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Assuming that the hadronic electromagnetic current contains an isoscalar C-even part, we use the soft-
pion technique and pole dominance to determine the isospin of the final state in the CP-violating part of
the K° — 27 amplitude. If the usual dimensional arguments for the order of magnitude of the amplitude
hold, as they appear to do for the observed value of 5, _, then values of 5 close to 5, _ are excluded.

I. INTRODUCTION

HE suggestion! that CP-violating effects in weak
decays may be radiative corrections due to a C-
violating electromagnetic interaction is appealing by
reason of elegance and economy, and because it affords
an explanation of the order of magnitude of the effect.
Although many tests of this hypothesis have been pro-
posed, and many experiments have been performed,
unequivocal confirmation or refutation is still lacking.
The observation, at the 3-standard-deviation level, of
asymmetries in various n decays? and the possible
observation?® of a breakdown of detailed balance in the
reaction y+d — p-+n may be taken as evidence of the
correctness of the hypothesis; the extremely low upper
limit on the electric dipole moment of the neutron,* on
the other hand, is somewhat disturbing.

In this paper we assume that the hadronic electro-
magnetic current has a C-even part, which we take to
be anisoscalar and to commute with the axial generators
of SU(2)®SU(2). These properties are natural if the
current in question has a nonvanishing charge. How-
ever, the asymmetry observed in 7 — 3r appears to be
mainly in the 7=2 final state. This necessitates the
presence of an isovector component of the C-even
electromagnetic current, and furthermore indicates that
the AT=0 C-violating transition is somehow suppressed.
The question of the effect of an isovector C-even current
is one of the generalizations of this paper that should be
investigated.

Because the electromagnetic interaction does not
conserve isospin, the hypothesis of electromagnetic C
breaking allows for an appreciable A7 =% component in
CP-violating processes. A reliable estimate of this effect
allows one to confront the model with experiment. As
we shall see, the experimental situation is at present so
unclear, particularly in regard to the value of |5/, that
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it is impossible to tell whether the theory fares well or
badly in the confrontation. We do find, however, that
one of the presently observed values for | 79| (3.6X10-3)
is preferred over the other (2.2)X1073).

Asis well known, the soft-pion technique predicts the
AI'=} rule in nonleptonic, C P-conserving, weak decays.
Since the rule is experimentally well satisfied, we are
encouraged to believe in the validity of the soft-pion
approximation, and propose to use the technique to
study CP-violating decays. This has been done by
several authors® in the context of the Glashow model.
For ordinary weak interactions, the validity of the
AI'=3% rule, in those transitions for which it is predicted
by the soft-pion calculation, is a straightforward conse-
quence of the SU(2)®@SU(2) symmetry of the theory in
the limit of zero pion mass. The electromagnetic inter-
action breaks both SU(2) and SU(2)®SU(2) sym-
metry, and both properties are required if it is to
modify the AT=4% rule in the soft-pion limit. The degree
to which it does force a breaking of the A7=3% rule is,
therefore, closely related to its breaking of chiral
invariance, which is a dynamical question and cannot be
determined on the basis of symmetry considerations
alone.

We investigate the degree of chiral symmetry
breaking of the amplitudes by inserting single-particle
or resonant states between a photon loop and the weak
Hamiltonian. Most of these states either do not con-
tribute as a consequence of some selection rule, or are
decoupled in the soft-pion limit. This simplifies the
analysis, and makes possible an estimate of the exact
amount of breaking of the AI=} rule.

In Sec. IT we set up the formalism and display the
results of reducing out the two pions. We do this in
more generality than is strictly required, in order to
bring out the underlying mathematical structure. In
Sec. IIT we derive the consequence of the pole approxi-
mation. In Sec. IV we apply this result to derive certain
limits on the observed CP-violating parameters. With
certain assumptions concerning the order of magnitude
of radiative corrections, we find that 72>2.4X1073.
Because of the degree of uncertainty concerning the
magnitude of the relevant radiative corrections, we
cannot make a stronger statement than that the range
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1 CONSTRAINTS ON

of values for 79y near 3.6)X103 is favored by this model
over those for which 7go= 7, —. Section V summarizes our
assumptions and results. The effects of nonresonant
contributions to the amplitudes are studied in the
Appendix. Assuming that these contributions exhibit
approximate SU(2)®SU(2) invariance, we find that
they contribute at most a 309, correction.

II. REDUCTION OF PIONS
We define the operators

TVabeE/dAx/d4y eiey

XT (T w (@) @)V (KN (0D (y),

@2.1)
TAabcE/d4x/d4y eiq-y

XT (w2 ()T ()4, (KA (0))D™ (y),

where a, b, and ¢ are SU(3) indices, K, is the C-even
isoscalar electromagnetic current, and J 0=V ,*44,°
We shall be interested in relating the matrix elements
(@27)1| Ty, 4%%| K%, where (2r)r denotes a standing-
wave state of two pions with total isospin 7, to
(0| T'v,4%%°| K. The relationship becomes exact only in
the limit of zero four-momentum of each pion.

It is convenient to replace the 7'%¢ by operators of
definite total isospin /7. We form these operators by
combining the two J currents to form a weak-Hamil-
tonian operator of definite isospin /w, and then adding
the third current, which we shall take to be an isovector.
(Experimentally,? theisoscalar ordinary electromagnetic
current couples only very weakly to the isoscalar C-even
current, and we shall ignore it here.) Adopting the
notation My, 4@ QIT according to whether the third
current is a vector or an axial vector, we define

_ TV1r+K_1r0+ TV”OK—”+—{—0
+(VH Ty R Ty R,
M= TV7r+K_1r“ _ TVTOK—W++3 (\/%) TV’A'"’KO#"
+\/2-TVTOK0T0+ (,\/_%) TVW—KOW+ ,
My= TVW+K‘W”+%TVW0K‘1r++O
— (VHTy R (VH Ty Er,
MyB= % TV"+K_"° — ZTVTOK—T+_3 (\/%) TV7r+K°1r_
+ (,\/%) TVTOKOWO+\/2TV7_KOT+ s

MV35 —_ TV1r+K_7r°+ TV'x"K"r‘*'_ (,\/%) TV1r+K°1r-
TNRT R (R Ty,

Myli=
(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

and similarly for V— A. If we define the two five-
component vectors BE=(Myia, Myia® Myipa®,
Myia®, Mv.4®), we may denote the results of the
reduction of the pions economically by means of four
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5X35 matrices, N 1%, for I=0, 2:
5
(2m)1| Bi*| K% — X (N1%)i, 0| B#| K, (2.7)
=1

in which the arrow denotes the zero-momentum limit
for both pions, and we ignore a common proportionality
constant.

With the conventional normalization

(rm)o= (V3) (rtr+n'n"+7mt),

(rm)o= (V3% (zta— =220+ 7—7t) | (2.8)
the matrices N are?
20 0 0 O
0 3 0 0 O
Nid=H/%0 0 2 0 o0, (2.9)
0 0 0 3 0
0 0 0 0 8
(4 0 0 0 O
0 12 0o 0 0
Ne=H32)]0 0 102 0 0|, (2.10)
0o 0 o0 7% o0
L0 0 0 o0 2%
(0 00 0O
03000
Nog=H/%]10 0 0 0 Of, (2.11)
00 0 3 0
0 0 00 8
0 —4 0 O 0
-2 -1 0 0 0
Neo=(W%H] 0 0 0 58 73 . (212
0 0 7 —-3%2 —1¢
0 0 4 —% -—1¢

We note that (a) all the N’s but Vs~ are diagonal; (b)
Ny* is proportional to I7(Ir+1); (c) Ns* has zeros for
elements corresponding to Ir=4%; and (d) N is diago-
nal in Iw. All of these properties are, of course, conse-
quences of the fact that the reduction of the pions does
not destroy the SU(2)®SU(2) character of the
operator.

We have treated this problem in greater generality
than we really need in order to bring out the underlying
mathematical simplicity of the result. For what follows,
we shall be interested in the reduction of Ty™X77°
Inverting Eqs. (2.2)-(2.6), and using (2.9)-(2.12), we
find

((@2m)o| Ty 7| K) — (v$){0| [— (11/H) M "

42M 41 (23/4) My —5M 44| K%,  (2.13)
((@m)s| Ty 57| K%)= (V0| [—2M "
42M ANSM P —5M 4| KO, (2.14)

7 For a detailed discussion of the reduction process applied to
the uncorrected weak Hamiltonian, see B. R. Holstein, Ref. 6. No
essential complications arise here.
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We point out that if My'=M " and My¥=M 43,
(2.14) gives ((27).| Ty™E | K%=0, the chiral-sym-
metry limiting value. Furthermore, if My=M3=0,
we have a ratio of V2 between the /=0 and I=2
amplitudes. This ratio corresponds to

<7ro7r0] TV1r+I("1r() ’ K°> =0,

and results from the fact that the reduction of neutral
pions does not generate a 7"42%¢.

III. POLE APPROXIMATION

We have learned as much as we can from symmetry
considerations alone. Further progress requires some
dynamics. As a first approximation, we shall assume
that the amplitudes 7'**¢ are dominated by single-
particle intermediate states. This is similar in spirit to
the vector-meson-dominance model® of ordinary non-
leptonic weak interactions, and to the calculation of
Yun.® We consider here all allowed single-particle
intermediate states, rather than restricting our atten-
tion to an arbitrary subset of them. We assume that

high-spin states are dynamically suppressed by angular

momentum barriers (presence of momenta in the
amplitudes) and therefore concentrate on the states of
lowest spin.

J =0 states: There are no known scalar states with the
appropriate quantum numbers (S=0,C=—1,or S=1).
As for the pseudoscalar states, the K does not contribute
because the electromagnetic photon loop, being odd
under 7', has no diagonal matrix elements between
single-particle states of zero spin; the % and %" do not
contribute because the reduction of a single pion will not
produce a AQ=0, AP=—1 photon-loop operator; the
pion contributes a term that is linear in the momentum
of the intermediate state. (This can be seen because the
contribution vanishes in the soft-pion limit.) Further-
more, the momentum of the intermediate state, and of
any state that occurs with a parity-violating photon-
loop operator, is on the pion mass shell. Therefore in the
soft-pion limit this state is decoupled.

J =1 states: The p, v, and ¢ do not contribute at all
because they are coupled to a conserved current, and
[J#K*]=0. The 4; and K* are decoupled in the soft-
pion limit. (They are at least linear in one power of a
momentum which goes to zero.) The K4(1230) and
K 4(1320), however, occur with a parity-conserving
photon loop and are thus on the K mass shell. This
contribution remains in the soft-pion limit. They con-
tribute only to My'.

Thus, for J <2, the only amplitude that receives any
resonant contributions is My, For higher spins, it will
be generally true that the contribution to M »% will
vanish in the soft-pion limit. /=1, S=0 states [e.g., the

8 J. J. Sakurai, Phys. Rev. 156, 1508 (1967); L. J. Clavelli, ibid.
154, 1509 (1967).
9 Suk Koo Yun, Phys. Rev. 178, 2439 (1969).
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‘A,(1315) with JP=2+7] can contribute both to My

and leil_

However, the latter contribution, which involves a
AI'=$% weak transition, is expected to be dynamically
suppressed. Therefore, as far as resonant contributions
are concerned, My" dominates in Egs. (2.13) and
(2.14). We shall neglect the other amplitudes in what
follows, reserving a discussion of the effects of their
inclusion for the Appendix. This predicts a ratio of

(@m)o| Ty 5| KO {(2m)o| Ty K" | KO)
=42/1122%. (3.1)

IV. EFFECTS OF CP MIXING IN EIGENSTATES

The comparison of the result of Sec. I1I to experiment
is complicated by the fact!® that the decaying state is
not an eigenstate of CP. The phenomenological descrip-
tion of this state of affairs has been complicated by the
fact that the relative phase of the K° and K states is
unobservable, and must be chosen by convention. This
corresponds to a basic ambiguity in the assigning of the
observed CP-violating effects to dynamics, on the one
hand, and to state mixing, on the other. Traditionally,
one chooses to describe CP violation in the /=0 decay
mode as due entirely to state mixing. This has the
disadvantage that it gives the “CP phase factor” a,
defined by

CP|K%=e¢ie| K% =¢i*CPT|KY), (4.1)

a nontrivial (and unknown) value, determined by the
relative strength of the CP-conserving amplitudes in the
I=0 27 channel. For the moment we shall not specify
the value of a. In terms of the 2)X2 mass matrix M —1T,

defined by
K° d (K°
wen()-4(5)
K° dINK®

we may write the physical eigenstates Kz and Kg in
terms of the CP eigenstates K, and K_ defined by
CP|Ky)==4|K4). We find

(4.2)

1
K= —[(ecosya+tisina)K
V2

. + (cossatiesinya)K_], (4.3a)
Kg= \72[ (costa+iesinta)K
- (e cosa+i sinja)K_], (4.3b)

where

€= [(Reﬂ[m ImI‘12_ReF12 I]ang)
2(] M 12|24 |T'12|?)

+i(RCI‘12 Imr12+R€M|2 Iliz)] (4.4)
and we have neglected terms of order .. We note that

10 Since Rees=0. See Ref. 13.
T, T, Wu and C. N. Yang, Phys. Rev. Letters 13, 180 (1964).
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if € is pure imaginary, K1 and K s may be chosen to be
eigenstates of CP, by a suitable choice of a—in other
words, in this case all of the observed effect may be
imputed to the dynamics. This corresponds to the fact
[easily verified from Eq. (4.4)] that, to order ¢, Ime
may be transformed away by a suitable choice of a,
while Ree (which is proportional to the nonorthogonality
of the physical eigenstates, and therefore observable) is
not affected by this choice.

If a1, K1, (K 5) is mostly CP odd (even) and there-
fore corresponds to the long- (short-) lived eigenstate.
If a=m, the roles of L and S are reversed and they lose
their mnemonic value. (For intermediate values, a=1,
we no longer have | ¢| <1, and the above analysis breaks
down.) If we choose a<<1, we have

ni—=e+€+1ImAd,/Red,, (4.5a)
N0o=€e—2€+1iImA/Red,, (4.5b)
with
7 Imdo,
€= — ei(02—80) (4.6)
\/? ReA 0
where
Ar=((2m)1|H,| K", (4.7)

and 87 is the (wm)r scattering phase shift. ImA is
proportional to the dynamical CP breaking in the (27)
mode for a=0. Since the CP-violating weak Hamil-
tonian, to second order in the electromagnetic inter-
action, is just Ty %7 Eq. (3.1) may be written

| ImA,/TmA,|~%

for «=0. (4.8)

In order to compare this result with experiment, we
would need to calculate Ree. This quantity is pro-
portional to the CP-violating radiative corrections to a
second-order weak nonleptonic matrix element, and a
precise calculation of it is not possible. However, the
observed value of Ree allows us at least an order of
magnitude estimate of some of the quantities which
determine ¢. In what follows, we shall, for simplicity,
adopt the phase convention a=0, i.e., CP|K%=|K").
Ree is independent of this choice, and everything could
be done without it, but the resulting discussion would be
more complicated.

Expanding the 7" product in a sum over states,

M=y PK°|H|n)n|H|K"/(Mxg—M,)], (4.9a)

Pus=r 3 p (KB X1 H K. (4.9b)

Here the states # (of unperturbed energy M,) form a
complete set, P denotes a principal-value integral over
the pole, and p;y is the density of the final states f into
which a real decay process is possible. H is the weak
Hamiltonian corrected to all orders in the electro-
magnetic interaction. With our phase convention, the
imaginary parts of M, and I'y; are proportional to CP-

{ 00 l 24:7
violating radiative corrections to the weak Hamiltonian,
which are contained in H. From the observed decay
ratio, it is clear'? that I'yy is dominated by the (2m),
state. We shall assume that this holds also for ImI's,.
[ This amounts to assuming that radiative corrections to
the (2m), state are not significantly different in magni-
tude from those to other states. This assumption is
made plausible by the observed value Ree~ 1073, which
is what one expects for radiative corrections.] The
eigenvalue equation (4.2) leads to the identification
2ReMyy=Mg—My, and 2 Rel'a=%(ys—vL), so from
experiment, ReM s~ —Rel'12. Equation (4.4) gives
Ree= — (1/4 Rel'1o) ImTp+ImM ). (4.10)

Inserting the (27), state in (4.9b), we obtain the
estimate ImI'y/Rel'1p~ —2 ImA (/Red, which gives

Ree=R(1+%), (4.11)
where we have defined
R=%1ImA,/Red,, t=ImM/Imlys.
In the same way, we find
Ime=R(—14+¢). (4.12)

We emphasize that the form of (4.11) and (4.12) is
dependent on the phase convention we have adopted
(CP|K%=K"%), though the numerical value of Ree is
independent of this choice.

The observables 7, and 59 depend on the difference
in phase shifts ¢=0,—28,, for which only a very ap-
proximate value is available. However, it turns out that
[n,—| and |noo| depend on ¢ only through the function
sing4-cosg, which is very slowly varying over the ac-
cepted range®® ¢=50°420°. Within 109, then, we find

In | =V2|R(&+9)], (4.13)
[m00] =V2| RE] , (4.14)

where we have used the ratio, which is the main result
of this paper, ImA4,/ImA,=4.

Experimentally, |5,_| =2X107%, Ree is a bit un-
certain but probably lies in the range 103 Ree<2
X 1073, and the latest results for |ng| divide equally
between (2.24-0.4)X1073 and (3.62=0.6)X107%. We
propose to use the firm value for 7, together with the
possible range for Ree and some intrinsic notions of the
size of radiative corrections, to derive a possible range
of values for 9. We do not include ¢, and ¢q in our
analysis because they are rapidly varying functions of ¢
in the relevant range.

The family of solutions with || =—V2R(+3),
together with Ree> 1073, is incompatible with |7g| <8

2 1,. Wolfenstein, Nuovo Cimento 624, 17 (1966).

18 For these and other experimental data, see J. W. Cronin,
rapporteur talk, in Proceedings of the Fourteenth International

Conference on High-Energy Physics, Vienna, 1968, edited by J.
Prentki and J. Steinberger (CERN, Geneva, 1968), p. 292ff.
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X 1073, and so we reject it. Taking the other branch of
the cut, we find solutions corresponding to |7, ]
=~+V2R(¢+3), with

—(1.17X10%) < R<0.83X 107,

Inoo] = | 14| — B/V2)R. (4.15)

In principle, this allows for |79| = |n.—|. However,
R (=%1ImA,/Redy) is a typical second-order radiative
correction, and as such is expected to be of order 1073,
not zero. If R were to differ markedly from this value,
the near equality |7, _|~a/7 would have to be ascribed
to a remarkable coincidence, and the model would lose
one of its most appealing features.

As long as R#0, this model is not compatible with
exact equality between [7n,_| and [500|. How close they
may come to one another may best be investigated by
writing (4.15) as

[ﬂool —‘77+—] ~ B;]
|77+—| Ro

where Ry=1073, the expected value for R, based on
arg(A¢)=a/m. If one requires, e.g., that R be within a
factor of 5 of R, for the believability of the model, then
(4.16) places a lower limit of 2.4X 1072 on |7l . Of the
two experimental values in favor at present, 2.2)X1073
gives R/R,=0.09, while 3.6X107% gives R/Ry=0.75.
The latter value does less violence to our intuitive
notion of the size of radiative corrections, and is con-
sistent with the dimensional estimate of |n;_|. It is
“preferred by the model” in this sense.

, (4.16)

V. CONCLUSION

Assuming that the soft-pion limit is permissible for
the K®— 27 decay amplitudes, and using the experi-
mentally observed suppression of the AI/=0 CP-
violating electromagnetic interaction, we have related
the extent of violation of the AI =% rule in CP-violating
amplitudes to the breakdown of chirality of the inter-
action. We have estimated this effect by summing over
single-particle intermediate states and low-lying reso-
nances. This predicts a large chiral asymmetry, and
gives a AI=3% amplitude of about half the strength of
the A7 =% amplitude.

The effect of this breaking of the AI=3% rule is not
directly observable because the amplitudes for which it
was calculated do not involve eigenstates of the full
Hamiltonian. If the physical eigenstates were states of
definite CP, this would pose no problem, since in that
case the 27 decay of the longlived K° would proceed
entirely through the CP-violating interaction that we
have investigated. The isospin properties of this inter-
action would then be exactly mirrored in the observed
decay. There is definite evidence, however, from
semileptonic processes, that the K 1° is not an eigenstate
of CP, and therefore its 2r decay mode is not mediated

HORWITZ 1

entirely by a CP-violating interaction. This complicates
the theoretical problem of predicting the isospin of the
final state, because it is difficult to obtain an estimate of
the relative importance of the CP-violating and CP-
conserving parts of the transition matrix.

In getting around this difficulty, we have been forced
to assume the approximate validity of dimensional
arguments for the relative size of second-order radiative
corrections, which predict |Imd4¢/Redo| =a/7. If we
write |ImA,/Red,| =Ca/m, C=1 gives |ngpo| =4X 1073
and C=1Y gives |7ng|~2.2X10% The conclusion of
this paper is that if the radiative correction to A, is
adequately estimated by dimensional arguments (as the
observed magnitude of n,_ apparently is), then values
of ngo near n,_ are ruled out. The value | 79o| =3.6X107*
is, on the contrary, well within the predicted range.

The effects of an isovector C-even current have not
been considered. Barring accidental cancellations, how-
ever, it is expected that inclusion of such a current
would break the A7=4% rule even more badly. This
would reinforce the conclusion found here. This point is
under investigation.

APPENDIX: ESTIMATE OF CORRECTIONS TO
POLE APPROXIMATION

In this paper we have estimated the breaking of
chiral symmetry of the interaction by including in the
sum over intermediate states only the low-mass low-
spin particles and resonances. This is inherently a low-
energy approach, and it is not surprising that it gives a
maximal violation of chiral symmetry. It is expected™
that at higher energies SU(2)®SU (2) may become
asymptotically good. This implies that the states we
have left out (multiparticle states and nonresonant
channels), insofar as they represent higher-energy con-
tributions, may shift our calculation in the direction of
closer adherence to the Al =4% rule. This, in turn, would
weaken our result 7o 74—. Thus, the magnitude of the
effect of nonpole contributions is a matter of some
interest. We show here that these contributions, if they
are approximately SU(2)®SU (2)-invariant, actually
contribute very little to the amplitude of interest be-
cause of a near cancellation.

We divide up the My amplitude into (My')pole
which is what we have considered up to now, and

(MVu)nonpoleE n (MVu)pole .
We expect 751, and also
(M y")nonpote= (M 4™)nonpole-
Then, defining

a= (MV31)nonpo]e/ (MVu)nonpole,

14T, Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,
761 (1967).
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we have
(@m)o| Ty 57| K%
= (V3O My"|K%)(—11/4)
X[+ @/1)n(1—-)], (A1)
(@2m)o| Ty ™| K9 = (v/$){0]| My" | K%)(—2). (A2)

Note that for =1 the nonpole contribution to (A1)
vanishes, while even for the extreme case a<<n=1, our
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conclusions are altered only by ~30%. The coefficient
3/11 in (A1), which makes our result so insensitive to
the nonpole terms, results from a near cancellation of
much larger coefficients in (2.13). This cancellation
could not have been predicted from symmetry con-
siderations alone. It should be borne in mind, however,
that in deriving this result we have used the assumption
of approximate SU (2)®SU(2) symmetry for the non-
pole part. '
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Deviations from Charge Independence in Nuclear Forces™

SAYED S. EL-GHABATY AND SUrRAJ N. GUprTA
Department of Physics, Wayne State University, Detroit, Michigan 45202

AND

JamEs Kaskas
Detroit Institute of Technology, Detroit, Michigan 48201
(Received 2 October 1969)

A simple mass-averaging device is described for the investigation of the effect of the pion mass difference
on the nucleon-nucleon interaction. While the mass-difference correction in the one-pion-exchange con-
tribution is known to be significant, we find that the corresponding correction plays a less significant role
in the two-pion-exchange contribution. The effect of difference in the pion coupling constants is also dis-
cussed, and found to be equally significant in the one- and two-pion-exchange contributions. The applica-
bility of our approach to the p-exchange contribution is pointed out.

1. INTRODUCTION

HE differences in the masses and coupling con-
stants of charged and neutral pions lead to some
deviations from charge independence in the pion theory
of nuclear forces. The resulting correction for the one-
pion-exchange (OPE) nucleon-nucleon interaction is
well known,'—3 but no reliable calculation of this correc-
tion for the two-pion-exchange (TPE) interaction is
available. We shall, therefore, investigate deviations
from charge independence by extending our earlier
work#? on the relativistic nucleon-nucleon interaction.
In order to simplify the calculations, especially for the
TPE interaction, a convenient method will be described
for taking into account the effect of the pion mass
difference by means of a mass-averaging device, which
can be applied to any nucleon-nucleon scattering dia-
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gram. This method is also immediately applicable to
the contribution of the p mesons.

It was shown by Breit et al.5 that the addition of the
TPE to the OPE nucleon-nucleon interaction leads to
an improved agreement with the phenomenological
phase parameters in higher partial waves, and similar
results have been obtained more recently by Haracz
and Sharma’ and by Wortman.® Our calculation of
deviations from charge independence in the TPE inter-
action can be used for a further refinement of these
investigations.

We shall generally follow the same notation as in the
earlier papers,*® but we shall take c=#%= 1. The nucleon
mass will again be denoted by M, while the masses of
the charged and neutral pions will be denoted by m,
and m,, respectively.
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