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We investigate the algebraic realization of a pair of sum rules proposed by Weinberg for forward scattering
of massless pions, for the case when only p-wave pions are taken into account. It is shown that the algebraic
structure of the first superconvergence condition is given by the Lie algebra of the group SU(2) SU(4).
A few p-wave pion decay widths are calculated and found to agree satisfactorily with experiment. It is further
shown that the mass spectra obtained from the second superconvergence conditon are unsatisfactory, as
they predict that the hadron masses decrease with increasing isospin (or spin). Various possible reasons for
this defect are discussed.

I. INTRODUCTION

i 'WO years ago it was shown by Cappsl that
super convergence sum rules saturated with

single-particle states give rise, under fairly general
assumptions, to models in which the hadron states are
connected with unitary representations of Lie groups.
The fundamental requirements of the Capps bootstrap
scheme are the following: (i) The dispersion integrals
in the representation for the scattering amplitude at
fixed momentum transfer t can be saturated with
single-particle states in such a way that proper Regge
behavior is not destroyed, and (ii) the set of internal
and external hadrons are identical. These two conditions
lead immediately to a Lie-algebraic formulation of the
superconvergence conditions.

More recently, Weinberg' derived from a chjra]
Lagrangian a completely new class of sum rules for the
forward scattering (t=0) of massless pions. Weinberg's
sum rules have the elegant form

[X,Xpj=ie pTI~
and

[X,[ms, Xplg 5 p, (1 2)

where the symbols I~ denote the generators of the
Sp'(2)r isospin group, the operator m' is a diagonal-
mass-square operator, and the operators X are meson-

source operators which will be de6ned presently. We
shall refer to the sum rule equations (1.1) and (1.2) as
Weinberg's Q.rst and second superconvergence relations
even though some authors restrict the term "super-
convergence relation" to results which follow from
assumptions about high-energy behavior alone.

The matrix elements of the meson-source operators
can be dered in forms of the Feynman amplitude M
for the collinear process B(i,i,) ) —+B(I,I,) ")+7r as

*Supported in part by the U. S; Atomic Energy Commission.
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22, 1023 (1969); in Proceedings of the Fourteenth International
Conference on High-Energy Physics, Uienna, l968, edited by J.
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follows'.

M[B(i,i.,) ) ~B(I,I,),')+ .)
=2F '[m'(i) —m'(I) j(I,I„)'[X )i,i,,),). (1.3)

Here the symbol F is a constant (F =19O Mey)
symbols X and X' denote the helicities of the hadrons
B(i,i„)), respectively, with their inomenta along the
s axis, and o, is the isovector index of the pion. The
meson-source operator is also diagonal in helicity,

Equations (1.1) and (1.2) are necessary conditions
for the requirement that the tree-graph contributions
to the forward amplitude should not grow faster in
energy than allowed by Regge-pole theory, which is
the basic assumption in Weinberg's papers. ' This
requirement is equivalent to the saturation of dis-
persion-theoretic sum rules with single-particle states
as was mentioned above, and also shown by Weinberg.
In particular, Eq. (1.1) follows by considering the
tree-graph contributions to the part of the amplitude
(antisynunetric with respect to pion isovector indices)
which has pure isospin I= 1 exchanged in the t channel,
under the further assumption that the single-pion
couplings and the axial-vector current are related
through the Goldberger- Treiman relation.

The commutator (1.2) follows by considering the
tree-graph contributions to the part of the amplitude
which is symmetric in the pion isovector indices, and
which generally has isospin I=O and I=2 exchanged
in the t channel, under the additional assumption that
there are no "exotic" meson states with I= 2 exchanged
in the t channel. I:f such a meson exchange is allowed,
then one should add a term to the right-hand side of
Eq. (1.2) which transforms as an isotensor with I= 2.
However, there is no convincing experimental indi-
cation for the existence of an I=2 meson resonance.

The first superconvergence relation (1.1), together
with the commutation relations satisfied by the gen-
erators I of the isospin group SU(2)r, defines the Lie
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algebra of the chiral group SU(2)SU(2), and tells

us that the single-particle states involved in the tree

graphs must, for each helicity X, be assigned to a
unitary representation of the chiral group. The com-

mutator (1.1) then determines the coupling constants

for the particles (with the same helicity but different

isospins) which belong to the same unitary (irreducible

or reducible) representation of the chiral group. The
second superconvergence relation (1.2) then gives a
condition on the masses of the particles in the repre-

sentation. The algebraic structures of superconvergence
relations proposed by Weinberg' are equivalent to
those which were derived by Gilman and Harari. '

Unfortunately, .the commutation relations (1.1) and

(1.2) do not provide any information on how the repre-

sentations with di8erenat helicities are related to each

other. As was pointed Out by Weinberg, ' the helicity
dependence of the operators X can be determined if

one assumes that only a fe. partial waves are involved

in the pion-decay processes B(I,I„J,J,) +B(z,z„j,j,)
+zr, where I, i and J, j denote the isospin and spin,

respectively, of the hadrons in question. In particular,
transitions between states of nearly the same mass and

the same parity involve only p-wave pions, as, for

example, in the decays 6 —&X+, I'&* —+Am, I'&* —+ Zm,

The purpose of the present paper is to investigate the
algebraic realization of the superconvergence conditions

(1.1) and (1.2) for the case when only p-wave pions are
taken into account. Sections II and III deal with the
algebraic realization of the first superconvergence
relation. The results given in these sections have been
previously described in a brief paper, ' and are included

here in a slightly expanded form for completeness. The
main result obtained is that the algebraic structure of
the first superconvergence condition (involving p-wave
pions only) is given by the Lie algebra of the group
SU(2) SU(4). In the next two sections we derive the
mass formulas for the hadrons which furnish irreducible
unitary representations of the group SU(2)SU(4).
The representations we consider are obtained by using
the most degenerate representations of the group SU(4).
The mass formulas obtained are unsatisfactory since

they show that the hadron masses decrease with in-

creasing isospin (or with increasing spin). Various

possible reasons for this defect are discussed in the'
concluding section VII. We also calculate a few pion-

decay widths in Sec. VI by using the representations
for the group SU(2)SU(4). These calculations com-

pare favorably with experimental results.

[J„Jbj=Z Zb Jc,c

[I.,J.j=0.

(2.2)

(2 3)

The p-wave pion-source operator is denoted by D,.
This operator is an irreducible tensor of rank (1,1)
with respect to the group K, i.e., the operator D
satisfies the commutation relations

[Ia)DP b) = z&aPVDvb

[Ja1DP bj Z&a bcDPc ~

(2.4)

(2.5)

Here the indices n, a denote the third components of
the isospin and angular momentum of the p-wave pion,
respectively.

The condition . that Kqs. (1.1), (1.2), and (1.4)
involve only p waves is enforced by requiring the
operator X to transform as the .component of the
tensor D „which cannot change the helicity, so that

X=—D3. (2 6)

The fundamental commutation relation (1.1) then gives

[D z,Dpzg=ie p~I~. (2.7)

In order to find the complete helicity dependence of the
operator D „we must find the general expression for
the commutator [D „Dpbf. This quantity is odd with
respect to the interchange of the pair of indices O.a and
Pb; therefore, we have

[Daa&DPb j=Z~aayA y(ab)+Z&a bcBc(aP) c
'' (2.8)

where A~(, &~ is a reducible isovector symmetric spin
tensor and 8,( p~ is a reducible spin-vector symxnetric
isotensor. [We use the notation A ~ &, b&

—= zz(A ~,b+A „b,).]
The right-hand side of Eq. (2.8) is interpreted as a

contribution from single particle exchanges in the t
channel, i.e., A~(, ~~ is connected with the exchange of
particles having I=1 and J=O and 2, while B,t p~ is
connected with exchange of particles having J=1 and
I=O and 2. In order to exclude the "exotic" state
(I,J)= (2,1), we require B,& p& to be an isospin scalar,

&~ (O.p) ~a.p&c ~ (2 9)

The spin vector 8, then satisfies the commutation
relations

II. LIE-GROUP STRUCTURE OF FIRST SUPER-
CONVERGENCE RELATION IN THE CASE

OF P-WAVE HADRON INTERASTION

The invariance syriunetry group Z for the p-wave
pion-hadron interaction is given by X=SU(2)r
(@SU(2)~, the direct product of the isospin SU(2)r
and spin SU(2) J groups. The Lie algebra of the group
K is [I.,Ipg =ze.p„I„ (2 1)

3 F.J. Gilman and H. Harari, Phys. Rev. Letters 19, 723 {1967);
Phys. Rev. 165, 1803 (1968).

4 C. Cronstrom and M. Noga, Nucl. Phys. 815, 61 (1970).
and

[J.,B ]=zbe. b,B,

[I,B,]=0.

(2.10)

(2.11)
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Equations (2.7) and (2.8) now imply that

A ~(33)=I~. (2.12)

The corrunutator of A~(33~ with J is zero; therefore,
A~~, ~~ is a spin scalar,

~v(»=&. i'm (2.13)

Ilsing Eqs. (2.9) and (2.13), we rewrite Eq. (2.8) as

[D~~,Dpg] = l8app~ggBc+zfiag&ap7I (2.14)

From Eq. (2.14) it is now simple to calculate the com-
mutators [B.,D~p] and [Ba,Bb]. The result is

[B.,D,p] =iicpD, .
[B„Bt]=ie,ycBc ~

(2»)

(2.16)

The commutators (2.1)—(2.5), (2.10), (2.11), and
(2.14)—(2.16) show that the operators I, J„B„and
D, form a closed Lie algebra which defines a certain
Lie group G. In order to find the structure of this group
it is convenient to 'introduce a generator V defined as
follows:

V =J,—B. (2.17)

It is simple to verify that the generators V commute
with all the generators I, 8, and D, and that they
satisfy the SU(2) v commutation relations

[V,&V i,]=i&,t„V, (2.18)

This means that the group G is the direct product of
SU(2) v with a group Go, which is defined by the com-
mutators (2.1), (2.4), (2.11), and (2.14)—(2.16). The
last-mentioned commutators define the Lie algebra of
the group SU(4)rp, which contains SU(2)rSU(2)p
defined by the commutators (2.1), (2.11), and (2.16),
as a maximy, l compact subgroup.

%e can conclude that the Lie-group structure of the
first superconvergence condition, involving p waves
only, is given by the group G=SU(2)SU(4) which
only for the special case V=O reduces to the group
SU(4) considered by Weinberg. ' This implies that
hadron states involved in the tree graphs form the
basis for the unitary representations of the group
SU(2) vaSU(4) rp

III. ALGEBRAIC REALIZATION OF FIRST
SUPERCONVERGENCE CONDITION

In order to calculate the p-wave pion decay rates we
must find the representations of the algebra SU(2)v
SU(4)rs in the spherical basis

~
I,I„J,J,). Since the'

operator D, is an irreducible tensor of rank (1,1) with
respect to the group K=SU(2)rSU(2)~, we can
write the matrix elements of the operator D between
the states

~
I,I„J,J,) and

~
i,i„j,j,) in the following

t'i 1 I~(j 1 J~
(3.1)

ki, n IiEj, g Ji
Here the symbols (:::)stand for the Clebsch-Gordan
(CG) coefficients of the appropriate SU(2) groups, and
the quantity G&J'& is the reduced coupling constant for
the ~ +B(i,i„j,j,) ~B(I,I„J,J,) vertex. The uni-
tarity of the representation implies the so-called vertex
symmetry

(2i+1)(2j+1)
GIJ'

(2I+1)(2J+1) ( 1)i+j I Jg, —I—J (3.
—

2)

where 6 denotes the complex conjugate of G. It now
remains to determine the functional dependence of the
reduced coupling constant Glz'& on the quantities i, j,
I, and J. In order to solve this problem, we must know
the representations of the groups SU(2) v and SU(4)rii.

As is known, the unitary irreducible representations
of multiplicity 1 of the group SU(4) are characterized
by three numbers fi, f&, and f~. For reasons of sirn-
plicity, we shall consider only the most degenerate
representations for which f2 f3=0. In ——this case the
states ~I,I„B,B,) which form the spherical basis for
the representation of the group SU(4)rii are character-
ized by the condition I=8.The meson-source operator
D, has the tensorial character (I,B,V) = (1,1,0),
whence its matrix elements in the ~I,I„B,B„V,V,)
basis can be written as follows:

(I,I,,B,B., V, V, )D..
~
i,i„B,B„&,&,)

1I 8' 18
=Ay' &'a pre&v. ~v.„, (3.3)

n I, 8,' u 8,
where 3»' is defined as'

2i+1 '~'
Ar'= — {r'—i[i(i+1)—I(I+1)]')'i'. (3.4)2I+1

From Eq. (3.4) one can infer that the number r, which
characterizes the most degenerate representation of the
group SU(4)rp, is related to the maximum isospinI,„of the particles in the representation characterized
by a given r as follows:

(3.5)

Taking into account Eq. (2.17), we can now pass from
the basis I»I B,B„V,V,) to the basis ~I,I„J,J,) as
follows:

V 8 J
II,I.,J,J.) = P ~I,I„B,B„V,V,). (3.6)av. V, P, g,

5 T. G. Kuriyan and E. C. G. Sudarshan, Phys. Rev. 162, 1650
(1967); Phys. Letters 21, 106 (1966).
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Combining Eqs. (3.3) and (3.6), we find

(I,I„J,J,
l
D..l i,r.q, 7.)

commutator
[D .,[m', D ]g. (4 1)

(V I J V i j~
z4,zb, r * k V. B. J, V, B.' j,i

Using Eqs. (3.1) and (3.7), we obtain, after performing
the sum in Eq. (3.7), the following formula for the
reduced coupling constant G~g" .'

Gzz" = (—1)'+~+'+ [(2i+1)(2j+1)]'~'

(r —r4[i(i+1) —I (I+1)j2}i~2 (3 8)
V J j

where the symbol (:::} stands for the 6j symbol' of
the SU(2) group. The triangular conditions implied
by the 6j symbol in Eq. (3.8) show that the reduced
coupling constant Gz J"is nonvanishing if

li —zl, II—JI=V V 1, . . . , p orO. (3.9)

The solution (3.8) shows that the set of single-
particle states which saturate the first superconvergence
relation are characterized by two numbers r and V, the
first giving the value of I,„in the set, and the second
giving a correlation between the spin and the isospin
in the set.

For V=0 we have the set of baryons with I=X, and
.the set with (I,J)= (—'„—',), (—',, 2), and (ep, ep) can be
identified with the set comprised of the nucleon, 6
resonance, and the (Pp, ep) resonance. r The hyPerons zl.,
Z, and I'~* can be assigned to the representation with
U= —,'. The cascade hyperons ™and * can be accom-
modated in the representation with V=1, while the
0 can be accommodated in the representation with

3

We can now calculate the various baryon-decay
rates by using the reduced coupling constants (3.8).
Before proceeding with this calculation, we discuss the
second superconvergence condition in the two next
sections.

IV. SECOND SUPERCONVERGENCE RELATION

We consider the second superconvergence condition
(1.2) following from the part of the scattering amplitude
which is symmetric in the pion isovector indices o, arid

P. The s- and I-channel tree-graph contributions to the
corresponding superconvergence relation involving only
p-wave pion-hadron interaction give rise to the double

6 A. R. Edmonds, Angular MomenturIz zn Quantum Mechanics
(Princeton U. P., Princeton, N. J., 1957).' A. Benvenuti, E. Marguit, and F. Oppenheimer, Phys. Rev.
Letters 22, 970 (1969);E. Hegedus, A, Abramovici, and I, Vekas,
Z. Physik (to be published).

[J„m']=[I,m'] =0. (4.2)

By applying the Jacobi identity to the double corn-

mutator (4.1) with the use of Eqs. (4.2) and (2.14), we

find that

LD .L~'»s 3j [Ds»[m D
(4 3)

The tensorial character of the left-hand side of this
equation is given by (I,J)= (0,1), (1,0), (1,2), and

(2,1) since the corresponding difference is antisymmetric
in the pair of indices ng and Pb. However, the tensorial
character of the right-hand side of Eq. (4.3) is only

(I,J)= (0,1). This implies that the irreducible tensors
constructed from the double commutator (4.1) with

(I,J) characters equal to (1,0), (1.2), and (2,1) are
identical to zero. The tree-graph contributions to the
second superconvergence relation arising from the
meson exchange in the t channel must have the same
tensorial characters as the nonvanishing tensors con-
structed from the double commutator [D „[rzr'Dspjj.
This means that generally only the mesons with the
isospin and spin character

(I,J)= (0,0), (0,1), (0,2), (1,1), (2,0), (2,2) (4.4)

can contribute to the t-channel tree graphs.
The second superconvergence relation arises from

the requirement that the tree-graph contributions from
all three channels to the symmetric part of the forward

scattering amplitude should not destroy proper Regge
behavior. In particular, we must require that the
constant term in the asymptotic expansion of the tree-

graph amplitude must be zero. This implies

[D-[~'Dp pjj
1 1 T 1 1 L

l
y „,» (4.5)

»~ku P pi a b ci
where we have passed on to a spherical basis and the
summation runs over all slates (T,L) given by Eq. (4.4).

The right-hand side of Eq. (4.5) is physically inter-

preted as the contribution from the. t-channel. meson

exchange, while the left-hand side represents the con-

tributions from the single-particle exchange in the s

and I channels as mentioned previously. The quantities
I'~,~~ in this equation are irreducible tensors of rank

(T,L) of the group SU(2)zSU(2)z and can be asso-

ciated with the exchange of the following mesons':

7'ppPP o (410) Vpg'-D(1285),
(4 6)

P'p P2 f(1260)+f'(1515), Vi." P(765)

p Particie Data Group, Rev. Mod. Phys. 41, 109 (1969).

The mass matrix m2 must be helicity independent
and must conserve isospin, so that
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The remaining irreducible tensors I ~0' and V~,"
represent the contribution from the so-called exotic
states which have isospin I=2. Weinberg's second
super convergence condition was derived under the
assumption that such objects do not exist; therefore,
we must require

by the numbers r and V. Using the proper reduced
coupling constants given explicitly by Eq. (3.8), we
obtain a system of partial difference equations for the
mass spectrum m'(I, J). These equations and their
solutions will be discussed in the next section.

20 0 (4.7a,)

(4.7b)

V. ALGEBRAIC REALIZATION OF
MASS CONDITIONS

Without the constraints (4.7), the second supercon. —

vergence condition (4.5) would be a pure identity.
To make use of the absence of exotic states, mathe-

matically 'expressed by Eqs. (4.7), we convert Eqs.
(4.5) using the orthogonality properties of the CG
coefFicients, to the form

I

XCD...C,D„)). (4.8)

Then the absence of exotic states leads to the two
following constraints:

ti 1 2 ti 1 0
CD-, Cm', Da~)) =0 (4 9)

ala& ko. P y Ea b 0

and

fi 1 2 t'1 1 2)
ICD...Cm', D„))=o. (4.1o)

aaa& (n p y a b cj

These two constraints determine the functional depen-
dence of the mass matrix m' on I and J since the func-
tional dependence of the meson-source operator D,
on the isospin and spin variables is determined by the
first superconvergence condition (2.14) and is given
explicitly by Eqs. (3.1) and (3.8).

Taking the matrix element of Eqs. (4.9) and (4.10)
between two hadron states

I ii„jj,) and Ii 'i, ',j'j,'), we
can rewrite these equations in terms of hadron masses
m'(I, J) and the reduced coupling constants G»'&'. After
some tedious algebra using the orthogonality properties
of CG coefficients and their relations to the 6j symbol,
we finally get

Q Grs"'Grs "C2m'(I, J)—m'(i', j')—m'(i, j))IJ
1 1 2

X (2I+1)(2J+1)(—1)r by =0 (4.11)I
and

+ @ri ' ' G»' C2m'(I, J) m'(i', j')——m'(i, j))(2I+1)IJ
1 1 2 1 1 2

X(2J+1)(—1)'+ =0. (4.12)
z i' I j j' J

These two equations must be valid for any i, i' and
j, j' belonging to the same representation characterized

Using the standard method for solving partial differ-
ence equations of this kind, we introduce two new
variables s and t as follows:

s=i+ j, t=i j. —
The solution to Eq. (5.1) can then be written a,s

n; (i,j)=sf(t)+g(t),

(5.2)

(5 3)

where the functions I (t) and g (t) are arbitrary functions
of t.

We then apply Eq. (4.12) for the case i'~i+1,
j ~ j—1 and i ~i 1, j~—j+1. In this case Eq.
(4.12) becomes

m'(i+1, j—1)—m2(i, j)
= m'(i, j)—n"(i-:1,' j+1). (5.4)

The general solution to Eq. (5.4) is

m2(i, j)=tp(s)+r(s), (5.5)

where the functions p(s) and r(s) are arbitrary func-
tions of s.

The solutions (5.3) and (5.5) must be identically
equal, which implies that the functions g(t), f(t) and
r(s), p(s), respectively, are linear functions of their
arguments. It follows that

m2(i,j ) =m(P+ bi+ cj +d (P j'), —(5.6)

where mo', b, c, and d are arbitrary constants (inde-
pendent of i and j).We then proceed further and apply
Eq. (4.12) for the case i' &i'+1, j' —+ j+1 and i ~—i,j~ j—1. Inserting the solution (5.6) in Eq. (4.12)
for this case, we obtain the equation

(i+2)Cb+d (2i 1))=i Cb+d (2i+—3)]. (5.7)

9L. M. Milne-Thomson, The Calcllgs of Finite Differences
(MagyliUan, London, 1933).

In this section we shall obtain the general solution
to the mass conditions (4.11) and (4.12) by applying
them for all possible values of the quantum numbers i,
i', and j, j'. We shall first consider the implications of
Eq. (4.12).

We shall first apply Eq. (4.12) for the case when
i'~i+1, j' —+ j+1 and i —+i 1, —j~ j—1. Because
of the properties of the 6j symbol, the sum over I andI in Eq. (4.12) then reduces to a single term with I=i
and J= j.We then obtain the equation

m'(i+1, j+1) m'(i, j)—
=m'(i, j)—m'(i —1, j—1) . (5.1)



ALGE B RA I C REAL I ZAT I ON OF WE I N B ERG'S ~ ~ ~

Equation (5.7) is identically satisfied if an only if

(5.8)

Applying Eq. (4.12) for the case i' ~i+1, j' —+ j and
i~i 1—, j~ j+1, we get the relation

(j+2)L—c+d(2j—1)j= jL—c+d(2j+3)j, (5 9)

which is satisfied if and only if

(5;10)

Inserting the results (5.8) and (5.10) in Eq. (5.6), we

get
m2(i, j)=mo'+cLj(j+1) —i(i+1)j. (5.11)

Applying Eq. (4.12) for the remaining combinations i,
i' and j, j' does not give any restrictions on the free
parameters mo' and c in Eq. (5.11).We can thus con-
clude that Eq. (5.11) represents the general solution
of Eq. (4.12).

However, we must also take into account the con-
straints implied by Eq. (4.11). This equation can be
solved in the same manner as Eq. (4.12) with the result

m'(I, J)=mo" —(a+8'r')
X $+(I+1+«)+4(I+1—«))

+b'$J(J+1)—I(I+1)$, (5.12)

where mo", a, and b' are arbitrary constants, @nd the
function +(x) 'is the logarithmic derivative of the
gamma function. Equations (5.11) and (5.12) must be
identically equal, which implies that

mo" =mo' b'= c, cl+cr'=0. (5.13)

We can thus conclude that the mass spectrum which
follows from Eqs. (4.11) and (4.12) is given by Eq.
(5.11), with mP and c as arbitrary constants.

This means tha, t Eq. '(5.11) gives the mass spectrum
of the hadrons which are eigenstates of those irreducible
representations of the group SU(2) SU(4) which
have been considered above.

Unfortunately, the mass spectrum (5.11) cannot be .

considered satisfactory, as Eq. (5.11) shows that the
hadron masses either decrease with increasing isospin
i (if c)0) or decrease with increasing spin j (if c(0).

One could obtain a mass spectrum which increases
with increasing spin and isospin simply by assuming
the existence of an exotic state with I=J= 2. In that
case we would only have the mass condition given by
Eq. (4.11), the solution of which is given by Eq. (5.12).
It is clear that if the parameter u in Eq. (5.12) is
negative but large enough in absolute value, .then the
mass spectrum given by Eq. (5.12) is increasing with
increasing i and j.The existence of the exotic I=J-= 2
state has been assumed by Arnold and Uretsky" in
order to explain the A2 splitting. However, this assump-
tion is not very attractive simply because the experi-

' R. C. Arnold and J. L. Uretsky, Phys. Rev. Letters 23, "P
(1969).

mental indication for the existence of an A2(I=2)
meson is very small, and also because this assumption
would make the derivation of the second Weinberg
superconvergence condition a little obscure.

There is also the possbility that the representations
of the group SU(2) SU(4) investigated here are
inadequate, and that a more satisfactory mass spectrum
would follow from a consideration of more complicated
representations. Unfortunately, the matrix elements of
the generators of the group SU(4) in the physical
reduction chain SU(4) +SU(2) SU(2) are not known,
since only the most degenerate representations are
given in the literature. ' "

Finally, it is possible that the p-wave approximation
is inadequate, and that one has to consider at least
both s and p waves in order to get a reasonable mass
spectrum.

We must thus conclude that it is necessary to con-
sider representations of the group SU(2) SU(4) more
general than those investigated here, and also con-
sider other partial waves besides the p wave, in order
to verify the validity of the second superconvergence
condition.

VL PREDICTIONS AND COMPARISON
WITH EXPERIMENT

Given the explicit form for the reduced coupling
constants G~J'&', we can calculate the decay widths F
of various P-wave decay processes B(I,J) ~ B(i,j)+~
The decay width I' is given as'

2IG "I'p-'
I'(B(I,J)~ B(i,j)+m) =—,(6.1)

mF '(2J+1)

where p is the three-momentum'of the pion, which is
determined through the masses m(I, J), m(i, j) and
the pion mass m, which now is given its (nonzero)
physical. value. The reduced coupling constants are
given by Eq. (3.8). As mentioned previously, the
nucleon, 6 resonance, and (~5, 5~) resonance~ are assigned
to the representation characterized by U= 0 and r= ~.
The reduced coupling constant G;;: ' for the xEÃ
vertex can be 6tted to experiment as follows:

g~(gv= —1 231= (p~~+(n)= —3G- -' ' (6 2)

where the ratio g~/gv= —1.231 is taken from Ref. 8.
We -must now introduce a renormalization of the
reduced coupling constants given by Eq. (3.8) in order
to take Eq. (6.2) into account. We multiply the reduced
coupling constants Grz" in Eq. (3.8) with a parameter
s, so that

(6 3)

The parameter s is then fixed by Eq. (6.2). The decay
width of the 6 resonance determined by Eqs. (6.1)—(6.3)

"K. T. Hecht and S. C. Pang, J. Math. Phys. 10, 1571 (1969).
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TABLE I. Comparison of decay widths of p-wave baryons calcu-
lated from snperconvergence conditions with experiment, SU(6),
and bootstrap values.

Decay V r Experiment

0 —,
' 120 ~ 2
3 3.4+ 1.2
3 336~12

1 2 73& 17

1 (MeV)
Superconv. SU (6) Bootstrap

101 76 125
4.18 3.3 4.8

39.25 24 48
5.21 8.9 19

VII. SUMMARY AND COBCLUSIONS

We have derived the algebraic structure of a pair of
superconvergence relations originally proposed by
Weinberg' for the case of p-wave pion-hadron inter-
action. The first superconvergence condition together
with the algebra of the spin and isospin generators
defines the algebra of the group SU(2) 3SU(4). This
result follows from exactly those assumptions that were
made in Ref. 2. This means that the hadron states are
eigenstates of the unitary irreducible representations
of the group SU(2)SU(4), and that their decay
widths can be calculated by using the explicit expres-
sions for the matrix elements of the generators of the
group in question. We have calculated the decay widths
for the well-established p-wave baryons, using the
simplest representations of the group SU(2)(@SU(4),
i.e., those representations that can be obtained from a
knowledge of the most degenerate representations of

'~ Y. L. Pan and R. P. Ely, Phys. Rev. Letters 13, 277 (1964);
D. Kiang, W. C. Lin, R. Sugano, H. E.Lin, and Y. Nogami, Phys.
Rev. 1'76, 2159 (1969).

'3 M. Noga and C. Cronstrom, Nucl. Phys. B9, 89 (1969).
'4 F. Gursey, L. A. Radicati, and A. Pais, Phys. Rev. Letters 13,

299 (1964).

turns out to be 101 MeV, which is reasonably close to
the experimental value 120~2 MeV.

The hyperons h. , Z, and Y&* and the possible exotic
I'2* resonance" belong to the representation character-
ized by V= —', and r=3. We can then calculate the ratio
P(Fi*—+ Z7r)/F(I'r* ~ As.) which turns out to be 11%,
which is close to the experimental value' (11&2)%.If
we make the assumption that the scale of all the reduced
coupling constants (3.8) is determined by the wlV1V

coupling constant given by Eqs. (6.2) and (6.3), then
we can predict the decay widths of the 6, I'*, and
resonances in terms of the xEE coupling constant. The
resulting decay widths are collected in Table I, together
with the experimental values and bootstrap" and

SU(6) predictions. "The agreement with experiment is
satisfactory.

the group SU(4). The agreement with the experimental
decay widths is satisfactory.

The second superconvergence relation gives the mass
spectrum of the hadrons in a given representation of the
group SU(2) SSU(4). However, the mass spectra
obtained are disappointing in the sense that they imply
that the hadron masses must decrease with increasing
isospin (or decrease with increasing spin). This indi-
cates either that the assumptions leading to the second
superconvergence relation are basically unsound or that
the simplifications made in considering only p-wave'
pion-hadron interaction are unjustified. There is also
the possibility that a reasonable mass spectrum can be
obtained in the p-wave approximation by using more
complicated representations of the group SU(2)
SU(4).

I,et us finally mention the similarity between the
first superconvergence relation in the p-wave approxi-
mation, and the intermediate coupling model"" which
has its origin in the static model of the meson-baryon
interaction. '7

The group SU(2)SU(4) was suggested by
Rangwala" as the intermediate coupling group on the
phenomenological grounds. However, the second super-
convergence condition has not counterpart in previous
models. It is interesting to note that the superconver-
gence conditions considered in this paper give the
results which represent one class of the possible solutions
to the static bootstrap models" ""and strong-coupling
theory if we take the limit r~ ~.
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