
PHYSICAL REVIEW D VOLUME 1, NUMBE R 9 1 MAY 1970
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The process E +He' —+h. +m +He' is analyzed in the multiple-impulse approximation for both 1S
and 2I' atomic capture at rest. Reaction kinematics and rates, which are free of arbitrary constants, are
calculated in both first and second order. The multichannel En amplitudes of Kim are employed to in-
corporate the F~*(1385) resonance into the first-order (direct) term, and both the Yr*(1385) and Ye*(1405)
resonances into the second-order (Z-tt conversion) term. Agreement with experiment is good, particularly
when the conversion term is added.

I. INTRODUCTION

t 1HE literature abounds in analyses of both Z and.E capture in He4 and deuterium. ' Many authors
have conhned themselves to the direct process, or, if
investigating resonance or conversion processes, they
have introduced arbitrary phases and constants in the
absence of rn.ore specific k.nowledge. It is the aim of
this paper to construct a general representation for
impulse scattering and, in the subsequent application
to the process E +He' —+A+sr +He', to employ recent
estimates of pertinent matrix elements.

In Sec. II, a very brief review of scattering theory
is presented and the impulse approximation given ex-
plicit form. Sections III and IV carry the specific proc-
ess E +He +A+sr +He' through first and second
orders, respectively. Parametrization of the scattering
operators is given in Sec. U, and results compared with
experiment in Sec. UI.

Owing to the number of particles in the reaction,
Fourier analysis of the amplitude often becomes con-
fusing in the proliferation of indices and variables. The
following conventions may thus prove helpful to the
reader. Fourier momentum variables will always carry
a prime superscript, i.e., p, ', q, while physical states
will carry no superscripts, i.e., p, , g, . Subscripts will be
used to denote particles. Where confusion may arise
as to whether a particle is in an initial, intermediate,
or final state, it will be advantageous to use a double-
primed subscript for the final state, a single-primed
subscript for an intermediate state, and an unprimed
subscript to designate a particle in the initial state.

II. MULTIPLE-SCATTERING IMPULSE
APPROXIMATION

The complete T operator in a system of e scattering
centers satisfies the operator equation

n

T= V+VGpT= Q T;,
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~A short list of some important work is given here: D. E.
Neville, Phys, Rev. 130, 327 (1963);P. Said and J. Sawicki, ibid.
139, 3991 (1965); J. Sawicki, Nuovo Cimento 33, 361 (1964);
R. Chand, ibid. 31, 1013 (1964); 34, 1769 (1962); T. Kotani and
M. Ross, ibid. 14, 1282 (1959); R. Karplus and L. S. Rodberg,
Phys. Rev. 115, 1058 (1959);M. M. Block, Nuovo Cimento 20,
715 (1961);J. Sawicki, Nucl. Phys. Bl, 183 (1967).
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where T; designates the individual transition operators
for each of the e scatterers, and satisfies a similar equa-
tion in terms of the individual scattering potentials V, :

T,= V;+ V,GpT;. (2)

For a full Hamiltonian, H=E+V, where E is the
unperturbed part of the (I+I) -body system; the
scattering potential V and Green's function Go are de-
fined as

V=+V;, (3)

' The following give a good account of formal scattering theory
and the impulse approximation: G. F. Chew and G. C. Wick,
Phys. Rev. 85, 636 (1952); M. Gell-Mann and M. L. Goldberger,
ibid. 91, 398~i(1953); G. F. Chew and M. L. Goldberger, ibid.
87, 778 (1952).
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while the full and unperturbed eigenvectors, or state
vectors

I P) and
I P), satisfy the usual eigenvalue equa-

tion
E

I ~)=~
I ~& (5)

Using the individual transition operators T; defined in
Eq. (2), and iterating Eq. (1), we easily obtain the
cluster expansion of T:
T= (T,+ T,+ ~ +T„)

+ (Ti+Ts+ ' ' '+T )GO(Tl+Ts+ ' ' '+Tv) + ' ' '
~

(6)

In second order (see Fig. 1), the transition amplitude
for state i to state f is given by

(f I

T
I
i&=(f

I
(Ti+Ts+ "+T-) Ii&

+(f I (Tt+Ts+ "+T.)Go(Ti+Ts+" +T.) I i)
(7)

In the impulse model, only one scattering center effects
transitions at the various scattering stages so that'

(f I
T

I
i &= (f I Ti

I s&+ (f I TsGOT1 I i& (8).
The above has an obvious graphical parallel to rela-
tivistic Feynman graphs when (f I, I i) are identified
with external "lines, " Go with the propagator, and

T~, T~ with coupling constants or form factors.
Applied to the process E+He~A+sr +H'e', we
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write, upon introducing complete sets of intermediate
states, p„ I n& &43 I, where 43 refers to the complete set
of attributes necessary to describe the intermediate
states,

&f I
T

I
i&= &gr AHes

I
T

I
E He )

&pK'p. 'p3'(
I
&-He4&= (2~) 3&(P, p—K' p—.' p—g')

/m, pz' —mzp„' —m p, ')xpK 4I
P/34 PP3K

lu4(», xg), (»)P/33P„' PP3„—P3'&

m4+ &„&~-~Heg
I

2'gl „&(& g„y,,)
for initial and final total rnomenta P, and Py, given byX 43 Ti %He', 9

and E and E„represent the total energy of the initial
and intermediate state, respectively.

III. FIRST ORDER

Assuming plane-wave final ~, A., and externaP He'
states, Coulomb E -He4 and either Gaussian or Hulthen
e-He' initial states, and Gaussian internal states of the
spectator He~ nucleus, 4 the usual Fourier analysis of
the first-order term takes the form (suppressing for
the moment the spin and isospin labels)

P4+PK/ Pf Pz+P/i+P3

where the physical momenta of the initial and final
states are denoted by the sets (p4pK) and (p.p/tpg//),

respectively. The momentum wave functions, obtained
by Fourier-transforming the normalized configuration-
space wave functions mentioned previously, take the
following explicit form':

(a) pK 4(q) = (23r) '1Vipb(q) (1$)
= (2gr) 'augie, ' V'b (q)

Mt= &~ &Hes
I

2'i
I
lt He4)

dg / dg /

x &~"qg'q' q-'
I

2'i
I

pK'p-'pg'~&&~pK'p-'p4'
I
z-He4&,

(1o)

(b)

(2P),
822—S2

(3 3)(3 „3)

(Hulthen)

= fqg exp( —2qg/3ng) (14)

where d'p' and ///gq' denote integration over the Fourier
sets (pK'p„'pg') and (q 'q4'qg'), respectively. Both $
and ]"denote internal coordinates of the spectator in
the following manner. For a four-nucleon spectator
with nucleon coordinates (yi, yg, yg, y4), p is the set of
internal coordinates (xg, xg, xi) such that, in the limit
of equal-mass nucleons,

+3=P2

xs= yg
—

3 (yt+yg),

»= y4
——,'(yi+yg+yg) .

As is probably evident, each successive internal co-
ordinate x; represents the relative separation of the
(i+1)th nucleon from the center of mass of the pre-
ceding i nucleons. For a spectator of three nucleons,
$= (xg, xg), while for a two-nucleon spectator, $= (xg).
Except for a configuration representation of internal
degrees of the spectator, the factored, or product, state
vector takes the form in momentum space

&P-P4He' I
q-'q4'q Y'& = (2 )g&(P q-' q' q')— — —

'The label "external" applied to He' refers to the composite
center of mass of the Heg nucleus, in distinction to the two
"internal" degrees of freedom.

4 The Gaussian internal states referred to in the text are obtained
from the product Gaussian wave functions in the shell model by
transforming, using Eq. (11.). In the shell-model representation,
each nucleon is described by a wave function proportional to
exp[—/pg(y; —yg) 3/2j, where y; is the coordinate of the ith
nucleon and yo is the center-of-mass coordinate of the nucleus
as a whole.

( Gaussian),

(c) &3(x„xg)=A 3 expt' ——,'P'(-3'xsg+-', x33) 7

(He'),

(d) &4(x„», xg) =ig/r4 expt' —-,'ns(sxsgy-', xggy4xig) 7

(He4),

(e) tt, (», *,) =mr exp| —-', yg(-;x,g+-,'x,g) 7

(H' or He'),

5 The following is a complete list of constants and expressions
appearing in the text:

Normalization factors:

/Vip= ( / 8)pr'a"g, Zgr = ( / tp)r'o/',

/V tr = [pp/pp(p//+I) /2/r (ppp I) 'J/3, —
Xg = (4/V3o/) ", '

ff/4= (ug/4n ")'",
—(P2/i/3pr) 3/2 Q —(y2/~3~) 3/2

g„pp ~= (2m'"/P)+' N„p ~——(2~'"/p)'~'

Constants:

n= 146 MeV,

m=250 MeV, n=160 MeV,

Overlap factors:

/rg=[2PV/(P +7 ) ]" gri=[2nY/(rr'gag)]

g84= [2~p/(n'+p') 7,
fig=& - /P/V w'P'/( ~)"-'h'+-P')"'

y=157 MeV,P= —155 MeV,

a=0.34&&10 "cm.

where the numerical values and normalization factors
written above are given in Ref. 5. In pK 4(q), e, denotes
any one of the three possible azimuthal 25 E -He4
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Pro. 1. Second-order impulse graphs.

states, i.e., for unit vectors in the relative momentum
basis of E -He4 de6ned by k„k„, and k„

e,= —(k,+ik„)/K2

—k.
= (k,—ik„)/V2.

Also, p„s(q) is the Fourier transform of the xi part
Of $4(X&, Xs, Xs), thereby yielding an effeCtiVe fOrm faCtOr

for the impulse scattering E +ss—&A+sr . The scatter-
ing nucleon e is hereafter referred to as the "knock-on"
nucleon. Furthermore, the impulse approximation de-
mands that the He' be a spectator to the reaction so
that its state remain unaffected by the scattering
operator:

&q.'qi, 'qs7'
I Ti I px'p. 'ps'5&

= (2~)s~(q' —p ')&(k—&") (q'q~' I T I p 'p-') (16)

Integrating over all variables except dsPrr', we obtain'

Pprr ma
Mi= gs4 4'-4 prr'—

2sr ' m4+mrr i

the process

E +Hes~sr +Z'+Is—+sr +A+Hes. (18)

The double-scattering conversion process, in the im-
pulse model, requires two different knock-on nucleons
e and e', and can be envisioned as occurring as pic-
tured in Fig. 2 (the labeling given there also will carry
through in the subsequent Fourier analysis in Appen-
dix A), where I)! is a system of two nucleons, and the
charge states are implicitly dehned by u and b. This
splitting facilitates parametrizing the scattering oper-
ator for E +ss~Z'+sr in the first stage, followed by
Z +I'~A+n" in the second stage. In second order,
assuming plane-wave 7r, Z intermediate states, the
cluster amplitude becomes

d'k
Ms —— , (p pgHes

I
Ts

I
krak I)

X (E—Er+ie) '(krak I
I

Ti
I
E Hes), (19)

where d'k refers to integration over the set (krak kr) in
the intermediate state ZmI having total energy EI.
Again the spin and isospin indices are suppressed until
Sec. V. The details of the Fourier analysis, in analogy
with Eqs. (10), (12), and (16), are given in the
Appendix A, and we list the result here:

d k d q„« tPprr
Ms grsgr4 . ——, ", , F(k, q, p)

X(q.-'p,
I
T,

I
k,k„i)(Z Zr+—i.)-t

x (k.p. I
T,

I
p~'p„t), (20)

m3,i, m„
P(p, 4, 4)=4. (4+ —pz'lx". a —0 4.'—

m4 mg

I m"
/

m"—q'" ——kr z 4 x— ~,Imr mrr+m4

k~ —kr ps" +qn" q

t' m, m
s I ps ——prc' ——&, (p p4 I Ti I prr'p~')i with d'k designating the set (kzkr), and

m4 m4

p.'= &,—px' —kr,

with gs4 rePresenting the sPatial overlaP of )Ps and

ip4, and p„'=P, p&' p;.. This resu—lt, as—well as
pararnetrizations of the matrix elements and wave-
functions, has been obtained by a number of authors,
who vary somewhat in their approaches. More will be
said in Sec. V about our choice for (p p4 I Ti I

prr'p„').

IV. SECOND ORDER

The second-order term is important because it
contains the so-called Z-A conversion amplitude. Let
us saturate the intermediate states

I
ss) (ss I

with

I
ZsrI)(IsrZ

I
charge and spin states. Here I refers to

the system of three intermediate nucleons formed in

' The overlap gs4is obtained from gs4 =fd'xsd'xsfs (xs, xs)$4(xs, xs),
and is given above in Ref. 5. Similar expressions hold for gI3 and
g34.

I I

g. N. N+k;tT~N R.+Z-TT+, N+R.
Pro. 2. Second-order scattering process.
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I

80 LXO

F1G. 3. Pion momentum distribution (Hulthdn form factor) . (a) 1S capture, no conversion; (b) 2P capture, no conversion; (c) 1S
capture, conversion; (d) 2P capture, conversion.

the factors gy3 and gI4 represent the spatial overlap of
the intermediate three-nucleon system with the initial
He4 and final He', while y*„g and x„g represent
effective form factors for the second-stage scattering
Z+zs' A+zs".

V. MATRIX ELEMENTS

For the first-order matrix element, we parametrize
the scattering in the relative, or center-of-mass, system
and write

&p.p~ I T1 I p~'p. ')
= (2~)'&(p.+p~ —p~' —p.') (qz I &1 I q, ), (2&)

and similarly in second order~

(q.-'p. I T
I ~d.')

= (21r)sb(q„..'+p11—ks —h„') (hz I Ts
I hz), (22)

(&sp- I
2'1

I
p~'p-')

=(27r)9(k&+P Pzz' P ')(jz
I

2'1 Ij')

in the two-body states. For sake of generality, we
merely list qy with the understanding that the remain-
ing momenta are similarly defined:

qz
——(m.pg —esp. ) /(m11+m. ) . (23)

Using the operator identity

lim (E Ernie) '= P—(E Ez) -'Wi7rff (E—Ez)-) (24)—

TAsLz I. First- and second-order capture rates.

where I' implies the principal value in any integrations
over Ez, approximating ps =kz in the wave functions

g, while at the same time neglecting the
q„' dependence of (kz I

Ts
I hz) as well as the principle-

value integral, we obtain for E capture at rest, i.e.,
I';=0, in first order,

Mr=gs (2~)'~(p~+p-+ps")o~ 44=s(ps")(vz I
T1-I q'),

(25)

where, for capture from the 2P atomic state, e,' V'6(pzr')

where q~, q;, h~, hI, jz, and j, are the relative momenta

' The neglect of the g„"'dependence of (hz ~
Ts

~
hz ) anticipates

replacing the matrix element vrith a complex scattering length.
Using kl= —kg —p =pazz amounts to a neglect of the detailed
structure of the form factors in the second stage.

Mode

15
2P'

1S
2P

Form factor

Hulth6n
Hulth6n
Gaussian
Gaussian

Ij (sec ')

1.1X10'7
1.OX10"
1 ~ OX10"
1 1X10~3

I'2 (sec ')

1 8X10"
1.4X10"
1.~ X10"
1.6X10'"'
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He momentum distribution (Hulth6n form factor). (a) 1S capture, no conversion; (b) 2p capture, no conversion; (c)
capture, conversion; (d) 2P capture, conversion.
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c
Fro. 5. Pion momentum distribution (Gaussian form factor). (a) 1S capture, no conversion; (b) 2I' capture, no conversion; {c) 1S

capture, conversion; (d} 2P capture, conversion.



X CAPTURE IN He4 IN MULTIPLE-IMPULSE 2519

ox—4= &ip

=S2ge,' V'„~ =p

(1S capture) (26)

(2P capture) .

In second order, there similarly results

M2= ~~(2~) 'b(p~+ p.+pa-) gz3gz4f. ~

d%z
X OK 4zI' 3(k—z) b (—E Ez)

(2m '

X &kz I T.
I »& &j z

I
Ti lj '&, (27)

with relative momenta j; and jz given by

operated in the usual sense of integration over a deriva-
tive of a 8 function so that proper diGerentiation is
implied before substituting pzr =0. Other quantities not
defined previously are given by

q;= —Lmzr/(mzr+m„) jpa-,

Kronecker b's are implicitly understood in Eqs. (33)
for spectators in all stages of scattering. Appendix 8
gives explicit representation to Eqs. (33) .

Kim' has parametrized the effective-range expansion
of the T~ operator with a multichannel fit to experi-
mental E I' and EoI' interactions. In the operator
sense, Tj is expanded on eigenstates of parity and
total angular momentum, j=l&—'„with l the orbital
angular momentum of the Ke system, such that

Ti H+io——~ (LXjz) G, (34)

where o. are the Pauli spin operators, j; and qy are unit
vectors in the direction of the initial and final channel
momenta, g, Xqy= sine, and G and H take the fol-
lowing explicit expansions in Legendre polynomials:

(4'ir) p t.(~+1)TE+1f2+f'Ti 1/2 jPl(c-ose) y

L=O

qz= (~./(—m.+m, ) 5&z p. ,
— (28)

j;= —Lmzz/(mzr+m„) gkz. (29) G—(4zr) P t'Tgliz, —T) zz2]Pi (cosg).
L=O

(35)

In view of the neglect of the g„dependence of the
matrix element, we let Its~0 and hz —:0,in anticipation
of using a complex scattering length for (kz I

T2
I »&.

Furthermore, fza represents the momentum overlap of

R and X„R and is given in Ref. 5. The energy 8

function fixes the magnitude of t|;z as a function of E
and s, for s, the center-of-mass energy of the Z-m

system. ' For completeness we list the following expres-
sions:

E,=mzz+m„=E=E +m3

+ (p '/2m )+pp, '/2(mz, +m. ) j+i, (30)

E =E + +(k '/2 )+tk '/2( + )7+, (31)

Ijz I IjIcos,e= I mzr/ (mzr+m ) jkzp cosp

+t mzrm„/(mzz+m„) (my+. m ) jkz2, (32)

where 0 is the angle between jz and j;, t is the center-
of-mass energy of the h.-x final system, and P is the
angle between kz and p, .

At this point, it is advantageous to introduce spin
and isospin into the state vectors via the following
notation and comments. The amplitudes M~ and M2
are generalized to include spin and isospin by forming
the usual product representation of spin, isospin, and
the dynamical particle space, so that

A=(CzIM IC&,

A~ ——(Cz I
Mg

I C;) (33)

(Cfkf I
T2 I »Cz&(Czjz I Ti Ij C, ),

where C, , Cz, and Cy refer to the initial, intermediate,
and final spin and isospin states. Because the T oper-
ators are diagonal in the spin and isospin of spectators,

See J.Sawicki, Nuovo Cimento 33, 361 (1964), for alternative
methods of intermediate integration.

The partial-wave operators T~~~p are defined in mo-
mentum space in an effective-range expansion with
their matrix elements

(zjz I Ti+iz2 I zI'&= (cz I k'(~i+v2 —ik"+') 'k'
I v'& (36)

where the explicit range operator is given by'

Mtpi(g= Mipiz2(Eo) +-',Cir' "(k'—k02), (37)

Z +d +A+X+P-
&Z+X+P—(38)

for capture at rest. Using the range expansions, Eqs.
(36) and (37), in a global-symmetry model (which
does not give good agreement with experiment for Z
capture in deuterium), Neville obtains for the spin-0
and spin-1 matrix elements at, or near, threshold (in

J. K. Kim, Phys. Rev. Letters 19, 1074 (1967).IThe development of the range expansion is given by M. H.
Ross and G. L. Shaw, Ann. Phys. (N.Y.) 13, 147 (1961).The
JC-matrix analysis of Kn interactions is introduced-by R. H. Dalitz
and S. F. Tnan, ibid S, 307 (1960l. .

for r representing the range, Ep representing the incident.
channel energy, k representing the channel momentum,
kp representing the channel momentum corresponding
to energy Ep, and Cp=1 Cy= —3. The I=1, /=1,
j= ~~ matrix elements are fitted to include the Fi*(1385)
scattering resonance (though the coupling to gzz is
small), while the I=O, t=O,j= ia elements contain con.-

tributions from the virtual bound resonance V,*(1405).
The I'i*(1385) contributes to both Ai and A2 for the
process E +He~A+zr +He', while the F'o*(1405)
only contributes to A2 because of isospin conservation.

Turning our attention to the stage Ze'—+Am", Neville
has examined the hyperon-nucleon interaction in the
reactions
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FGI. 6. He momentum distribution (Gaussian form factor). (a) 15 capture, no conversion; (b) 2P capture, no conversion; (c) 1S
capture, conversion; {d) 2I' capture, conversion.

units of F),
( irr) '—(br'"-I Ts'" I Ze') =0.328+i0.534

= —0.244—i0.072

VI. RESULTS

The rate to all final spin and momentum states of
Ax—He' takes the form

I'= (2s.)' dPs" dPx dP~
(2s)s (2s-)' (2s.)'

&&o(Z E;)8(Pr,+p +ps-) AtA —(40)
where A~A and implicit averages and sums are given
in Appendix B.For completeness, we list A~A:

AtA= tr(Art+A, t) (At+A, ) (15)

= s g tr(Art+Ast) (At+As) (2&) (41)

(5= 1)

(S=o).
(39)

In view of our neglect of spin for this stage, it will
suffice to take the spin average of Eq. (39) as a first
estimate. In neglecting the detailed structure of
(&tr" I

Ts'I'
I Zrs'), we are effectively replacing the con-

version process by a simple conversion amplitude.
This will sufBce, though, to exhibit the effects of the
Z-A conversion process on the momentum distributions
of the 6nal products.

for A~, A2 the spin-isospin generalizations of amplitudes
Mi, Ms, explicitly listed in Eq. (83) of Appendix B,
and e, given in Eqs. (15). The He' and s- momentum
distributions are obtained by integrating over all vari-
ables except He', or x momentum. The kinetic energy
distributions are obtained in the same fashion after
transforming variables, As mentioned in Ref. 8, the
integrations implied above are easily done following
Sawicki, and we do not repeat them.

In Table I the rates are tabulated for 15 and 2I'
capture, in 6rst and second order for both Gaussian
and Hulthen form factors. "

Though the addition of the Z-A conversion term has
little eGect on the rate, the eBects in the momentum
distributions are more noticeable. Figures 3 and 4 give
the final pion and He' distributions for the Hulthen
form factor, while Figs. 5 and 6 show the corresponding

"It should be pointed out that relativistic normalizations
were used for actual calculations. We have adopted the normaliza-
tion used by Dalitz and Tuan {Ref. 10) for the KN matrix ele-
ments, and that used by Neville (Ref. 1) for the hyperon-nucleon
matrix elements. More simply, this implies that an additional
factor of (mje)'+ appears 'with each fermion and a factor of
{2m/co)'~' with each boson in the Kn matrix elements of the text,
while an additional factor of {E'1'2/e)112 appears for each fermion
in the hyperon-nucleon matrix elements of the text. In the above,
e and co are the relativistic particle energies and E is the total
energy in the center-of-mass system. For the sake of simplicity,
the text uses the normalization (k )

k') = (2s) 3b (k —k').
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distributions for the Gaussian case.""All curves are
normalized to the total area under the histogram. The
labels u and 6 refer to 1S and 2P capture in first order,
while c and d refer to 1S and 2P capture in second
order.

Obviously the first-order term, corresponding to
directly produced Am He' with a small amount of
I"i*(1385) production, is incapable of accounting for
the momentum tails of both the pion and He' momen-
turn distributions. The addition of the Z-A. conversion
term helps to describe the He' and pion distributions
to a better degree. Though some semblance of the
Z-h. conversion bump (at 170 MeV, approximately)
appears in the pion distribution with Gaussian form
factor, both the absolute size of the hyperon-nucleon
scattering length (which effectively weights the second-
order terzn with reference to the first-order term) and
the form factor (which falls off rapidly with increasing
He' znomentum) tend to negate its contribution when
the second-order and first-order terms are added. In
view of the approximation of the second-stage process,
the results obtained in second order are noticeably im-
proved over those obtained in first order. The theoret-
ical distributions do not possess enough dissimilarity
to allow determination of the capture orbit.
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APPENDIX A

Analogously to Eq. (10), we Fourier-analyze the
amplitude in the following fashion (suppressing the
decomposition of plane waves with its ultimate integra-
tion over 8-function momentum states p,pq and k kz):

(p.pgHes
I

Ts
I
k.he)

d' ' d'h'

27r ' 2s. s

X (q„" qzz p.pz, e
I Ts

I
e k.kzh 'hzz')(h 'hzzV

I I),
"The experimental histograms are given in P. Said and J.

Sawicki, Phys. Rev. 139, 8991 (1965). They represent the
weighted sum of the data of the Helium Bubble Chamber Col-
laboration Group, Nuovo Cimento 20, 724 (1961); J. Auman
et al. , in Proceedings of the 196Z Annual International Conference
on High-Energy Nuclear Physics, Geneva, 196Z, edited by J.
Prentki (CERN, Geneva, 1962), p. 330; cf. also Proceedings of
the Tenth Annual International Conference on High-Energy Physics,
Rochester, 1960, edited by E. C. G. Sudarshan, J. J. Tinlot, and
A. C. Melissinos (Interscience, New York, 1960), p. 426. The
histograms and theoretical curves are normalized to the same,
but arbitrary area.

"Virtual processes in any given channel are included in the
calculation by following the usual prescription of replacing the
channel center-of-mass momentum k with ik for energies below
threshold in that channel (see Dalitz and Tnan, Ref. 10l.

(krak, I I
Ti

I

~-Hes)
d'p' d'hz'

X(h'k. k-&'I T
I &p 'p-'p')(p 'p-'p'&

I
& H ')

(h„'hzs'e'
I
I)= (2s.) s8 (kz —h ' —hzz')

Xg zzDm„-hzz' mzzh„—')/mz jPz(xs'),

(I
I

l'hz') = (2zr) sb(kz hz') P—z(xs', xs') i (A2)

(px'p. 'ps'1
I
«') = (2~) s&(&;—px' —p.' —ps')

Xpx 4tt (mspx' mx—p„' mx—ps') /(m4+mx) 5

xy. ,I (m,p„'—m„p, ') /m. 7y, (x„x,) .

Again, x„g, x„~ represent the Fourier transforms
of the xs", x,' coordinates of its, i', where i' takes the
Gaussian form

Pz(xs, xs) =Ez expL ——',y'(-s'xss+-', xss) g (A3)

and p„. &, p„. & are explicitly given for S=e"—R,
Q~ —R:

xs(q) =Es exp( —3q'/4&s) . (A4)

In the impulse model for E +n—+Z+zr, followed by
Z+e' A+ss",

(q "'qzz'p pze"
I

Ts
I

e'k kzh 'hzz')

= (2m) sb(k. —p.)b(qzs' —hzz') b(e"—e')

x (q. , p, I
T,

I
k,k„, ),

(A5)(hz'k, k.f'
I
T,

I f px'p. 'ps')

= (2~)s~(hz' —P ')~(|'—0) (kzk-
I
T

I
Px'P-'»

so that substituting Eqs. (A2) and (AS) into Eq. (A1)
yields

(p.pgHes
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I
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d px=ga (,4' — (P p'
ms+mx

with factored state vectors

(He'
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q-"'qx'e") = (2~)'~(ps" —
q
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xe.-- I ( -q
' — q--')/ jO*( "),
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with (22r)38(ps +p +p2, ) suppressed in the above, and
with the definitions

p.'= P; p—K' k—r, h„'= kr —ps +g„', (A7)

and grs, g14 the spatial overlaps of fr and ps, and sisr

and ties.

E N+Hes

Z'm He'~Ax He',

E P+Hs —1K+sr H~Asr He'.

(B1)

Other possible intermediate charge states occurring to
the reader are ruled out by the impulse approximation
and the resulting diagonality of the T operators with
respect to the spectators. For the initial He4 nucleus a
44 Slater determinant in spin{3isospin space is writ-
ten, while the intermediate three-nucleon state and
final He' are 3{33 Slater determinants. This insures
proper antisymmetrization of the nucleon spin|sisospin
wave functions. Specifically, we write

p+ p+ p+ p+

I
He4)= (4!)

Pg P2 P3 P4

gg+ Eg+ g3+ E4+
(B2)

APPENDIX B

The scattering E +Hes —sA+2r +He' can, through
second order, take place in any of the following ways.
Letting 5 and P designate knock-on neutrons and
protons, respectively, we may have

~~„and H and He refer to the H' and He' Slater
determinants. The processes E e—+h.x- or E e~Zm
are parametrized by I=0, 1 isospin amplitudes, while
Ze'~he" could be parametrized by an I=

~ amplitude.
Using Eq. (B3), coupling E N, E P, Z'sr, and 2+sr
through the usual Clebsch-Gordan expansions into
I=0, 1 channels, while neglecting any spin or isospin
dependence in the second-stage Ze'—+Am" by writing

I see Eq. (33)g

(Crhr I
2"2

I
hrCr) =assr, sxbss"3 (hr I

Ts"2
I hr), (B4)

where si refers to the spin of the ith particle, 3" and 3'
refer to the final He' and intermediate He' or H',
respectively, and T2'" refers to the I= ~ isospin ampli-
tude, we obtain with some algebra (again suppressing
the 8 function)

Al 2g340K 4stsn 3(ps") Z— (»—gr I Tl
I g ~n&Qr

Sn

As 232rgrsgr4fI30K 4-
d kgX,5 (E Er)sts. 3—(kr)Q(hr I
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(2m)s
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2"1'

I
j'~ )

~~ '(»jr
I

T'1'
I j'~-)IQ

Q =BsS„)8s„s—8sS,)8s„s.

In the above, e represents the initial knock-on nucleon,
and T~' and T~' are the isoscalar and isovector ampli-
tudes, respectively. The rate to all final states involves
a summation over final A, He' spin states, and for a
2P capture, an average over initial E orientations,
so that

AtA= g I
A1+Asl'

Eg S3 E4

which, in terms of similarly defined 3{33Slater deter-
minants representing He' and H', can be cast into the
form

I
«')=-'(IP+H )—IP H+&plN+«&+IN He+&

(B3)

which ~ refer to the spin states of the particles, i.e.,

=-13+ Z IA1+A, l' (2P), (B6)
ei sos s3rr

which, upon performing the summation over s3", be-
comes

AtA= Q I
A1+As I'

= —', g g I
A1+As I' (2P). (B7)

ei sgsn


