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Effective Lagrangian for Nonleptonic Hyperon Decays with
SU(3) QxSU(3)-Symmetry Breaking
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The hadronic decays of hyperons are discussed in the context of broken chiral symmetry, the breaking
being introduced according to the prescription of Gell-Mann, Oakes, and Renner. The corrections due to
symmetry breaking lead to contributions to the p-wave amplitudes, giving better agreement with the ex-
perimental data, whereas the s-wave amplitudes remain almost unchanged.

'~OXLEPTONIC hyperon decays have been dis-
cussed from the point of view of chiral-invariant

effective Lagrangians by Lee' and by Schechter, ' who
have shown that the method reproduces essentially the
current-algebra results. These current-algebra results
obtained especially by Sugawara' and by Suzuki4 can
be summarized by saying that the parity-violating
hyperon decays are described very well while the pre-
dicted values of the parity-conserving decay ampli-
tudes do not agree at all with experiments. In fact,
Brown and Sommerfield' have demonstrated that their
current-algebra results, as well as those of Hara,
Nambu, and Schechter, ' yield p-wave amplitudes half
as small as experimental results.

In view of this large discrepancy, Kumar and Pati7
have proposed a model for the hyperon decays in which
the s-wave amplitudes remain essentially unchanged
while the p-wave amplitudes are signiftcantly altered,
leading to better agreement with experiments. The
model is designed to obtain corrections due to the mass
splitting within the baryon octet and it is found that
these corrections, which were neglected by Brown and
Sommerfield, contribute significantly to the parity-
conserving decays.

The success of the Kumar-Pati calculation encourages
one to believe that a similar situation will also obtain
in the context of the effective Lagrangian theory,
provided that symmetry breaking is introduced in a
systematic way. The construction of the SU(3)SSU(3)
chiral-invariant Lagrangian has been described by
many authors, and we shall here follow closely the
method given by Zumino. ' We shall then introduce the
SU(3)SSU(3)-symmetry breaking of the type proposed
by Gell-Mann, Oakes, and Renner, " using for this
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purpose the elegant method of Yoshida. "This gives us
a systematic way of introducing symmetry-breaking
effects which can be exhibited in a transparent manner,
unlike the model-dependent calculation of Kumar and
Pati. We shall first write down the relevant Lagrangians
and then give the expressions for the decay amplitudes.
These will then be compared with the presently avail-
able experimental data as well as with the predictions
of the model by Kumar and Pati.

Since the basic tool in all calculations of nonleptonic
(NL) hyperon decays is still the time-honored pole
model of Feldman, Matthews, and Salam, "let us first
write down the strong meson-baryon interaction that
we need for the strong-vertex part. A simple SU(3)
I3SU(3) chiral-invariant Lagrangian describing the
interaction of the pseudoscalar meson octet with the
baryon octet is'

'= Tr f —(l/2a')P„'+iB(7„a„+M)B
+B~.r.,B)+B~.~.(b.P.B+b.».)&, (l)

where

and
p =a/+

v„=—'i($, a„Q+

(2)

(3)

From the first term, it follows that the normalized
pseudoscalar fields are given by

~= (~/a)(

and hence that the relevant meson-baryon interaction
Lagrangian comes out to be

I;„.= a Tr(By„y,(bra„PB+bsBa„P)f (5)

together with a contact interaction term, which, how-
ever, does not contribute in the hyperon decays. The
partially conserved axial-vector current (PCAC) condi-
tion is written in this construction as a„A„=(m /2a)~
so that a= sf, where f is the usual pion decay constant
known to be about 100 MeV.

As regards the nonleptonic Lagrangian, we shall
follow the method of Lee," who has shown that if
"K. Yoshida, University of Durham Report, 1969 (un-

published)."G.Feldman, P. T. Matthews, and Abdus Salam, Phys. Rev.
121, 302 (1961).' See, e.g. , B. W. Lee, in Proceedings of the Argonne Inter-
national Conference on Weak Interactions, p. 421 LArgonne
National Laboratory Report No. ANL-7130, 1965 (unpublished)$;
see also Ref. 1.
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(a) the weak interaction Lagrangian is of the current
decurrent type and if (b) the currents are of the form
proposed by Cabibbo, " then CP invariance of the
theory determines that the nonleptonic weak inter-
action Lagrangian must transform like Gell-Mann's X6.

Furthermore, in the spirit of Zumino's as well as
Weinberg's" methods of construction of chiral-invariant
effective Lagrangians, we shall adopt here the point of
view that we have only derivative couplings in the
theory. This then gives us the nonleptonic Lagrangian

LLN= —,'(d' —f') Tr{By QBX&+(i/2f )By.™riBDis,P5}
+ ', (d'+ f-') Tr{B7,y gB+(i/2f )BP„P5y riB}
+,'(d" f-") T—r{By,y ass
+ (i/2f„)Buoy (3B/Xs, P5}+,'(d"+f-")

&&Tr{BXsysy riB+(i/2f )BPs,Pjysy gB}. (6)

There are other terms involving derivatives of meson
fields, some of which vanish in the SU(3) limit, and
some are ruled out by current algebra. ' We shall not
consider them here.

We must now introduce the symmetry-breaking
term. Recently, Gell-Mann, Oakes, and Renner' have
proposed a definite way of breaking chiral SU(3)
SU(3) symmetry in current algebra and Macfarlane
and Weisz, " as well as Yoshida, ' have shown how to
construct a parallel theory in terms of chiral Lagran-
gians. Following Gell-Mann et a/. , we write the sym-
metry-breaking (SB) Hamiltonian as

Hss = no+cps, (7)

which transforms as (3,3")+(3*,3) representation of
chiral SU(3)SU(3). We obtain the v's from the ex-

pression (given by Yoshida)

where Xp and X; (i= 1, . . . , 8) are bilinear functions of
the baryon 6elds transforming as singlet and octet
under SU(3),

X,=mond;; qB;Bq+m of( if„—,q) B;Bk,

Xo=moy Q BrB, ,

and Qp (n=1, . . . , 8) are the 18)&18 genera, tors of

(3,3*)+(3*,3):

0
Dl

(&s)&

I-ss = »(tto+ cps), (12)

where a is a scale factor and

v p (Qss) g~(m——prrd;, gB,ysBy+mpP( i)f;,i,B,ys—Bx5,

ps ——(v's)mov P B ysB 5s+ds, a~eo$morrd, ~
B.rysB (13)

+mop( i)f, „By, B—„j.

For further details of this method. of construction we
refer to Yoshida's paper. ' For our purposes we simply
pick up terms corresponding to the process B'~ B+P,
so that

Qp

Vp

( vs

Xp
Xg

e'~ & Xs
0

0

The complete Lagrangian is then given by

+INr, +I-sa. (14)
(8)

We are now in a position to write down the decay
amplitudes. In standard notation, we have the p-wave
amplitudes

p(X o)=—
d'+3f' A+.V mp(n+P) c 1

(A+ V) abi +—» — 1+—
2+6 A —Ã v3f. v2 A —iV

(15)
f-

'
a A+:V 2 mors c ) 1 d"+3f"A !V-

+s(d' —f')(~ -+)~(br+be) ——»— 1+—
I

Q6 Z —-V 3&2 f. ~2]Z —.V 4+6

P(=-=) = -!(d'+f')(=-+~)—
a(bi+bs) +A 2 mon c 1

+» 1++6:-—2 342 f. W2 =- —Z

(16)

"N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).
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d'+3f' a 2+;V 2 mon c 1
P(Z:)= — —(A+ i') —(bg+b2)- —K——1+——

2+6 +6 A —~Y 3V2 f V2 A —.3'

d' f '— a 2 +.3' 2 m, oP c 1
(Z+E) —(bg —b2)———(( —1+—— +~~(d" f"—) —, (17)

f

�2%2
v2 Z —V Q6 f, v2 Z —1V

Z+fV 1 mo(n+P) c 1
I'(Z++) = -', (d' —f') (2+JV) —abg —+((—— —1+——

Z —iY K3 f v2 Z —X

d'+3f ' a Z+.'V 2 mon c 1———(A+X) (bg+b2) '+
2+6 Q6 A —;V 3v2 f K2 A —V

and the s-wave amplitudes
v2 z —&v

d' f ' — a(b2 —bg) Z+.7
(~+-V)

2&2

2 moP c 1
+(( 1+—,(18)

Q6 f, &2K—iV

d"+3f" A —V mo(n+P) c 1
S(A ') = —(A —'V) ab~ +(( 1+—

2+6 A+,7 V3f, &2 A+.(V

a A —;V 2mon c 1 d'+3 f' A+ V
+-,'(d" —f")(&—'V) (bg+b2) —(( 1+—

Q6 Z+.'V 3v2f, v2 Z+('V 4+6 f
a —A. 2mpo. c 1

$(-:)=
2 (d"+f")(=—&) (b~+b~) +' 1+

Q6 "+Z 3V2f v2 "+Z

(19)

—d('+3f" —
=- —A m, (n p) — c 1 — d' 3f'=-+A-

+ (Z —A) —ab2 ——+((— 1+— + (20)
2+6 -+A V3f K2 .+A 4+6 f

+3f a 2 —Y 2moo. c 1
$(Z:)=- (A E) —(b(+—bg)- —((- 1+—

2+6 Q6 A+ V 3v2f W2 A+,'V

d" f" a— &—X 2moP c 1 — 2+,7
(Z —'V) —(bi —b~) —(( —1+—— +,' (d' f') —-,(2—1)

2&2 K2 2+tV (Q6)f K2 2+iV f„
Z X m(+p) c

$(Z++) = -', (d"—f")(Z —fV) —abg 1+—
2+iV v3f v2 g+('V

d"+3f" a 2moo. c 1 g-
(A —cV) —(by+ b2) —(( 1+——

2v'6 Q6 A+ V 3&2f„v2A+X

(f" f"—8 &—iV 2moP G 1
(Z —.V) —(b2 —bg)——+(( —1+— (22)

2&2 v2 5+,"V (Q6)f K2 Z+E

The strong-coupling F/D ratio is denoted by f, so that
abc=go/2f and a(b&+b2)=(1 f)g~/f . To facili—tate
comparison with the calculations of Kumar and Pati,
although it is by no means essential for the analysis, we
further introduce (f'+ f'=fr, '/W2 and f'/(d'+ f') = f'.
notice that, since we have used pseudovector coupling,
our Born terms 8' incorporate the hcVI/23(I mass cor-
rections. However, because the ratios of the sums of
baryon masses are not SU(3) symmetric, the use of

g~,,p,/(m;+m, ) =gg/2f. , (23)

and absorb some over-all factors in a redefinition of the

SU(3) for the pseudovector couplings leads to a fit
diAerent from that of Kumar and Pati. Since we are
interested in showing the close correspondence of the
present work and the model of these authors, we re-
write our amplitudes using the Goldberger- Treiman
relation
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TABLE I. Decay amplitudes.

Born term
Kumar and Pati Present work

Symmetry breaking
term

Kumar Tot.al
and Present Kumar and
Pati work' Patib

Present
work Experiment'

106P{A o)

10'P(.:)
106P(Z:)

10'P (Z~+)
LP(~-)+2P(=:)1

&&[~»(~ )l '

4.9—3.8

—0.7+2.4

—2.6+2.4

7.0—5.0

5.34—3.41

—0.71+2.19

—2.43+2.16

8.05 —4.59

0.88 —0.36

—0.22 —0.42

—0.05 +0.34

1.4 —0.08

1.98
(+0.08= 2.1)

1.48
(—0.02 =1.46)—0.25
(—0.04 = —0.3)

34
].'l.

3.37
1.09

4.143+0.076

1.57 2.267&0.071

1.06 1.611~0.141

0.07 —0.119+0.013

Born+ SH terms
Kumar and Pati Present work

Nonpole term
Kumar

and Present
Pati work

Total
Kumar and

Pati
Present

worl;

10PS(g P)

10'S(=":)

10'S(Z:)

106S(Z,+)

LS(&-)+2S(=:)3
X/V3S(Zp~~)) '

—0.12+0.03+0.1
=0.01
0.08+0.01—0.1
= —0.01—0.07—0.02+0.08
= —0.01
0.5—0.05—0.02
= —0.02

0.013+0.002 —0.114
= —0.099
0.0069—0.0005—0.016
= —0.01—0.007—0.0019—0.0066
= —0.015—0.0072 —0.0013—0.075
= —0.08

—0.27 —0.32

0.49 0.56

—0.57 —0.66

—0.26

0.48

—0.58

—0.02

1.02

—0.42 —(0.33&0.004)

0.55 0.405 &0.007

—0.08 0.004~0.009

—0.67 —(0.406&0.007)

a For a =100. b Equal-time commutator contribution is given in parentheses. e H. Filthuth, CERN Report No. 69—7 (unpublished).

weak-coupling constant g'. We thus get, e.g. ,
&(~-') = —g'(1+2f')(4l)

2g(1 f) iY——Z 2mpn
+2g'(1 —2f') 1+ — —x

(Q6)(&—.V) X+~ 3v2f.
c 1

X 1 — —g~m~ 12 „—'1 2, 24
K2 Z —~V

where we take

g'= —6&&10 " MeV, f'=6-
f= 0.34. -

(25)

We must emphasize that this redefinition of the cou-
pling constants is done only for the purpose of compar-
ison with the calculations of Kumar and Pati and is in no
way essential for the model here considered. To reduce
the number of parameters further, we assume that d"
and f" are proportional to strong interaction d and f,
respectively, and, introducing as before g" and f",
we identify g" with f~mIr/v2 of Kumar and Pa, ti. Thus
we are able to rewrite our amplitudes in the form, e.g. ,

g 1 A.—E c mp(n+P) 1
S(A ') =gfamrr — —+g 1+— (1+2f)

V3 A.+cV 2/V V2 3f A+1V

2g (1 f) A —lV—c 282 po! 1 g'(1+2f')
+gfIrmlr — —~ 1+— (1—2f)— etc. , (26)

v3 Z+cV A+X v2 342f X+IV (&6)f-

where we use frrmrr 1.4&&10 ' ——MeV. As regards the
parameters n and p, we use Yoshida's estimate from the
Gell-Mann —Okubo mass formula

mpcn/v3 = 39 MeV, ,'mpv3cp= 1—90MeV, (27)

with the value of c= —1.26.
The numerical results for the amplitudes are given in

Table I. The close correspondence of the present work
and the model of Kumar and Pati is clearly exhibited.

In this work we have not attempted to obtain an
exact numerical agreement with experimental data
since, in view of the number of parameters of the
theory, such an agreement would not be very significant.

Our purpose in this note has been to demonstrate tha, t
the effective Lagrangian theory incorporating Gell-
Mann-type symmetry breaking is well adapted to
reproduce the current-algebra, results of Kumar and
Pati.
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