We consider only interference effects in zero-
helicity-Rip amplitudes because the long-range pion
contribution to helicity-Rip amplitudes is not important.
We consider only helicity-Qip-zero and -one droplet
amplitudes because only these contribute significantly
for —t'(0.1 (GeV/c)'

If we assume that at 16 Gev/c there is no interference
between LRPE and the small-b partial waves, LRPE
produces a spike with a magnitude of 1.8 mb ( GeV/c) '.
This spike is siinilar in shape to the spike seen in or+~
p'tI)++ at 8 Gev/c. It rises above the slowly varying
low-partial-wave contributions whose magnitude is not
given by our model.

If we assume constructive interference between
LRPE and the small-b partial waves at 16 GeV/c, the
spike is larger and broader than in the absence of inter-
ference. Similarly, if we assume a small amount of
destructive interference, the spike is smaller and
narrower than in the absence of interference. If we
assume large destructive interference, the structure at
small —t' depends on the values of the droplet param-
eters. If, for example, the droplet parameters are such
that in the absence of interference the small-b partial-
wave contributions at t'=0 are greater than or com-
parable to the long-range pion contributions, then com-
plete destructive interference in zero-helicity-Rip ampli-
tudes would give a dip in the forward direction.

To summarize, LRPE produces a spike in m+~
f'6++ at 16 GeV/c for most assumptions about the
energy dependence of the droplet and interference
parameters. The shape and magnitude of the di6erential
cross section for —t'& p,

" depends sensitively on inter-
ference between LRPE and the small-b partial waves in
zero-helicity-Aip amplitudes. A measurement of the
differential cross section in the region would give infor-
mation about the phases of the small-b partial waves
with helicity Qip zero.
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p, ' sine'= p. sin8. (A6)

The collinear matrix element can be expanded using the
Wigner-Eckart theorem'4 "
(p, ', 0, &; s,

I J.(0) I
0, 0, &'; s.)

= g C(s„ I,, s, ; t), 0, t)') T'" z(t, m. , m, ) . (A7)
L

Here L is the relative orbital angular momentum of the
pion and particle c.

Parity conservation imposes the following restriction
on L:

(—1) = —rt,v)„

where g, and g are the intrinsic parities of particles c
and Q.

From nonrelativistic quantum mechanics, which is
valid near p, '=0, one finds that as p, '~0 the reduced
matrix elements T'"'1.(t, m. , m, ) vanish at least as fast
as (p, ') ~. Since p,

' vanishes like (t (m, —m, )$'i', —one
can write

T'".r, (t) m. , m. ) = [t (m, m)']' 'f'—"-z—(t, m„m.),
(A9)

where f'"~r, is finite at t= (m, —m, ) ~. Similar considera-
tions for the decay of a pion with mass Qt into particle
a and the antiparticle of c show that near t = (m.+m ) ',

fa )'z, (t, m„m. ) ~ $t (m.+m )'ji't' —(A10)

where L' is the minimum allowed relative angular
momentum of a and the antiparticle of c. For a and c
bosons, l.'=I.; for fermions, I.' is either 1+1 or L—1.

"G. C. Wick. , Ann. Phys. (N.Y.) 18, 65 (1962).
'4 M. E. Rose, EterrIeegary Theory of Angzdar JIomeetlm

(Wiley, New York, 1957).
2' L. Durand, III, P. C. DeCelles, and R. B. Marr, Phys. Rev.

120, 1882 (1962).

APPENDIX A

In this appendix we consider the helicity vertex func-
tions for the vertex car when the mass, spin, and parity
of particles c and u are arbitrary.

The pion helicity vertex function can be written in
terms of the collinear matrix element as follows":

(p ~, l ~ li-(0) I p. o» )
= g d,),."(~)d, )."(—tt')

ttt)P

&& (p, ', 0, p; s,
i g (0) i 0, 0, ti', s, ), (A1)

where"

p.'= IL—t+(m —m )'gt' —t+(m.+m )']/4m 'j'i'

(A2)

P,
' cos~ = (P.E, P,E, cos8)—/m„(A3)
p,

'
sinu& = —(m,/m. )p. sine, (A4)

p.' coso' = —(p,E, p,E, coso—)/m„(A5)
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The behavior of the helicity vertex functions near t=
(m,+m, ) is not important in determining the behavior
of the long-range pion contribution to the diGerential
cross section near t=0. We, therefore, do not make
explicit the behavior (A10) in succeeding formulas.

Using (A7) and (A9), we rewrite (A1) in such a way
that the behavior of the helicity vertex functions for
small t can be determined easily:

(P 8» ~ lj-(0) IP., 0, ~-; .)
= Q d„)„"((u)d„i."(—8') C(s„I., s.; ti, 0, p)

L)/l,

X$ t+(m—, mc)')—I'f"ccr, (t) m„m, ). (A11)

We see immediately that all helicity vertex functions
with m. =m, vanish as t-+0 at least as fast as (—t) ~t')

where I-&
l
s,—s, l

and (—1)~= —rt,rt, .
For all scattering reactions with pion exchange for

which there are data at present, the spin parity of one
of the particles, either c or u, is either 0 or ~+. If we
take s,&' to be either 0 or i~+, the sum over I. in (A11)
includes only one term due to the restrictions (A7)
and (AS).

When only one value of L is allowed, the helicity
vertex function can be written

We consider erst the most important equal-mass
vertex, the nucleon-nucleon vertex. For m, =m and

l p, l
=

l p, l, then 8'=s+co. For X,=X,—=X, we find

Wig-'**'(co, s.+co) =0.

For X,= —X,=—X, we find

(A15)

XC(s., I-, -'„p, 0, p) .
Using"

C( ji,j,,j,; mi, m2, ma) = (—1)"+' "
(A17)

and'4
XC( ji, j&, j3, —mi, —ms, —mg) (A1S)

W), ),'l'(co ~+(o) =1/v3. (A16)

Thus for
l p, l

=
l p, l, the nucleon-pion vertex function

vanishes for all t when X,—li =0. When
l

X,—X
l

= 1,
it vanishes like Q( —t).

Next we determine the relative magnitudes of helicity
vertex functions near t= 0 for the equal-mass case when
the parities of c and a and the spin of c are arbitrary
and s,=0 or —', . At t=0, for m, =m, ~= —-', ~ and 0'=
~i)r. We consider first s,= 2. Then at t = 0, Wi„q."'~(&v, 8')
becomes

W""-: (—!,—; )= Z d:."(——:-)d:.—:(—l-)
p=+g

(p., 8, x.; s, l j.(0) l p., 0, x.; s.) 4,'(—k~) = (—1)""d-~.'(—2~) (A19)

=W), i cc(c~c8')Tccccr, (t m. m ), (A12)

where Tccccr, is defined in (A12) and

W ."'(,8') = Z d:."( )d:."(—8')

XC(s„I., s.; ti, 0, ti). (A13)

The relative magnitudes of helicity vertex functions
with different (l),„li,) depend only on Wz.z.'"'~(co, 8')
and not on T'" r, . For s,=0, the sum over )M, in (A13)
contains only @=0; for s =—'„ the sum contains only
p =Kg.

For m.Qm, ~ and 8' are proportional to 8 as 8-+0.
Thus, as 0—+0,

Wi, i.'"'(, 8') (Q—t') ~" -" ~. (A14)

Unless f'" I, vanishes at t' =0, for m. Wm, all the helicity
vertex functions vanish like the minimum power of
Q( —t') required to conserve angular momentum. This
behavior has the consequence that for —t' sufficiently
small, the largest helicity vertex functions are those
with the smallest amount of helicity flip.

For m, =m, and
l p, l

=
l p, l, ca and 8' are not pro-

portional to 8 for small 0, in contrast to the unequal-
rnass case. Under these conditions, 8'=7r+u and 8=
8'+~. As 8—)0, a&

—)——',)r and 8'~-', )r. As a result of the
different behavior of co and 8', the relative magnitudes
of the helicity vertex functions at small t' are different
in the equal-mass case from the relative magnitudes in
the unequal-mass case.

we rewrite (A17) in the following form:

W), ), "l (——')r ~)r) =C(s„ I-, —',; —',, 0, 2)

XL1—~.~.(—1)"-".]d' "(—i~) d,„-:(——:~), (A20)

where we have also used (AS) . Thus we 6nd

W, -'(--;, —: ) =o (A21)

~ ~ ( 1)ic—)c—1

However, we find

cc (——~ —)r) +0
lf

(A22)

(A23)

(A24)

( —1)"=—)t q.. (A25)

Therefore, for equal-mass pion vertices with s, =-'„ for
small t and p, =p„helicity vertex functions with

l
X,—X, l

= (even) are smaller in magnitude than the
helicity vertex functions with

l X,—X,
l

= (odd). The
well-known behavior of the nucleon-pion vertex func-
tion is a special case of this result. For the same condi-
tions on the masses, spins, and t, but with q, = —q„
helicity vertex functions with

l
X,—X.

l
=(odd) are

smaller in magnitude than the helicity vertex functions
with

l
X,—X,

l

= (even).
The results of the previous paragraph for s,= ~ hold

also for s, =0. For s =0, there is an additional result,
namely, the pion helicity vertex function vanishes for
all t unless
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These results can be proved simply using (A13) and
known properties of do/, '(-', s.) .

APPENDIX 8

Similarly, the spin-2 polarization tensor e„„was con-
structed as follows:

e„„(X,P) = P C(1, 1, 2; X', X—X', X)

&&e„(X', P) e„(Z—Z', P). (33)
Note that the single-particle helicity states in this

appendix are type-"1" states in the notation of Jacob
and Wick." In constructing scattering amplitudes one
must use type-"1" states at one vertex and type-"2"
states at the other. The vertex functions for type-"2"
particles differ by a factor (—1)" "~+" ~ from those
for type-"1" particles. These phase factors are impor-
tant in determining the absolute phases of the partial-
wave amplitudes and in calculating density-matrix
elements.

Vertex: 1 0 0; coupling mode: e„(P„X,)P,I".

e„(P„+1)P,/'= W (p. sin8) /v2,

e„(P„O)P.&= (p.E. p.E. cos8)/m. .—
(34)

(»)
Vertex: 2+0 0; coupling mode: e„„(P„X,)P,"P ".

e„„(P„W2)P &P."=-',p, ' sin'8, (36)

e„„(P„&1)P,&P,"=%(p,E, p,E, cos8) p, sin8—/m„

(37).„„(P„O)P. P:= (V'-,') (p,E.—p.E, -.8) /,
—(Q6) p ' sin'8. (38)

Vertex: —',+-,'+0; coupling mode: u(P„X.) ysu(P„X,) .

u(P. , -,') y5u(P. , —',) =g cos-', 8, (39)
u(P„——,')y,u(P„-,') = —gp sin —,'8, (310)

u(P. , ', )yqu(P. , —-', ) = —q—+ sin-', 8, (311)

u(P. ,
——,')y5u(P, —-', ) = —

g cos-,'8. (312)

In this appendix we give detailed expressions for the
pion helicity vertex functions for the reactions we con-
sidered in this paper. The vertex functions are calculated
in perturbation theory. Perturbation theory gives the
most general helicity dependence of the vertex functions.

Our notation is as follows: P, = (E„p,sin8, 0, p, cos8),
P,= (E„0,0, p,), and P„P/'= m'. The momentum
transfer is t= (P,—P,)'. We denote the spin-1 polariza-
tion vector by t,„and the spinor for spin —,

' by u. The
spinor u is normalized by

u(lI. , P)u(X, P) =1.
The spinor for spin ~3 was constructed using

u„(X, P)
= g C(1, -'„-,'; X', lI.—lI, ', lI.) e„(X', P)u(X—X', P). (32)

In these expressions p~ is given by

(E,+m, ) (E.+m„)
ylk =

4m,m,

pll pa

E,+m E.+m.
(313)

APPENDIX C

In this appendix we introduce an interpolation of
LRPK to small 6 which yields expressions for scattering
amplitudes which are particularly simple. These expres-
sions give convenient numerical estimates of the long-
range pion contribution to scattering amplitudes. We
introduce the interpolation

+I&,)~~ ~II I~(f/ /(f/ +gl»l ) )I»I/2

)&It»(P'(b'+aI»I') '/'), (C1)

where a~&),
~

is a parameter. Varying aI&),
~

gives a family
of different interpolations of LRPE to small b. For this
family of interpolations, f» is given by

f&& (s /, ) = f/df/~»(f/4 /)[f/(/f+/ul»l ))I»I/&

~&» (&'(&'+&I»I') "') (C2)

Integrating, we hand"

fgg' (s, t') = (—1)(» I»II/ (—t~/ '
) I»I/'

&&[//I»I/(/ '—~) '"j&i(~I»
I
(u' —~) "'). (C3)

We see immediately from Eq. (C3) that f»' has a pole
at t=p' with residue —(—1)»/2 The position and
residue of the pole are independent of aI~q~. The value
of f&z'~ away from t=//, ' does depend on aI»I, that is,

"G.N. Watson, Theory of Bessel FNncgions (Cambridge U. P.,
Cambridge, 1966), p. 416.

Vertex: ~3+—',+0; coupling mode: u„(P„X,)P,&u(P„X,).
u„(P„-,')P,&u(P„-', ) = q—'(p. sin8/V2) cos-', 8, (314)

u/, (P„$)P,u(P„—2) = —r/+'(p, sin8/v2) sin —',8, (315)

=.(P., —:)P:-(P., —:)= (V'-.). I (p.E.-p.E.- 8)/-. l
X cos28+g+'(p, sin8/Q6) sin-', 8, (B16)

u~(P. , 2)P. u(P„——',) = (Q3)q+'f(p,E. p.E, c os
—8/m. j

X sin-,'8—
q '(p, sin8/Q6) cos-,'8. (317)

In these expressions g~' is given by

1 (E,+m. ) (E.+m, ) &p.p.
2 [(E,+m, ) (E.+m )m,m.]"' '

The parity-conservation constraint,

u„(P„X.)P t'u(P. , X.) = (—1)" " u„(P., —X,)

)&P,t"u(P, —X,), (B19)

can be used to determine all the other u„I' I'u for the
vertex 2+~+0 .
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it depends on the way in which LRPK is interpolated
to small b. Since there is no unique way to make this
interpolation, we must make an arbitrary choice. In our
calculations we used the interpolation Eq. (22). Here
we show how fqq' can be used to approximate ftsp
)see Eq. (27)).

The functions f~p depend on the two elastic scattering
parameters c and a. For meson-baryon scattering c=
0.58 and a=4.5. We can electively take into account
the absorption appropriate to meson-baryon scattering
contained in ftsz by choosing as ——5.25 (GeV/c) ' and
ar ——6.2 (GeV/c) ' in ftsq'r For .3&=0 and p'=tv, the
equality fs fs' is valid to 5% for —t&p'. For p'=
1.5p, , the equality fe =fs'r is valid to 10% for —t'& p".

For AX=1 and p'= p, the equality frr =fr™is valid to
10'po for f—(2p, ' F.or p,

'= 1.5p, , the equality frr =f&' is
valid to 15% for —t'&2p". For baryon-baryon scatter-
ing the absorption in fqq is larger. For this case, for
AX=0 and 5X= 1 and p,

'= p, fe,q =fqq™within 15 jo for
—t& p,

' when ao ——6.25 (GeV/c) ' and ar ——6.75 (GeV/
c)

—r

Note that Eq. (C3) gives the energy dependence of
I.RPE at t'=0 to be

fs"(s, t'=0) = (—1) " i 'i t'(its/p')Et(asp'). (C4)

For as nonzero and energy independent, fs' (s, t'=0)
decreases with energy more slowly than the Born
approximation, which is given by the limit a0=0.
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Pion-Pion Scattering Information from e-e+ ~~-sr+~[
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We show how the reaction e e+~7l- ~+y can be used to study the dipion system in states of even charge
conjugation (and even angular momentum). In particular, its utility for experimentally investigating an
I=0, J=0 resonance (e meson) is discussed in detail.

INTRODUCTION

~ 40 lowest order in the fine-structure constant n, the
. reaction e +e+ +H (H being —any neutral hadronic

system) produces only final states with charge conjuga-
tion (C) odd and angular momentum (J) equal to
unity. This property is one of the primary advantages
of electron-positron colliding beam experiments; i.e.,
it allows the careful experimental study of a specific
hadronic channel. Already this reaction has yielded
beautiful results on the pion' and kaon' form factors
as well as the three-pion final state. '' However, this

property is at the same time one of the limitations of
electron-positron storage rings, since one would also
like to investigate experimentally other hadronic chan-
nels. In a previous paper, 4 we showed how one could
use reactions of the form

e +e+~H+y,

where 7 is a hard photon, to study hadronic systems

t Work supported by the U.S. Atomic Energy Commission.
*NSF Graduate Fellow.'I. E. Augustin et al. , Phys. Letters 28B, 508 (1969); V. L.

Auslander et al., ibid. 25B, 433 (1967).
2 J. E. Augustin et al., Phys. Letters 28B, 517 (1969).' J. E. Augustin et al. , Phys. Letters 283, 513 (1969).
4 M. J. Creutz and M. B.Einhorn, Phys. Rev. Letters 24, 341

(1970) (hereafter referred to as L).

with even C. Although the hadrons II may emerge
from this reaction with either even or odd C, quantum
electrodynamics plus knowledge of the cross section
for e +e+-+H allows one to remove the odd-C con-
tribution. Consequently, the eBects of the production
of hadronic states with even C can be isolated and
studied in a model-independent way. We have illus-
trated4 the method of analysis by considering the
reaction

e +e+~ +n++y.
In this expanded discussion we will present the details
of the analysis and consider further experimental prob-
lems and theoretical implications.

The outline of the paper is as follows: In Sec. I we
summarize the theoretical predictions and experimental
results bearing on the existence of an I=0, J=O dipion
resonance (the c meson). In Sec. II we discuss the
kinematics of the reaction being considered. We in-
clude here a brief discussion of how such an experiment
may be analyzed and discuss some features of the
Dalitz plot. In Sec. III a particular model for estimat-
ing the order of magnitude of the contribution from
the e meson is presented. In Sec. IV we discuss the
constraints that unitarity imposes on the production
amplitude. We point out in particular that there is no
simple analog here of the Fermi-Watson 6nal-statt:


