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A set of self-consistency conditions for ratios of hadron-hadron-hadron coupling constants is derived from
the Veneziano model for scattering amplitudes and some simple assumptions. This set includes the crossing-
matrix condition of the static meson-baryon model and the condition that the absence of resonances in exotic
states implies a cancellation from Regge trajectories of opposite signatures. For simplicity, the spins of the
external mesons and baryons are neglected. The conditions require that the particles correspond to repre-
sentations of a Lie group, and that only certain sets of representations are allowed. The relation to previous
bootstrap models is discussed. An illustrative solution corresponding to SU(3) is obtained.

I. INTRODUCTION

" "N recent years, several dynamical models of hadrons
& - have been based on various analyticity and crossing
properties of hadron-hadron scattering amplitudes.
Examples are the meson-nucleon static model, super-
convergence relations, Regge-pole Inodels, and the
Veneziano model. The addition of the bootstrap hy-
pothesis to the first three of these models has led to addi-
tional predictions, many of which are in approximate
agreement with experiment. The main purpose of this
paper is to obtain a set of bootstrap conditions from the
Veneziano model, a set that includes the more success-
ful conditions of earlier models.

Our definition of bootstrap includes two parts: (i)
The subtraction constants or background terms are

sufficiently small in number so that the dynamical equa-
tions determine' the physical masses and interaction
constants in terms of a very small set of external param-
eters; (ii) a complete set of two-hadron —+ two-hadron
amplitudes should be considered, and the set of internal
particles should be the same as the set of external
particles. Two comments must be made concerning these
points. First, statement (i) is an assumption that certain
conceivable terms are negligible. Thus, at least in pres-
ent models, the bootstrap is not implied by crossing

*Supported in part by the U. S.. Atomic Energy Commission.

and general analyticity requirements. It must be judged
by its theoretical simplicity and the success of its pre-
dictions. Second, in any bootstrap model, it is reasonable
to begin by considering amplitudes in which the lightest
hadrons are external. In such a erst approximation to a
"complete" model, statement (ii) requires only that
the set of virtual particles consists of the external
particles plus heavier particles.

In Sec. II we review briefly the most successful boot-
strap conditions of the static meson-nucleon model and
of the combination of Regge theory with duality. Con-
sistency conditions are derived from an idealized
Veneziano model (with the spins of external particles
treated like internal quantum numbers) in Sec. III.
The conditions are summarized in Sec. III C. The fact
that a solution must involve a Lie-group symmetry is
discussed in Sec. IV, while Sec. V contains an illustrative
solution involving SU(3). The exact treatment of
particle spin leads to a more complicated model, which
will be discussed in a future paper.

II. BOOTSTRAP CONDITIONS OF
PREVIOUS MODELS

The simplest type of conceivable hadron spectrum in
a Reggeized model contains only a Gnite number of
Regge trajectories. The experimental hadron data are
consistent with such a, spectrum. In such a model,
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internal quantum numbers for which no resonances
occur may be called "exotic." Some two-hadron states
will be exotic. The bootstrap principle, that the sets
of internal and external hadrons are the same, implies
that the dynamical quantity that causes resonances
must vanish in exotic hadron-hadron states. This
"general exotic principle" is one of the most basic of
bootstrap requirements.

A more specific requirement occurs in the static model
for the scattering of pseudoscalar or scalar mesons from
baryons. This may be written as

X„'=X,',

where i denotes the quantum numbers of the amplitude,
and X, and X„are the sums of resonance and bound-
state residues in the s and e channels. ' ' By definition,
the X are also related by X '= (C'");,X,', where C'" is
the s ~+ I crossing matrix. The X are quadratic in the
coupling constants. If i is exotic in one of the channels,
then Eq. (1) is a form of the general exotic principle,
and implies that the sum of the crossed channel residues
vanish. However, this equation applies to nonexotic
states as well, although only one partial wave and parity
are included in the static model. This condition, that
the X,' are components of an eigenvector of the crossing
matrix with eigenvalue one, is simple theoretically and
also approximately correct experimentally in the pion-
nucleon case. '

Recent application of the duality principle to Regge
contributions had led to another signih. cant extension
of the exotic-state requirement on coupling constants.
Ifi refers to an amplitude that is exotic in the n channel,
the condition may be written as

and of the spin state, and they involve virtual states of
both parities. However, they are limited to amplitudes
exotic in some channel. We assume that any set of
bootstrap conditions based on a more sophisticated and
complete model should lead to both the crossing-matrix
condition and the parity-cancellation conditions in the
appropriate limits.

III. BOOTSTRAP CONDITIONS FROM
VENEZIANO MODEL

A. Venezigno Form of Amplitudes

We consider meson-meson and meson-baryon scatter-
ing. For simplicity, all particles are taken to be spit-
less; the baryons are distinguished by the possession of
a unit of the conserved baryon number. It is assumed
that the masses p, of all external mesons are the same
and the masses ns of all external baryons are the same.
It is assumed further that all baryonic Regge trajectories
are degenerate, and that all mesonic trajectories are
degenerate, and that their slopes are a universal con-
stant b.

The s-, t-, and u-channel amplitudes are represented
by

s: a+9 —-) (;+d,
t: a+c ~5+d,

where u and c represent mesons, and 6 and d represent
either two mesons or two baryons. The Veneziano
amplitude T' corresponding to internal quantum
numbers i is the sum of three terms, 4

(2a) T'= T,„'+T„'+T„;. (4)

where the X, are sums of residues of Regge trajectories
that correspond to particles in the s channel, and the
sign refers to the parity of the trajectory. ' (Parity
means that of the physical states, or the signature of
the trajectory. ) If j refers to an amplitude that is
exotic in the t channel, the corresponding condition is

X (+)i+X ( )i =O—(2b)

' This requirement was first applied by G. F. Chew, Phys. Rev.
Letters 9, 233 (1962).

~ The crossing-matrix condition is discussed in some detail by
R. H. Capps, Nuovo Cimento 34, 932 (1964).

3 See, for example, C. 3. Chiu and J. 'Finkelstein, Phys. Letters
278, 510 (1968); V. Barger, Phys. Rev. 179, 1371 (1969); R, H.
Capps, Phys. Rev. Letters 22, 215 (1969),

We call these conditions the parity-cancellation con-
ditions. If one assumes factorizability, the residues X are
again quadratic combinations of coupling constants.

These conditions, Eqs. (2a) and (2b), have led to
many predictions for meson-meson and meson-baryon
systems that are approximately correct, experimentally. '
They are more general than the crossing-matrix con-
dition in that they are functions of momentum transfer

Each T„„' is taken as a finite linear combination of
generalized P functions of the type

where 0, l, and n are integers and o,„ is the trajectory
function in the s channel. The angular momentum
analysis of the s-channel pole at n, =j (j~k) in the
P, , ),)„ term may be made from a Legendre expansion of
the coeKcient F (l n„)/P(n—j n„),—usi—ng the relations

t = —2q, '(1 —. cost),),
n =2(m'+ p') —t —s,

where q, is the center-of-mass momentum in the s
channel. (For meson-meson scattering, m =p.)

We are interested only in the leading trajectories. It
is assumed that the spin of the lowest states on the
leading baryon trajectories is the same as that of the
lowest states on the leading meson trajectories; this
spin is denoted by jo. If all t)l functions that do not

4 G. Veneziano, Xuovo Cimento 5/A, 190 (1968).
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contribute to any leading trajectory are omitted, each
of the three terms of Eq. (4) may be written in the form

Tptd Q Q XPQl ICl pPQI Lk9L ) 1$ ( p )
k&jo l&j0

(6)

The partial-wave amplitudes Tj in the s channel are
defined in terms of T by the relation

2 = (~'"/0 )Z(2j+1)2''i(«») ~

We denote by E,(s)* the resi'due of the pole at n, =j
on the leading s-channel trajectory in the partial-wave
amplitude T;. If T' is expressed in the form of Eqs. (4)
and (6), this residue is

~~(~)'= P~LE:.~,
—~'+( 1)'IC. —

,~'j, (7)
where

t j—1 (2g 2)j
Pj=

s'~'(2 j+1)C,

where the X's are real coefficients. The channel indices
on the lI. 's and P's may be placed in either order, but the
first of the angular momentum indices corresponds to
the first of the channel indices, i.e., A, „„,~~

——X„„&1„-.

In order to express simply the residues of the poles
in T, we define the following sums of coefficients:

&v&o,j = P ~v~, jk'
~

k&j

r(vcr, kl, k'I') =X„„~j/y„„„).'. (10)

This implies that the quantity E„„,' of E'q. '(9) may be
written as a product of a function independent of j and a
function independent of i, i.e.,

+@co,j Xvco Xve,j'
Since a particular baryon state may be considered in
either the s or I channel, crossing symmetry implies
that the ratios r of Eq. (10) are invariant to the inter-
change s~~ I, i.e.,

r(su, k's) =r(us, k's), (12a)

r(st, k's) =r(Nt, k's), r(ts, k's) =r(tu, k's), (12b)

where 0's is shorthand for kl, 0'l'.
The simple requirement that at least one A. of the

type X,„,I,I, ' is nonzero, together with Eq. (12a), implies
that the E,„, of Eq. (11) are symmetric in the inter-
change s ~+

—N. We may then choose X and X to have
this symmetry also:

meson-meson (3fcV) scattering as well. It is assumed
that all baryon states and their trajectories are equiv-
alent in the sense that their Regge residues are pro-
portional (as a function of s or I) and that all meson
residues are proportional in this sense. Specifically, the
assumption is that the ratio defined by the following
equation is independent of the internal state i:

l=jp

Xau,j +us,j p

X,„'=X„,'. (14)

The constant C; is the coeKcient of (cos&)' in the poly-
nomial I';.

In Sec. III B, we make some assumptions concerning
the proportionality of certain of the X coeKcients,
assumptions that lead to bootstrap conditions of the
desired kind. A simpler way to obtain these conditions
is to make the strong assumption that only the one

leading term with i =3=jo occurs in the Veneziano

expansion of Eq. (6). This leads to the bootstrap con-
ditions of Sec. III C if the p and X of Eqs. (18) and (19)
are given by

P =P" =P/I (2 2o+1)

We present the proportionality assumptions to show

that the strong one-term assumption is not needed. "

However, the reader interested only in the conditions
and their solutions may skip to Sec. III C.

B. Proportionality Assumptions

We consider meson-baryon (3/IB) scattering, since a
trivial modification makes the results applicable to

Further, we may choose X's that satisfy the conditions

Xat,j ut, j y Xts,j Xtu,j ~ (15)

The proportionality condition of Eq. (10) implies fur-
ther that E,„,'/X„&,, ' is independent of i, and Eq. (12b)
implies that this ratio is the same when v is s or N. We
choose X,„,;/X, ~,, so tha, t

Xt„'=X„,'.
We assume that there are some states i for which

s-channel resonances exist only of even parity, and
other states i' for which s-channel resonances exist only
of odd parity. It is seen from Eq. (11) that this implies

X,t'X, t,j—X,„'X,„,j=o, j odd

X~& Xp&,g+Xa~ Xsz,j= 0 ) J even

for such states i andi'. These equations imply that the
ratio X,~,,/X, „,; is the same for all odd j, and also is
the same for all even j.We assume the even- j and odd- j
ratios are the same. We may then choose the X's so
that X,t,j=X,„,j Then there are only two independent
X functions,

' A set of assumptions that is similar to our set of proportionality
assumptions, and which leads to the same results, is used in the
meson model of S. Mandelstam, Phys. Rev. 184, 1625 {1969).
Mandelstam points out that his assumptions are equivalent to the
requirement that the leading trajectories bootstrap themselves.

XsÃj X'tc8$ Xst j @etj and Xtgj —Xt~

We define new phase-space factors

Pj Pj~«~,j& Pj Pj~&ts,j y (17)
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so that the s-channel residue of Eq. (7) and the cor-

responding t-channel residue may be written in the form

»'(&) =- —p''LX. '+(—1)'X-'j, (18)

R (t)= —p; )X„'+(—1) X„,'j, (19)

where all the X„„aresymmetric in v and cv. These equa-
tions also apply to iV3f scattering; in this case, p; and

p,
~ are the same. The effective residues X&+' for even-

and odd- j values are defined as follows:

X &~)'=X ]'&X

X,&+)'=X,'aX '
(20)

(21)

X, '+& =Q D.a,D, br*, (22a)

(—&=+ p sj b@ (22b)

where the D and F are coupling constants. ' Similar

equations hold for the t- and I-channel residues. We
have de6ned the magnitude of the constants by using

an equality rather than a proportionality sign in these

equations. This is not important here, since the con-

sistency conditions concern only ratios of coupling
constants. If we take u and c to be self-conjugate states,
then

D~br Darb y Fabr Farb (23)

i.e., the constants may be regarded as elements of
Hermitian matrices D and F,. We note from Eqs.
(22a) and (22b) that X,&+& cannot be negative if the

initial and final states are the same.
Z. Exotic-state condition. The quantity X„„' must

vanish if the state i is exotic in either the v or u channel.

If i is exotic in either the t or I channel, it is seen from

Eq. (20) that
( X,&+&'~ =

~
X, ' &'~. This is the Veneziano

form of the parity-cancellation conditions of Eqs. (2a)
and (2b).

3. Crossing condition. This is X„„'=-X„„',as shown in

Eqs. (14) and (16). In the case of X, , this condition is

in the form of Eq. (1), and implies that X,„, the vector
whose components are X,„', is an eigenvector of the

s ~+ u crossing matrix, with eigenvalue 1.
4. Inclusion of external Particles in interriat set. Since

the external particles are spinless, the lowest angular

' Frequently, but not always, one uses a representation of the
particles for which the coupling constants F and D are real.

C. Consistency Conditions

We take the residues to be in the form of Eqs. (18)
and (19), and list below the bootstrap conditions.

1. Factonsation condition. The residue functions
X„&+& of Eqs. (18) and (19) must be proportional to the

sums over v-channel trajectories of parity + of products
of constants of coupling to the initial and final states in

question. For the amplitude of Eq. (18),

momentum jo on the leading trajectories must be zero,
so that the set of external particles is the set of lowest
states on the even-parity trajectories. Completion of
the model would require treating the other particles on
the trajectories as external. In a complete theory, with
the set of external particles equal to the set of internal
particles, condition (2) would be redundant.

IV. GROUP PROPERTIES

Ke take a self-conjugate set of meson states in the
amplitudes of Eq. (3), so that a= a and c=c. Then s-u
crossing is simply the interchange u~& c. According to
Eq. (14), X,„'—X„,'=0. We write X,„ in terms of
X,~+& by using Eq. (20), then use Eqs. (22a), (22b), and
(23) to write this in terms of D and F coefficients, and
then subtract X„,by interchanging u and c and sub-
tracting. The result is

Q(DcdrDarb FcdrForb DadrDcrb+FasrFcrb) =0. (24)

In the case of 31M scattering, we take the states b,
d, and r to be self-conjugate also. The Bose statistics
of the AIM states implies F;;I,= —F,;I, and D;;~= D;;~.
These relations, combined with the Herrniticity proper-
ties of Eq. (23), imply that the D coeKcients are real and
the F are imaginary. Similar equations for MM scatter-
ing may be obtained by considering the s-t and u-t pairs
of channels. The algebraic structure of the resulting set
of equations is not new. Previously, the author obtained
an equivalent set from a superconvergence assumption
applied to collinear amplitudes, together with the
assumption that scattering lengths may be neglected. 7

In Ref. 7, the interactions refer only to virtual particles
of the lowest angular momentum for each parity,
rather than to Regge trajectories. On the other hand,
the spin components of the particles may be treated
rigorously with this superconvergence method.

Using the superconvergence method, it is possible
to enlarge the set of external meson states to include all
the internal meson states. ' It is shown in Ref. 8 that
the consistency conditions imply that the mesons of
both parities correspond to the direct sum of the
regular and identity representations of a I ie group, that
the interactions are invariant to the transformations of
the group, and that the groups SU(n) (but not all Lie
groups) satisfy the requirements. In the present case,
we cannot prove quite so much because the virtual
particles involved in the F-type interactions all possess
spin, and thus are not included as external particles.
Nevertheless, we will assume these results —that the
meson trajectories of both parities correspond to the
regular and identity representations of SU(n), and that

' R. H. Capps, Phys. Rev. 168, 1731 (1968).Our Eq. (24) may
be put in the form of Eq. (8} of this reference if we make the
replacements D,b, ~ y b, ' and F b, —&iy b;, and use the Hermi-
ticity properties of the D and I' and the reality of the y's.

8 R.. H. Capps, Phys. Rev. I'7l, 159I (j.968). This paper is an
,extension of Ref. E.
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the meson-meson-meson interactions are invariant
under the group transformations.

On the other hand, the MB scattering conditions of
this paper and Ref. 7 are different. The Veneziano ap-
proach leads to 358 conditions that are obtainable from
the superconvergence approach only if p, =m. The re-
quirement of equal masses in the superconvergence
mod 1 is replaced by the requirement that the trajectory
slopes be equal. This point is discussed further in Sec.
VI.
~&We now write the 3EB—+ MB consistency equations
of the Veneziano model in terms of coupling constants.
One condition is Eq. (24), where b, d, and r now refer to
baryons. This equation may be written in terms of the
D and Ii matrices defined in Sec. III C, i.e.,

PD.,D.j„—LF,,F.j.,= O.

Another condition may be obtained by considering
the quantity X,c'. It is seen from Kqs. (20) and (21)
that this quantity is given by

1(X (+)i+X ( )ij ——1I X (+)i+X ( )ij—
If this equation is mutliplied by 2, and the X(+) are
written in the form of Eqs. (22a) and (22b), the result is

2 (DcdrDar b+F adrs ar b)

Z(Dbdn Dane +Fbdn ~ anc ) ~ (26)

where the sum r is over s-channel baryon trajectories,
the sum n is over 3-channel meson trajectories, and the
primes are included'-'to emphasize that the t-channel
coupling constants' are different from the s-channel
constants.

We next interchange a and c in Eq. (26) and subtract
the results, writing the left-hand side in terms of the D
and F matrices. The constant D „, is symmetric in this
interchange, so the D' term drops out on the right, and
the result becomes

LD„D jd b+ LF„F,]d b =2 Q Fbd„'F, ,'. (27)

The right-hand side of Eq. (27) refers to interactions of
odd-parity meson trajectories. We take n as well as a
and c to refer to self-conjugate meson states. The proper-
ties of meson-meson-meson interactions discussed
earlier in this section (those taken from Ref. 8) imply
a group symmetry and that F, is proportional to
~y, „,where the y are structure constants. Furthermore,
F~q„ is proportional to the db matrix element of a
Hermitian matrix Ii„' that corresponds to odd-parity
meson interactions. If we use these proportionality
relations, and combine Eqs. (25) and (27), the result is

LD.,D.jdb =LF.,F'.jdb=~ii 2 V"-(F-')db, (28)

where i~ is a real constant.

Application of the parity-cancellation principle to
baryon-baryon states leads to the result that the inter-
actions with baryons of corresponding meson trajectories
of opposite signatures must be proportional. ' This
implies that (F„)db is proportional to Ddb, so that Eq.
(28) implies that the D interactions transform like a
representation of the symmetry group, and that the F
interactions have similar properties.

V. SOLUTION INVOLVING SU(3)

In Sec. IV it was shown that the particles involved
in any solution to the consistency equations must cor-
respond to representations of a I ie group. Only certain
sets of representations lead to solutions. In Ref. 8 it
was shown that mesons satisfying an analogous set of
equations must correspond to the identity and regular
representations of the group. The purpose of this sec-
tion is to 6nd a solution for the baryons. The most
physical solution corresponds to the group SU(6).
However, we consider here SU(3), because it is simpler
and the relevant crossing matrices are all in the litera-
ture. A brief discussion of the extension to SU(6) is
given in Sec. VI.

In order to illustrate the procedure, we write and
solve the consistency equations for the scattering of
octet 3f particles from octet 8 particles. Only singlet
and octet meson trajectories and singlet, octet, and de-
cuplet baryon trajectories are allowed. We consider the
quantities X,c' and X,„' of Kq. (18), using X' to refer
to either of these quantities.

It is convenient to choose the amplitudes i to be
either symmetric or antisymmetric under the inter-
change s~~ N. This is equivalent to definite symmetry
under interchange of the mesons ib and c I see Eq. (3)j,
and thus the amplitudes crorespond. to t-channel MAX

representations of dednite symmetry. We use the octet-
octet crossing matrix of SU(3) to relate these amplitudes
X' to amplitudes corresponding to a deinite representa-
tion in the s channel. ' The crossing relations are

X px1+Xdd+Xf f+ (5/4)xlp
&

X""=~~X(——,'pXdd+2xyr —pxgp,
Xd~ =Xdr+-,' (5) '"Xgp,
X"=pxg+ ,'Xdd px-gr —,', Xgp, ——
X»=-,'X~+-,'Xdd+-,'X„,
X~"=Xdr ——,'(5) "'Xgp,
X"= X""= —',Xg ——',Xdd+ a'Xgp,

9 This follows from the fact that all baryon-baryon states are
exotic.' The octet-octet crossing matrix is given by J. J. de Swart,
Nuovo Cimento 31, 420 (1964). The signs of our t-channel (fd
and df) amplitudes are opposite to those of de Swart. This sign
change is made because the f-type interaction for three multiplets
depends on the order of the multiplets. With the de Swart con-
vention, the f-type interaction of a meson with the BB states is
opposite to that usually assumed.
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ThsLE I. Relative values of X,&+), and X,& ); for the three
solutions of Eqs. (30)-(33).The parentheses and subscript s are
suppressed.

Solution X+10 X+qq X+&I X+&&

I 0 0 9 0 16 5 0
II 24 15 3 3+5 16 5 9

III 8 5 25 5+5 48 15 3

X df

where the superscripts and subscripts refer to t-channel
and s-channel representations, respectively. The d and

fdenote symmetric and antisymmetric octet states, and
the first index of X~" and X"~ refers to the 3fAEI state
in the t channel. The amplitudes antisymmetric in the
interchange s~~l are X«, Xf", and X"=X"*.Since
the initial and final s-channel states are MB states,
Xgf XfQ. We apply the exotic-state condition in the
s and u cha, nnels by setting X&0* and X27 equal to zero;
these terms have been omitted from the right-hand side
of Eq. (29).

The t-channel exotic-state condition implies that
X,t,

' vanishes when i is exotic in the t channel, i.e.,

X ~2v X io 0 (30)

The crossing condition of Sec. III C implies that X, '

vanishes for antisymmetric states i, i.e.,

X «=X «=X "=0 (31)

Some consistency conditions are expressed most
simply in terms of X,1+&=X„~X,.„.Condition (1) of
Sec. III C implies that all the X,&+', except X,&+)~f

must be non-negative (where the subscript is the s-
channel amplitude).

We now assume a speci6c set of baryon representa-
tions, requiring that the even- and odd-parity baryon
trajectories correspond to 810 and 861, respectively.
Since there is only one octet of each parity, the factori-
zability condition of Sec. III C implies that

X,&+&ddX, &+~gg ——X,(+~gf-'. (32)

Furthermore, the absence of an even-parity singlet
and odd-parity decuplet implies that

(33)

We have yet to consider the t-channel residues and to
use the crossing symmetry of X,& and X„&.However, it
is straightforward to show that there are only three
discrete nontrivial solutions to Eqs. (30)—(33), so we
list these solutions 6rst and then test consistency with
the t-channel conditions. The X,(+& of the three solutions
are listed in Table I. The over-all normalization of each
solution is arbitrary, but there are no other variable
parameters. "The constants are related to the conven-

"Recently, the parity-cancellation form of the duality principle
has been applied to the three channels of the MB ~ 3IIB process
by V. Barger and C. Michael, Phys. Rev. 186, 1592 (1969).The
self-consistency conditions of this reference are equivalent to
conditions (j.) and (2) of our Sec. III C, applied to the baryon

tional Ii/D ratio by

(9/5) '~'F/D= Xfr/Xar Xdf/Xga.

We are also interested in the solutions that occur
when the trajectory parity assignments are reversed, i.e.,
when the even- and odd-parity baryons correspond to
the representations 81 and 8910, respectively. These
solutions, distinguished by bars over the X's, may be
obtained from the unbarred solutions by the prescription

X,&+&;=X,&+&, , (34)

2X,~'=Q g, , ~~G, ,aa, (35)

where the sum is over meson trajectories, the MM and
BBstates are those of the amplitude i, and the normali-

zation is similar to that used for the s-channel residues,

Eqs. (22a) and (22b).
We now 6nd a solution to all the conditions for all

3535~ JI/135 and 3fB—& MB amplitudes, using the
results of Table I as a guide. The conditions of Eqs,
(30)—(33) apply to octet-octet 3/I3I scattering, as well as
to BIB scattering. Solution I of Table I must apply to
~V% scattering, since the other solutions involve de-

cuplets. However, since a singlet meson trajectory
couples to 3f3II states only if it is of even parity, we

must take the barred modification of this solution, given

by Eq. (34). The resulting solution is identical to that
of Refs. 7 and 8, since our MM —+ iV3f conditions are
algebraically the same as those of these references. It is
shown in Ref. 8 that the solution may be extended to
amplitudes involving external singlet mesons in a way
that satis6es the conditions in all three channels.

We now turn to the MB —+MB octet-octet ampli-

tudes, assuming as before that the even- and odd-parity
trajectories correspond to the multiplets 810 and

81, respectively. Only solutions II and III of Table I
are eligible, since there is no decuplet in solution I.
We test these possible solutions with the t-channel
consistency condition, Eq. (35). Since the 8 and M are
the lowest states on the even-parity baryon and meson
trajectories, the 3188 coupling constants oc:cur in s-

channel and t-channel residues. This leads to the con-

sistency condition

X„""/X„"r=X,&+'gg/X, &+'~. , (36)

since both these ratios are the d/f coupling ratio of the
MBB interaction. One may use Eq. (29) to show that
this condition is satisfied in the case of solution III of

residues. The solutions of Barger and Michael for octet-octet MB
scattering contain one extra continuous parameter.

We next consider the t-channel residues. For our

amplitudes i, X„&'=&X,&', where the sign corresponds
to the symmetry under s-u crossing and also to the
orbital parity of the 3f3f state in the t channel. For
either parity, X&&+~ =2X,.&, and we need consider only

X,&. This may be written in terms of coupling constants

g and 6:
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Table I, but not in the case of solution II. Thus,
solution III is the consistent solution. (If the assumed
parities of the singlet and decuplet trajectories were
reversed, so that the residues corresponded to the barred
X&+& of Eq. (34), then solution II would be the one
that satisfied the i-channel conditions. ]

Application of the parity-cancellation principle to
baryon-baryon scattering implies that the couplings to
baryons of odd- and even-parity meson trajectories are
proportional. This implies another t-channel consist-
ency condition, similar to Eq. (36), but involving the

odd-parity meson residues. The condition is

f&/X, ff= X (+i„s/X (+)„.
~ (37)

This condition is also satisfied by solution III.
One may apply the consistency conditions to all MB

amplitudes, where the M refer to the singlet as well as
the octet, and the 8 refer to the decuplet as well as the
octet. It can be shown that there is a unique extension
of our solution (solutions I and III for M3f and MB
scattering, respectively) that satisfies all the consistency
conditions. The coupling constants of the solution are"

Gs, g= 5'",
Geo, s,s= 8'~,

Gs, r ——3'~',

Gs,y= 5

G101018p
Gs, io, s= (30)' '&

gs. s, ~= o.

Gs ls, s——(10)'~',

Gls, ls, s (32) y

~s, s, 1 0 )

gi, s,s= (32)' '&

Gs, s, »
—8'",

Gs, s ——(15)'",
Gi, s,s= (48)

Here G;;& refers to the coupling of an even-parity baryon
trajectory of multiplicity i with a BlV state of 8 multi-
plicity j and 3f multiplicity k, while g;;& refers to the
coupling of an even-parity meson trajectory of multi-
plicity i with JI/IM states of the multiplets j and k. The
barred constants refer to the couplings of odd-parity
trajectories. The 8d and 8f refer to d- and f-type octet-
octet-octet coupling. The normalization is such that
G;,I,

' is the sum over the 835 states of the squares of
the couplings to one member of the trajectory multiplet
i. The relative McVJV/MBB normalization is chosen to
satisfy Eq. (35) and the s-channel conditions X,&+&;

=G and X,& &;=6,'. The couplings of meson trajec-
tories to BB states may all be obtained from the G's
and the condition that the couplings of even- and odd-
parity meson trajectories to BB states are the same.
The signs of the constants depend on convention; the
only relative signs that we have computed are the posi-

, tive F/D ratios of the couplings of baryon trajectories
to 835 states.

There is no simpler solution involving an octet, i.e.,
there is no solution (except for the meson solution) in
which there are fewer than four basic multiplets. It is
interesting that each of the even- and odd-parity meson
and baryon multiplets of the solution corresponds to
either the representation (3,3) or (3,6) of SU(3) SSU(3).

VI. CONCLUDING REMARKS

The self-consistency conditions of Sec. III C do not
depend on the details of the Veneziano model. It is
possible that when an improved dynamical model is

"When we computed these coupling constants, we made use of
the octet-octet and octet-decuplet crossing matrices of Ref. 10 and
the 8+8~ 8+10 crossing matrix given by K. Y. Lin and R. E.
Cutkosky, Phys. Rev. 140, 8205 (1965).

developed, the consistency conditions (or modifications
of them) will remain. In a sense, the Veneziano model
was used here as a method of bridging the gap between
the two types of bootstrap conditions discussed in Sec.
II, the parity-cancellation conditions for exotic states,
and the crossing-matrix condition of the meson-nucleon
static model. We note that if the static-Inodel condition
of Eq. (1) is applied to all meson-nucleon exotic states,
a solution with a 6nite number of internal quantum
numbers is impossible. "Thus, the inclusion of virtual
particles of both parities is indispensible to a model
with a finite number of Regge trajectories. In our
model, the quantity satisfying the crossing-matrix con-
dition is X,„,which is the difference of the contributions
of trajectories of opposite parities, as is seen from the
inverse of Eq. (20). It happens that in the case of irAr

scattering, the contribution of odd-parity baryon tra-
jectories is relatively small. '4 This is one reason that
the static model is so useful in the xE case, and a little
less useful when extended to SU(3) multiplets.

The Veneziano model has one definite advantage over
most previous models: One can use it to obtain simple
consistency conditions for the leading trajectories with-
out neglecting the baryon-meson mass difference. This
is mentioned briefly in Sec. IV, before Eq. (25). An
example of this advantage occurs in the treatment of
3EB states Lsuch as SU(3) singletsf for which reso-
nances occur of one parity only. If one treated this
phenomenon by applying duality to conventional

'3 This results from the fact that in the static model, the baryon
exchange force in the meson-baryon state of largest total charge
is positive in all cases. This e6ect is discussed by R. H. Capps,
Phys. Rev. Letters 13, 536 (1964).

'4 This contribution is estimated by R. H. Capps, Phys. Rev.
185, 2008 (1969).It is emphasized in this reference that the small-
ness of the odd-parity contribution is not a violation of the
combination of SU(3) with exchange-degeneracy requirements on
exotic states.
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Regge amplitudes, " a relation between the masses of
the baryons and mesons of the two crossed channels
would be predicted. In the Veneziano formulation, the
mass condition is replaced by that of trajectory-slope
equality, which corresponds better to experiment.

Since the spins of the external particles have been
neglected, the speci6c results would be more relevant
physically if the group considered were SU(6) rather
than SU(3). The model would then apply in the ap-
.proximation that spin crossing matrices can be treated
like those for internal quantum numbers. The most
physical solution of the SU(6) model would involve
even- and odd-parity baryons corresponding to the repre-
sentations 7056 and 7020, respectively. " This

r' A. Schwimmer, Phys. Rev. 184, 1508 (1969).Schwimmer uses
the conventional Regge representation to analyze mg scattering,
where the resonances are all of even parity. The resulting predicted
degeneracy of the trajectories in the two crossed channels (A& and
fo trajectories) is accurate, in this case.

"The fact that the 20-fold baryon multiplet should be present
in a complete model involving the SU(6) group has been em-

solution is analogous to the SU(3) solution given in
Sec. V.

If one applies these self-consistency conditions to
physical amplitudes, some of the conditions are expected
to be more accurate than others. For example, in the
case of 3EB scattering, it is likely that the s-channel
exotic condition is more accurate than the t-channel
exotic condition. ' However, one expects amplitudes
corresponding to t-channel exotic states to be smaller
than those corresponding to t-channel nonexotic states.
Therefore, finding exact solutions to the set of consist-

ency equations may be useful as a way of ending a
erst approximation to the physical hadron-hadron
scattering amplitudes.

In a future publication, the exact treatment of the
spins of external particles will be discussed.

phasized by P. G. 0. Freund and R. Waltz, Phys. Rev. 188, 2270
(1969).

~7 A plausible reason for this eGect is given by J. Mandula, J.
Weyers, and G. Zweig, Phys. Rev. Letters 23, 266 (1969). See
also Ref. 14.
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Theory of Deep-Inelastic Lepton-1Vucleon Scattering and Lepton Pair
Annihilation Processes. IV. Deep-Inelastic Neutrino Scattering

TUNG-MOW YAN AND SIDNEY D. DRELL
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This is the last in a series of four papers devoted to a theoretical study based on canonical Geld theory
of the deep-inelastic lepton processes. In the present paper we present the detailed calculations leading to
the limiting behavior —or the "parton model" —for deep-inelastic neutrino scattering, i.e., v+p —+ e +"any-
thing, " v+p ~ e++"anything, " where "anything" refers to all possible hadrons. In particular, we show
that the structure functions depend only on the ratio of energy to momentum transfer 2jIIv/g' as con-'
jectured by Bjorken on general grounds. Experimental implications, including sum rules and the relation
of p and v cross sections to each other as well as to deep-inelastic electron scattering cross sections, are
derived and discussed.

I. INTRODUCTION
' 'N this fourth and Anal article of a series of papers' on
~ - lepton-hadron interactions we study neutrino and
antineutrino scatterings in the deep-inelastic region.

The smallness of the 6ne-structure constant for lepton
electromagnetic interactions and of the Fermi coupling
constant for their weak. interactions permits the lowest-
order perturbation expansion in these parameters. We
assume the weak currents of the leptons to be well
described by the universal V —A theory. The conserved-
vector-current hypothesis of Feynman and Gell-Mann'

* Work supported by the U. S. Atomic Energy Commission.
~ S. D. Drell, D. J. Levy, and T. M. Van, Phys. Rev. Letters

22, 744 (1969);Phys. Rev. 18'7, 2159 (1969);Phys. Rev. D 1, 1035
(1970); 1, 1617 (1970). The last three papers will be referred to
as Papers I, II, and III, respectively.

2 R. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

and the Cabibbo theory of the weak currents for the
hadrons' are also generally accepted as working

assumptions.
Apart from the question of whether the weak inter-

action is really of current-current type or is mediated

by intermediate vector bosons, neutrinos as well as
antineutrinos, like electrons and muons in electro-
magnetic interactions, also probe the structure of
hadrons via scatterings from hadron targets. The parton
model derived in previous papers of this series' for
deep-inelastic electron scattering can be generalized to
a form appropriate for neutrino and antineutrino scat-
tering. Accomplishing this generalization is the task of

e N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).


